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Abstract. In this paper, we prove the boundary null-controllability of the compressible Navier-Stokes

equations linearized around a positive constant steady state in a bounded interval when the time is
sufficiently large. The novelty of this work is that we consider only one Dirichlet boundary control at

one end of the interval acting either on the velocity or density part of the concerned system, where the

first-order couplings between transport and heat-type equations arise. Moreover, we establish that the
null-controllability results are optimal/sharp concerning the regularity of initial states for the velocity

case and with respect to time for the density case.

The proofs of controllability results rely on a new parabolic-hyperbolic joint Ingham-type inequality,
a mixed parabolic-hyperbolic moments method, and some complex analytic arguments. To this end, a

careful spectral analysis of the associated non-self-adjoint operator is performed, which is involved due

to the effect of the boundary conditions.
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1. Introduction and main results

1.1. The system under study. The Navier-Stokes (NS) system for a viscous compressible isentropic
fluid in (0, L) is {

ρt + (ρu)x = 0, in (0,+∞)× (0, L),

ρ
(
ut + uux

)
+ (p(ρ))x − νuxx = 0, in (0,+∞)× (0, L),

(1.1)

where L > 0 denotes the finite length of the interval, ρ is the fluid density and u is the velocity. The
viscosity of the fluid is denoted by ν > 0 and we assume that the pressure p satisfies the constitutive law
p(ρ) = aργ for a > 0 and γ ≥ 1. Upon linearization of (1.1) around some constant steady state (Q0, V0)
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(with Q0 > 0, V0 > 0), we get
ρt + V0ρx +Q0ux = 0, in (0,+∞)× (0, L),

ut −
ν

Q0
uxx + V0ux + aγQγ−2

0 ρx = 0, in (0,+∞)× (0, L).
(1.2)

Now, if we consider the change of variables:

ρ(t, x) → αρ(βt, δx), u(t, x) → u(βt, δx), ∀(t, x) ∈ (0,+∞)× (0, L),

with the choices of α, β, δ > 0 as

α :=
(
aγQγ−3

0

)−1/2

, β :=
Q0V

2
0

ν
, δ :=

Q0V0
ν

,

then the system (1.2) reduces to{
ρt + ρx + bux = 0, in (0,+∞)× (0, δL),

ut − uxx + ux + bρx = 0, in (0,+∞)× (0, δL),
(1.3)

with b = Q0

V0

(
aγQγ−3

0

)1/2
.

Let us describe the problems on which we are going to work in the present article. Our goal is to
study the boundary controllability properties of the linearized Navier-Stokes system (1.3) at time T > 0
with a single control force acting either on the velocity or density component. Here, we must mention
that the whole analysis of this paper will be performed in the space domain (0, 1), which is mainly for
the simplicity of spectral computations. The same can be done in the interval (0, δL).

I. Control on velocity: The first problem under consideration is

ρt + ρx + bux = 0, in (0, T )× (0, 1),

ut − uxx + ux + bρx = 0, in (0, T )× (0, 1),

ρ(t, 0) = ρ(t, 1), for t ∈ (0, T ),

u(t, 0) = 0, u(t, 1) = q(t), for t ∈ (0, T ),

ρ(0, x) = ρ0(x), u(0, x) = u0(x), in (0, 1),

(1.4)

with a Dirichlet control q acting at the right boundary point only through the velocity component u, and
(ρ0, u0) is the given initial state from some suitable Hilbert space.

II. Control on density: Next, we consider the case when a boundary control p acts on the density part
instead of velocity. More precisely, the system under consideration is

ρt + ρx + bux = 0, in (0, T )× (0, 1),

ut − uxx + ux + bρx = 0, in (0, T )× (0, 1),

ρ(t, 0) = ρ(t, 1) + p(t), for t ∈ (0, T ),

u(t, 0) = 0, u(t, 1) = 0, for t ∈ (0, T ),

ρ(0, x) = ρ0(x), u(0, x) = u0(x), in (0, 1).

(1.5)

The aim is to study the null-controllability of the systems (1.4) and (1.5) at a given time T > 0.
Moreover, as a consequence of the null-controllability result for the system (1.5), we can also achieve the
null-controllability for the following full Dirichlet system when a control h is exerted on the density part,
that is 

ρt + ρx + bux = 0, in (0, T )× (0, 1),

ut − uxx + ux + bρx = 0, in (0, T )× (0, 1),

ρ(t, 0) = h(t), for t ∈ (0, T ),

u(t, 0) = 0, u(t, 1) = 0, for t ∈ (0, T ),

ρ(0, x) = ρ0(x), u(0, x) = u0(x), in (0, 1).

(1.6)

Let us prescribe the notions of null- and approximate controllability for the concerned systems.

Definition 1.1. Let H be a Hilbert space. We say the system (1.4) (resp. (1.5) and (1.6)) is
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• null-controllable at a finite time T > 0 in H if, for any given initial state (ρ0, u0) ∈ H, there
exists a control q ∈ L2(0, T ) (resp. p, h ∈ L2(0, T )) such that the solution (ρ, u) to (1.4) (resp.
(1.5) and (1.6)) can be driven to 0 at the time T , that is,

(ρ(T, x), u(T, x)) = (0, 0), for all x ∈ (0, 1).

• approximately controllable at a finite time T > 0 in H if, for any given initial state (ρ0, u0) ∈
H, final state (ρT , uT ) ∈ H and given ε > 0, there exists a control q ∈ L2(0, T ) (resp. p, h ∈
L2(0, T )) such that the solution (ρ, u) to (1.4) (resp. (1.5) and (1.6)) satisfies

∥(ρ(T ), u(T ))− (ρT , uT )∥H ≤ ε.

If the system (1.4) is null-controllable at some time T > 0 by using a control q ∈ L2(0, T ) acting only
on the velocity part, then we have the following compatibility condition (obtained by integrating the first
equation of (1.4)): ∫ 1

0

ρ0(x)dx = b

∫ T

0

q(t)dt.

We also get a similar compatibility condition for the density case (that is, for system (1.5)), given by∫ 1

0

ρ0(x)dx = −
∫ T

0

p(t)dt.

To avoid these constraints, we shall work on the Hilbert space L̇2(0, 1)× L2(0, 1), where

L̇2(0, 1) :=

{
f ∈ L2(0, 1) :

∫ 1

0

fdx = 0

}
.

1.2. Functional setting. For any s > 0, we introduce the following Sobolev space

Hs
♯ (0, L) := {φ ∈ Hs(0, L) : φ(0) = φ(L)}

and denote (Hs
♯ (0, L))

′ as the dual space of Hs
♯ (0, L) with respect to the pivot space L2(0, L). We also

denote, for any s > 0, H−s(0, L) and (Ḣs
♯ (0, L))

′ as the dual spaces of Hs
0(0, L) and Ḣ

s
♯ (0, L) with respect

to the pivot spaces L2(0, L) and L̇2(0, L) respectively. We note here that, although the trace φ(0) or
φ(L) is meaningful only for s > 1

2 , we still keep the same notation for s ≤ 1
2 to simplify the presentation.

Let us now write the underlying operator associated with the control systems (1.4) or (1.5), given by

(1.7) A =

(
−∂x −b∂x
−b∂x ∂xx − ∂x

)
,

with its domain

D(A) =
{
Φ = (ξ, η) ∈ H1(0, 1)×H2(0, 1) : ξ(0) = ξ(1), η(0) = η(1) = 0

}
.(1.8)

The adjoint of the operator A has the following formal expression

(1.9) A∗ =

(
∂x b∂x

b∂x ∂xx + ∂x

)
,

also with the same domain D(A∗) = D(A), given by (1.8). Note that the operator A is non-self-adjoint
in nature.

Notations: Throughout the paper, C,Ci > 0 for i ∈ N∗, denote the generic constants that may vary
from line to line and may depend on T .

1.3. Main results. This section is devoted to announce the main results of the present work.

Theorem 1.2 (Control on velocity). Let T > 1 and b > 0 such that b4 + 8b2 + 5 < 4π2. Then, there

exists a countable set N such that for chosen b /∈ N and any given (ρ0, u0) ∈ Ḣ
1
2

♯ (0, 1) × L2(0, 1), there

exists a Dirichlet boundary control q ∈ L2(0, T ) acting on the velocity component such that the system
(1.4) is null-controllable at time T , that is

ρ(T, x) = u(T, x) = 0, ∀x ∈ (0, 1).(1.10)

Moreover, if 0 ≤ s < 1
2 , the system (1.4) fails to satisfy the null-controllability criterion (1.10) in the

space Ḣs
♯ (0, 1)× L2(0, 1) for any given time T > 0 and b > 0.
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Theorem 1.3 (Control on density). Let T > 1 and b > 0 such that b4 + 8b2 + 5 < 4π2. Then, for

any given initial state (ρ0, u0) ∈ L̇2(0, 1) × L2(0, 1), there exists a boundary control p ∈ L2(0, T ) acting
through the density component such that the system (1.5) is null-controllable at time T , that is

ρ(T, x) = u(T, x) = 0, ∀x ∈ (0, 1).(1.11)

Remark 1.4. We must mention here that the restrictions on b appear in the above results because of
the difficulty in proving that roots of the auxiliary equation (which comes from the differential equation
satisfied by the eigenfunctions of A∗) are distinct. Moreover, the set N appears while proving that all the
observation terms are non-zero in the case when a control acts only on the velocity part; see Section 4
for details.

We also have the lack of null-controllability result for the system (1.5) when T < 1. Precisely, we
prove the following proposition.

Proposition 1.5 (Lack of null-controllability at small time). Let 0 < T < 1. The system (1.5) is not
null-controllable at time T in the space L2(0, 1)× L2(0, 1).

As a consequence of Theorem 1.3, we also achieve the null-controllability for the system (1.6) with a
Dirichlet control on the density part. More precisely, we have the following result.

Theorem 1.6 (Dirichlet control on density). Let T > 1 and b > 0 such that b4+8b2+5 < 4π2. Then, for

any given initial state (ρ0, u0) ∈ L̇2(0, 1) × L2(0, 1), there exists a boundary control h ∈ L2(0, T ) acting
through the density component such that the system (1.6) is null-controllable at time T , that is

ρ(T, x) = u(T, x) = 0, ∀x ∈ (0, 1).(1.12)

Indeed, by Theorem 1.3, there exists a control p ∈ L2(0, T ) which drives the solution (ρ, u) of the

system (1.5) to (0, 0) with initial state (ρ0, u0) ∈ L̇2(0, 1)×L2(0, 1). Then, by showing ρ(·, 1) ∈ L2(0, T ),
one can consider h(t) := ρ(t, 1) + p(t) for t ∈ (0, T ), which acts as a null-control for the system (1.6).
Similar technique has been applied for instance in [10,22].

To prove the main results of this paper, we notably use an Ingham-type inequality and the moments
technique. In fact, we establish the following Ingham-type inequality which is of independent interest.

Proposition 1.7 (A combined Ingham-type inequality). Let {λk}k∈N∗ and {γk}k∈Z be two sequences in
C with the following properties: there is N ∈ N∗ such that

(i) for all k, j ∈ Z, γk ̸= γj unless j = k;
(ii) γk = β + 2kπi+ νk for all |k| ≥ N ;

where β ∈ C and {νk}|k|≥N ∈ ℓ2.
Also, there exist constants A0 ≥ 0, B0 ≥ δ with δ > 0 and some ϵ > 0 for which {λk}k∈N∗ satisfies

(i) for all k, j ∈ N∗, λk ̸= λj unless j = k;

(ii) −Re(λk)
|Im(λk)| ≥ ĉ for some ĉ > 0 and k ≥ N ;

(iii) there exists some r > 1 such that |λk − λj | ≥ δ |kr − jr| for all k ̸= j with k, j ≥ N and
(iv) ϵ(A0 +B0k

r) ≤ |λk| ≤ A0 +B0k
r for all k ≥ N .

We also assume that the families are disjoint, i.e.,

{γk, k ∈ Z} ∩ {λk, k ∈ N∗} = ∅.
Then, for any time T > 1, there exists a positive constant C depending only on T such that∫ T

0

∣∣∣∣∣∑
k∈N∗

ake
λkt +

∑
k∈Z

bke
γkt

∣∣∣∣∣
2

dt ≥ C

(∑
k∈N∗

|ak|2 e2Re(λk)T +
∑
k∈Z

|bk|2
)
,(1.13)

for all sequences {ak}k∈N∗ and {bk}k∈Z in ℓ2.

Remark 1.8. The first Ingham inequality was proved in 1936 by Ingham [35]. He considered a hyperbolic
family of the form (iγk)k∈N∗ , where (γk)k∈N∗ is a sequence of real numbers satisfying the gap condition
infk∈N |γk+1 − γk| > 0. Since then, there are many variations of this inequality available in the literature
including the parabolic Ingham inequality (commonly known as the Müntz-Szász theorem). We refer to
the works [6,25,29,36,39,44,45,48,53] for proofs of these variations of Ingham-type inequality.

Zhang and Zuazua [54,55,56] proved a joint parabolic-hyperbolic Ingham-type inequality with a parabolic

branch of the form −k2π2 + 2 + O(k−1) and a hyperbolic branch of the form ( 12 + k)πi + O(|k|−1
)
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(Lemma 4.1 in [54] or [56] and Lemma 4.5 in [55]). This result has been generalized by Komornik
and Tenenbaum [40]. In this article, we prove a joint parabolic-hyperbolic Ingham-type inequality under
more general assumptions on the parabolic and hyperbolic branches compare to the assumptions in [40,
Theorem 1.1]. Our proof is based on a decoupling idea as mentioned in [58, Section 2.4] by Zuazua
and [18, Theorem 4.2] by Chowdhury, Mitra, Ramaswamy and Renardy. In fact, our proof works with
more general assumptions on the sequences (λk)k∈N∗ and (γk)k∈Z for which each of the individual parabolic
and hyperbolic Ingham inequalities hold.

1.4. Literature on the controllability results related to the compressible Navier-Stokes equa-
tions. In the past few years, the controllability of the compressible and incompressible fluids has turned
into a very significant topic to the control community. Fernández-Cara et al. [30] proved the local exact
distributed controllability of the incompressible Navier-Stokes system when a control is supported in a
small open set; see also the references therein. A local null-controllability result of 3D Navier-Stokes
system with distributed control for incompressible fluids having two vanishing components has been
addressed in [23] by Coron and Lissy. Badra, Ervedoza and Guerrero [7] proved the local exact con-
trollability to the trajectories for non-homogeneous (variable density) incompressible 2D Navier-Stokes
equations using boundary controls for both density and velocity.

In the case of compressible Navier-Stokes equations, we first mention the work by Amosova [2] where
she considered a compressible viscous fluid in 1D w.r.t. the Lagrangian coordinates with zero boundary
condition on the velocity and an interior control acting on the velocity equation. She proved a local exact
controllability result when the initial density is already on the targeted trajectory. Ervedoza, Glass,
Guerrero and Puel [27] proved a local exact controllability result for the 1D compressible Navier-Stokes
system in a bounded domain (0, L) for regular initial data in H3(0, L) × H3(0, L) with two boundary
controls, when time is large enough. This result has been improved by Ervedoza and Savel [28] by
choosing the initial data from H1(0, L)×H1(0, L); see also a generalized result [26] by Ervedoza, Glass
and Guerrero for dimensions 2 and 3.

We also refer that Chowdhury, Ramaswamy and Raymond [20] established a null-controllability and
stabilizability result of a linearized (around a constant steady-state (Q0, 0), Q0 > 0) 1D compressible
Navier-Stokes equations. The authors proved that their system is null-controllable in H1

0 × L2 by a
distributed control acting everywhere in the velocity equation. Their result is proved to be sharp in
the following sense: the null-controllability cannot be achieved by a localized interior control (or by a
boundary control) acting on the velocity part.

Martin, Rosier and Rouchon in [47] considered the wave equation with structural damping in 1D. Using
the spectral analysis and method of moments, they obtained that their equation is null-controllable with
a moving distributed control for regular initial conditions in Hs+2 ×Hs for s > 15/2 at sufficiently large
time. See also [12] by Chaves-Silva, Rosier and Zuazua for the higher dimensional case.

The 1D compressible Navier–Stokes equations linearized around a constant steady state with periodic
boundary conditions is closely related to the structurally damped wave equation studied in [47]. Chowd-
hury and Mitra [17] studied the interior null-controllability of the linearized (around constant steady state
(Q0, V0), Q0 > 0, V0 > 0) 1D compressible Navier–Stokes system with periodic boundary conditions. Fol-
lowing the approach of [47], the authors in [17] established that their system is null-controllable by a

localized interior control when the time is large enough, and for regular initial data in Ḣs+1
per ×Hs

per with

s > 13/2. They also achieved that, for any T > 2π
V0
, the system is approximately controllable at time T

in L̇2 × L2 using a localized interior control (of the form f(t, x) = h(t)g(x)) and, is null-controllable at

time T using periodic boundary control with regular initial data Ḣs+1
per × Ḣs

per for s > 9/2.
In [18], Chowdhury, Mitra, Ramaswamy and Renardy considered the one-dimensional compressible

Navier–Stokes equations linearized around a constant steady state (Q0, V0), Q0 > 0, V0 > 0, with homo-
geneous periodic boundary conditions in the interval (0, 2π). They proved that the linearized system with

homogeneous periodic boundary conditions is null-controllable in Ḣ1
per×L2 by a localized interior control

when the time T > 2π
V0
. Moreover, in their work the distributed null-controllability result in Ḣ1

per ×L2 is

sharp in the sense that the controllability fails in Ḣs
per × L2 for any 0 ≤ s < 1. As usual, the large time

for controllability is needed due to the presence of transport part and indeed, the null-controllability fails
for small time; see [46] by Maity and [1] by Ahamed, Maity and Mitra.

Chowdhury [13] considered the same linearized Navier–Stokes system around (Q0, V0) with Q0 >
0, V0 > 0 in (0, L) with homogeneous Dirichlet boundary conditions and an interior control acting only
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on the velocity equation on a open subset (0, l) ⊂ (0, L). He proved the approximate controllability of
the linearized system in L2(0, L)× L2(0, L) with a localized control in L2(0, T ;L2(0, l)) when T > L−l

V0
.

In the context of the controllability of coupled transport-parabolic system (which is the main feature of
linearized compressible Navier-Stokes equations), we must mention the work [43] by Lebeau and Zuazua
where the distributed null-controllability of Thermoelasticity system has been studied. More recently,
Beauchard, Koenig and Le Balc’h [8] considered the linear parabolic-transport system with constant coef-
ficients and coupling of order zero and one with locally distributed controls posed on the one-dimensional
torus T. Following the approach of [43], they proved the null-controllability at sufficiently large time
when there are as many controls as equations. On the other hand, when the control acts only on the
transport (resp. parabolic) component, they obtained an algebraic necessary and sufficient condition
on the coupling term for the null-controllability, and their controllability studies based on a detailed
spectral analysis. According to the more general result established in [8], we can say that for a 2 × 2
coupled parabolic-transport system (with periodic boundary conditions), the null-controllability with one

localized interior control holds true in L2(T) × L̇2(T) (resp. in Ḣ2(T) × H2(T)) when the control acts
only on the transport (resp. parabolic) component. More recently, the distributed null-controllability of
underactuated linear parabolic-transport systems with constant coefficients in one-dimensional torus has
been established in [38] by Koenig and Lissy for regular enough initial data and large time.

Finally, one may find few stabilization results for linearized compressible Navier-Stokes system available
in [3], [14, 16,20], [49, 50].

1.5. Our approach and achievement of the present work. As mentioned earlier, in compressible
Navier-Stokes system, the interesting feature is the first order coupling between transport equation and
momentum equation of parabolic type. It was shown in [17, 18] that the linearized compressible Navier-
Stokes system with Periodic boundary conditions, there is a sequence of generalized eigenfunctions of
the associated adjoint operator that forms a Riesz Basis for the state Hilbert space. The success in
obtaining this result lies in the simplicity of the corresponding characteristic equations as well as the
explicit structure of all eigenfunctions in terms of Fourier basis.

But for the operator (A∗, D(A∗)) defined in (1.9), the characteristic equation is a third order ODE and
the eigenvalue equation is a non-standard transcendental equation, which is quite challenging to handle.
In fact, the method (invariant subspace idea) used in [17, 18] is not practically applicable to our case.
However, we manage to characterize the set of eigenvalues and eigenfunctions for the operator A∗. More
precisely, the spectrum of A∗ consists of: a parabolic part containing the eigenvalues λpk such that Re(λpk)
behaves like −k2π2 for large enough k ∈ N∗ while Im(λpk) is bounded; a hyperbolic part made up of the

eigenvalues λhk such that Im(λhk) behaves like 2kπ for large enough k ∈ Z while Re(λhk) is bounded; and
a finite set of lower frequencies. The Riesz basis property of the set of (generalized) eigenfunctions has
been then established by using an abstract result of B.-Z. Guo [32].

To study the boundary null-controllability, we mention that the usual extension method is not really
convenient for the Navier-Stokes system. This is because, when we put one interior control in the system,
then upon extending the domain and restricting the solution on the boundary will give rise to two
boundary controls for the system. In this regard, we refer some earlier null-controllability results [27,28,50]
with one interior control in the velocity equation or two boundary controls both for density and velocity.

The main novelty of the present work is that we directly handle the boundary null-controllability with
only one control acting on the density or velocity part where the boundary conditions are of mixed type
(in this regard, we mention the work [11] by Cerpa, Montoya and Zhang, where some mixed boundary
conditions has been appeared in the context of KdV-Burgers equation). More precisely, when a control
acts in velocity, we use the Ingham-type inequality given by Proposition 1.7 to prove an observability

inequality for the adjoint to the system (1.4) in (Ḣ
1
2

♯ (0, 1))
′ × L2(0, 1), leading to the null-controllability

of (1.4) at time T > 1 with initial data in Ḣ
1
2

♯ (0, 1) × L2(0, 1). On the other hand, when a boundary
control acts on the density part, we proceed in the following way: first, using the Ingham-type inequality
(1.13) we obtain the null-controllability of the system (1.5) at time T > 1 in the space L̇2(0, 1)×H1

0 (0, 1);
secondly, we apply a parabolic-hyperbolic joint moments technique as developed in [34] by Hansen to

conclude the null-controllability of the same system (1.5) in the space Ḣs
♯ (0, 1) × L2(0, 1) for s > 1

2 at

T > 1. Then, due to the linearity of the solution map of the system (1.5), these two results provide the

null-controllability of that system in the space L̇2(0, 1) × L2(0, 1) when T > 1. And, consequently, we

deduce the null-controllability of the system (1.6) at time T > 1 in L̇2(0, 1)× L2(0, 1), which consists of
full Dirichlet boundary conditions.
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1.6. Paper organization. The paper is organized as follows.

– In Section 2, we discuss the well-posedness results of the main systems and some associated results
have been proved in the Appendix.

– We split the spectral analysis for the associated adjoint operator into two sections for the ease
of reading. Section 3 contains a short description of the spectral properties whereas the detailed
analysis is prescribed in Section 8.

– In Section 4, we obtain the lower bounds for the observation terms which are crucial to determine
the null-controllability for the system (1.4) or (1.5).

– Section 6 is devoted to prove the null-controllability of the system (1.4), that is Theorem 1.2.
An Ingham-type inequality (Proposition 1.7), proved in Section 5, is the main ingredient for the
required null-controllability proof.

– Then, in Section 7, we prove the null-controllability of the system (1.5), that is Theorem 1.3 by
using both the method of moments and the Ingham-type inequality obtained in Section 5. As a
consequence, we conclude the result in Theorem 1.6. Further, a lack of null controllability result
(Proposition 1.5) for this system (1.5) is also included in this section.

– Finally, we conclude our paper by providing some open question and remarks in Section 9.

2. Well-posedness of the system

Let us first recall the operator A∗ defined by (1.9). Then, we write the adjoint system associated to
the control problems (1.4) and (1.5): let (σ, v) be the adjoint state and the system reads as

(2.1)



−σt − σx − bvx = f, in (0, T )× (0, 1),

−vt − vxx − vx − bσx = g, in (0, T )× (0, 1),

σ(t, 0) = σ(t, 1), for t ∈ (0, T ),

v(t, 0) = v(t, 1) = 0, for t ∈ (0, T ),

σ(T, x) = σT (x), v(T, x) = vT (x), in (0, 1).

Shortly, one may express it by

−V ′(t) = A∗V (t) + F (t), ∀t ∈ (0, T ), V (T ) = VT ,(2.2)

where the state is V := (σ, v), given final data is VT := (σT , vT ) and source term is F := (f, g).
To show the well-posedness of the solutions to (1.4) and (1.5), let us first write the following lemma.

Lemma 2.1. The operator A (resp. A∗) is maximal dissipative in L2(0, 1)×L2(0, 1), that is, (A,D(A))
(resp. (A∗, D(A∗))) generates a strongly continuous semigroup of contractions in L2(0, 1)× L2(0, 1).

The proof of Lemma 2.1 can be done in a standard fashion. For the sake of completeness, we give
the proof in Appendix A.1. As a consequence of this result, we now guarantee the existence of a strong
solution of the linearized compressible Navier-Stokes equation (1.4) (resp. (1.5)) when there is no control
input acting on the system.

Lemma 2.2. For any given (ρ0, u0) ∈ D(A), the system (1.4) with q = 0 (or the system (1.5) with p = 0)
admits a unique strong solution (ρ, u) ∈ C1([0, T ];L2(0, 1)× L2(0, 1)) ∩ C0([0, T ];D(A)).

Once we have the existence of semigroup generated by the operator A∗, we can write the following
result:

Proposition 2.3. For any given F := (f, g) ∈ L2(0, T ;L2(0, 1)×L2(0, 1)) and VT = (σT , vT ) ∈ L2(0, 1)×
L2(0, 1), there exists a unique weak solution V := (σ, v) to the system (2.2) in the space

C([0, T ];L2(0, 1))× [C([0, T ];L2(0, 1)) ∩ L2(0, T ;H1
0 (0, 1))] with the estimate

∥(σ, v)∥C0([0,T ];L2(0,1)×L2(0,1)) + ∥v∥L2(0,T ;H1
0 (0,1))

≤ C
(
∥F∥L2(0,T ;L2(0,1)×L2(0,1)) + ∥VT ∥L2(0,1)×L2(0,1)

)
.

Moreover, we have the hidden regularity property σ(·, 1) ∈ L2(0, T ).
In particular, if F ∈ L2(0, T ;H1(0, 1) × L2(0, 1)) and VT = (0, 0), the solution (σ, v) to (2.2) belongs

to C0([0, T ];H1
♯ (0, 1))× [C0([0, T ];H1

0 (0, 1)) ∩ L2(0, T ;H2(0, 1))].

The proof of this result can be adapted from the work [31, Chapter IV, Sec. 4.3]; we omit the details
here. For the hidden regularity property, we give a detailed proof in Appendix B.

Now, we can define the notion of solutions to the control systems (1.4) and (1.5) in the sense of
transposition (see for instance [21]) where a non-trivial boundary source term is appearing.
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Definition 2.4. We write the following definitions based on the act of the control:

• For given initial state U0 := (ρ0, u0) ∈ L2(0, 1) × L2(0, 1) and boundary data q ∈ L2(0, T ), a
function U := (ρ, u) ∈ L2(0, T ; (H1

♯ (0, 1))
′) × L2(0, T ;L2(0, 1)) is a solution to the system (1.4)

if for any given F := (f, g) ∈ L2(0, T ;H1(0, 1)) × L2(0, T ;L2(0, 1)), the following identity holds
true:∫ T

0

⟨ρ(t, ·), f(t, ·)⟩(H1)′,H1 dt+

∫ T

0

∫ 1

0

u(t, x)g(t, x)dxdt

= ⟨U0(·), V (0, ·)⟩L2×L2 +

∫ T

0

[
bσ(t, 1) + vx(t, 1)

]
q(t)dt,

where V := (σ, v) is the unique weak solution to the adjoint system (2.2) with VT = (0, 0).
• For given initial state U0 := (ρ0, u0) ∈ L2(0, 1) × L2(0, 1) and boundary data p ∈ L2(0, T ), a
function U := (ρ, u) ∈ L2(0, T ;L2(0, 1))×L2(0, T ;L2(0, 1)) is a solution to the system (1.5) if for
any given F := (f, g) ∈ L2(0, T ;L2(0, 1))× L2(0, T ;L2(0, 1)), the following identity holds true:∫ T

0

∫ 1

0

ρ(t, x)f(t, x)dxdt+

∫ T

0

∫ 1

0

u(t, x)g(t, x)dxdt = ⟨U0(·), V (0, ·)⟩L2×L2 +

∫ T

0

σ(t, 1)p(t)dt,

where V := (σ, v) is the unique weak solution to the adjoint system (2.2) with VT = (0, 0).

Let us state the following theorems that concern the existence and uniqueness of solutions to the
control problems (1.4) and (1.5).

Theorem 2.5. For every q ∈ L2(0, T ) and every U0 := (ρ0, u0) ∈ L2(0, 1) × L2(0, 1), the system (1.4)
has a unique solution U := (ρ, u) belonging to the space C0([0, T ]; (H1

♯ (0, 1))
′) × [C0([0, T ];H−1(0, 1)) ∩

L2(0, T ;L2(0, 1))] in the sense of transposition.
Moreover, this solution (ρ, u) satisfies the following estimate

∥ρ∥C0([0,T ];(H1
♯ (0,1))

′) + ∥u∥C0([0,T ];H−1(0,1))∩L2(0,T ;L2(0,1)) ≤ C
(
∥(ρ0, u0)∥L2(0,1)×L2(0,1) + ∥q∥L2(0,T )

)
for some constant C > 0.

The proof for Theorem 2.5 will be followed from [19, Section 3]. In fact, if (ρ0, u0) ∈ L2(0, 1)×L2(0, 1)
and q ∈ L2(0, T ), the solution (ρ, u) of (1.4) belong to L2(0, T ; (H1

♯ (0, 1))
′) × L2(0, T ;L2(0, L)). Using

the continuity estimate for the transport equation and properties of the heat equation, we can deduce
that ρ ∈ C0([0, T ]; (H1

♯ (0, 1))
′) and u ∈ C0([0, T ];H−1(0, 1)).

Theorem 2.6. For every p ∈ L2(0, T ) and U0 := (ρ0, u0) ∈ L2(0, 1) × L2(0, 1), the system (1.5) has a
unique solution U := (ρ, u) belonging to the space L2(0, T ;L2(0, 1)) × L2(0, T ;L2(0, 1)) in the sense of
transposition and the operator defined by

(U0, p) 7→ U(U0, p),

is linear and continuous from (L2(0, 1)× L2(0, 1))× L2(0, T ) into L2(0, T ;L2(0, 1))× L2(0, T ;L2(0, 1)).
Moreover, the solution satisfies the following regularity result,

(ρ, u) ∈ C0([0, T ];L2(0, 1))× [C0([0, T ];L2(0, 1)) ∩ L2(0, T ;H1
0 (0, 1))](2.3)

with the estimate

(2.4) ∥ρ∥C0([0,T ];L2(0,1)) + ∥u∥C0([0,T ];L2(0,1))∩L2(0,T ;H1
0 (0,1))

≤ C
(
∥(ρ0, u0)∥L2(0,1)×L2(0,1) + ∥p∥L2(0,T )

)
,

for some constant C > 0.
Further, we have the hidden regularity property ρ(·, 1) ∈ L2(0, T ).

We give a sketch of the proof for Theorem 2.6 in Appendix A.2-B.

3. A short description of the spectral properties of the adjoint operator

In this section, we briefly describe the spectral properties of the adjoint operator A∗ associated to our
control system (1.4) or (1.5). This part is crucial in our analysis but it is the most technical part, and
thus a detailed study will be presented in Section 8.
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3.1. The eigenvalue problem. Let us denote Φ := (ξ, η) and consider the following eigenvalue problem:

A∗Φ = λΦ, for λ ∈ C,

which is explicitly given by

(3.1)

ξ′(x) + bη′(x) = λξ(x), x ∈ (0, 1),

η′′(x) + η′(x) + bξ′(x) = λη(x), x ∈ (0, 1),

ξ(0) = ξ(1),

η(0) = η(1) = 0.

We prove the following proposition.

Proposition 3.1. The following results are true.

(i) We have kerA∗ = span{(1, 0)}.
(ii) All non-zero eigenvalues of A∗ have negative real parts.
(iii) The resolvent operator associated with A∗ is compact and hence the spectrum of A∗ is discrete.
(iv) Let b > 0 be such that b4 + 8b2 + 5 < 4π2. Then, the eigenvalues of A∗ are geometrically simple.

A quick observation tells that: when λ = 0, then c(1, 0) with c ̸= 0 are the only eigenfunctions of the
operator A∗, which is nothing but the part (i) of the above proposition. Proofs of the other parts are
given in Section 8.

3.2. The set of eigenvalues. Let us write the properties of the eigenvalues of the operator A∗. More
precisely, we have the following lemma.

Lemma 3.2. Let (A∗, D(A∗)) be the operator given by (1.9). Then, there exist k0, n0 ∈ N∗ such that
A∗ has three sets of eigenvalues: the parabolic part {λpk}k≥k0

, the hyperbolic part {λhk}|k|≥k0
and a finite

family {0} ∪ {λ̂n}n0
n=1 of lower frequencies. Moreover, the parabolic and hyperbolic branches satisfy the

following asymptotic properties:

λpk = −k2π2 +O(1), for all k ≥ k0 large,(3.2a)

λhk = −b2 − 2ikπ +O(|k|−1), for all |k| ≥ k0 large.(3.2b)

The proof of the above lemma is one of the crucial part of our work and it is heavy; the details have
been provided in Sections 8.1 and 8.3.

For simplicity, we set λ0 = 0 and the associated eigenfunction by Φλ0 = (1, 0). We further denote the
set of eigenvalues associated to the parabolic and hyperbolic parts respectively by

Λp :=
{
λpk, k ≥ k0

}
, Λh :=

{
λhk , |k| ≥ k0

}
,(3.3)

and for the lower frequencies by

Λ0 :=
{
λ̂n, 1 ≤ n ≤ n0

}
.(3.4)

Finally, the set of all eigenvalues are denoted by σ(A∗), where

σ(A∗) :=
{
λ0
}
∪ Λ0 ∪ Λp ∪ Λh.(3.5)

3.3. The set of eigenfunctions. We start by writing the following proposition.

Proposition 3.3. Let k0 be as given by Lemma 3.2. Then, the operator A∗ has the following sets of
(generalized) eigenfunctions: the parabolic part {Φλp

k
}k≥k0

, the hyperbolic part {Φλh
k
}|k|≥k0

, the singleton

set {Φλ0
} and a finite set {Φi

λ; λ ∈ Λ0, i = 0, . . . ,mλ − 1}, where mλ ≥ 1 is the length of Jordan chain
associated to each of the eigenvalues λ ∈ Λ0.

Furthermore, we have the following:

1. The parabolic part of the eigenfunctions

Φλp
k
:= (ξλp

k
, ηλp

k
)(3.6)
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have asymptotic expressions for large k ≥ k0, given by

ξλp
k
(x) =

ib

kπ
e−

1
2 (1+x) cos(kπ(1− x)) + ex(−k2π2+O(1)) ×O

(
1

k

)
+O

(
1

k2

)
,(3.7)

ηλp
k
(x) = e−

1
2 (1+x) sin(kπ(1− x)) +O

(
1

k

)
,(3.8)

for all x ∈ (0, 1) and the hyperbolic part of the eigenfunctions

Φλh
k
:= (ξλh

k
, ηλh

k
)(3.9)

have asymptotic expressions for large |k| ≥ k0, given by

ξλh
k
(x) =

2i

be
1√
|k|

sgn(k)e−
1
2−i sgn(k)

√
|kπ|e−2ikπx +O

(
|k|−1

)
,(3.10)

ηλh
k
(x) =

1

kπe
1√
|k|

sgn(k)e−
1
2−i sgn(k)

√
|kπ|e−2ikπx(3.11)

+
1

kπe
1√
|k|

sgn(k)e
−(1−x)

(√
|kπ|− 1

2−i sgn(k)
√

|kπ|
)
+O

(
|k|−1

)
,

for all x ∈ (0, 1), where the sgn function is defined as

sgn(k) =

{
1 when k ≥ 0,

−1 when k < 0,
(3.12)

2. The eigenfamily, denoted by

E(A∗) :=
{
Φλp

k
, k ≥ k0

}
∪
{
Φλh

k
, |k| ≥ k0

}
∪
{
Φλ0

}
∪
{
Φi

λ; λ ∈ Λ0, i = 0, . . . ,mλ − 1
}
,(3.13)

forms a Riesz basis in L2(0, 1)× L2(0, 1).

The last property (Riesz basis) can also be proved in the space (Hs1
♯ (0, 1))′×H−s2(0, 1) (for s1, s2 ≥ 0)

by normalizing the eigenfunctions suitably, as written below.

Corollary 3.4. Let s1, s2 ≥ 0 be given. The family of (generalized) eigenfunctions

E(A∗) :=
{
ks2Φλp

k
, k ≥ k0

}
∪
{
ks1Φλh

k
, |k| ≥ k0

}
∪
{
Φλ0

}
∪
{
Φi

λ; λ ∈ Λ0, i = 0, . . . ,mλ − 1
}
,

forms a Riesz basis in (Hs1
♯ (0, 1))′ ×H−s2(0, 1).

We have taken the same finitely many eigenfunctions as before, which can be ensured by choosing a
suitable multiple of the generalized eigenfunctions. We will use this Riesz basis property (with appropriate
s1 and s2) to prove the required observability inequalities, see the proof of our main results in Sections
6–7.

The existence of parabolic and hyperbolic parts of the family of eigenfunctions are proved in Sections
8.2–8.4. Then, using a result from [32], we shall prove the existence of lower frequencies of eigenval-

ues {λ̂n}n0
n=1 and the associated (generalized) eigenfunctions. Moreover, we will show that the set of

eigenfunctions E(A∗) forms a Riesz basis for L2(0, 1)× L2(0, 1).

Lemma 3.5 (Bounds of the eigenfunctions). Recall the eigenfunctions Φλp
k
= (ξλp

k
, ηλp

k
), ∀k ≥ k0 and

Φλh
k
= (ξλh

k
, ηλh

k
), ∀|k| ≥ k0 given by (3.7)–(3.8) and (3.10)–(3.11) respectively. Then there exist constants

C1, C2 > 0 independent in k, such that we have the following.

1. For any s ≥ 0 and k ≥ k0, we have{
C1k

−s−1 ≤ ∥ξλp
k
∥(Hs

♯ (0,1))
′ ≤ C2k

−s−1,

C1k
−s ≤ ∥ηλp

k
∥H−s(0,1) ≤ C2k

−s.
(3.14)

2. On the other hand, for any |k| ≥ k0 and s ≥ 0, we have{
C1 |k|−s ≤ ∥ξλh

k
∥(Hs

♯ (0,1))
′ ≤ C2|k|−s,

C1 |k|−s−1 ≤ ∥ηλh
k
∥H−s(0,1) ≤ C2|k|−s−1.

(3.15)

Again, the proofs can be found in Section 8.5.
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Riesz basis property of the (generalized) eigenfunctions. Let us first recall the following result.

Theorem 3.6 (B.-Z. GUO [32]). Let A be a densely defined discrete operator (i.e., the resolvent of A is
compact) in a Hilbert space H. Let {ϕn}∞1 be a Riesz basis of H. If there are an integer N ≥ 0 and a
sequence of generalized eigenvectors {ψn}∞N+1 of A such that

∞∑
N+1

∥ϕn − ψn∥2 < +∞,

then the following results hold.

(i) There are a constant M > N and generalized eigenvectors {ψn0}M1 of A such that {ψn0}M1 ∪
{ψn}∞M+1 forms a Riesz Basis for H.

(ii) Let {ψn0}M1 ∪ {ψn}∞M+1 correspond to the eigenvalues {λn}∞1 of A. Then the spectrum σ(A) =
{λn}∞1 , where λn is counted according to its algebraic multiplicity.

(iii) If there is an M0 > 0 such that λn ̸= λm for all m,n > M0, then there is an N0 > M0 such that
all λn are algebraically simple if n > N0.

The first assumption of Theorem 3.6 is true in our case since we know that the resolvent operator
of A∗ is compact, thanks to the Proposition 3.1–part (iii). So, the next duty is to find a known family

{Ψk, k ∈ N∗; Ψ̃k, k ∈ Z} that defines a Riesz basis for L2(0, 1)× L2(0, 1) and, is quadratically close to
the countable family

{
Φλp

k
, k ≥ k0

}
∪
{
Φλh

k
, |k| ≥ k0

}
. Precisely, our goal is to show the following:

(3.16)
∑
k≥k0

∥∥∥Φλp
k
−Ψk

∥∥∥2
L2×L2

+
∑

|k|≥k0

∥∥∥Φλh
k
− Ψ̃k

∥∥∥2
L2×L2

< +∞.

To this end, let us consider the following functions:

Ψk(x) :=

(
ϕk
ψk

)
=

(
0

2ie−
1
2 (1+x) sin(kπ(1− x))

)
, ∀k ∈ N∗,(3.17a)

Ψ̃k(x) :=

(
ϕ̃k
ψ̃k

)
=

 2i

be

1√
|k|

sgn(k)e−
1
2−i sgn(k)

√
|kπ|e−2ikπx

0

 , ∀k ∈ Z,(3.17b)

for x ∈ (0, 1). It can be shown that the family {Ψk, k ∈ N∗; Ψ̃k, k ∈ Z} of above functions forms a Riesz
basis for L2(0, 1)× L2(0, 1) and we have the following result.

Lemma 3.7. The family {Ψk, k ∈ N∗; Ψ̃k, k ∈ Z} given by (3.17a)–(3.17b) is quadratically close to the
family of eigenfunctions

{
Φλp

k
, k ≥ k0

}
∪
{
Φλh

k
, |k| ≥ k0

}
.

Proof. Looking at the expressions of the eigenfunctions Φλp
k
, Φλh

k
for large modulus of k, given by (3.6)–

(3.7)–(3.8) and (3.9)–(3.10)–(3.11) (resp.) and the known functions Ψk, Ψ̃k given by (3.17a)–(3.17b), it
is straightforward to compute that∥∥∥Φλp

k
−Ψk

∥∥∥2
L2×L2

≤ C

k2
, ∀k ≥ k0 large enough,

and ∥∥∥Φλh
k
− Ψ̃k

∥∥∥2
L2×L2

≤ C

k2
, ∀|k| ≥ k0 large enough,

which implies the required property (3.16). □

Sketch of the proof for Proposition 3.3. The proof of part 1 is lengthy and it has been postponed to
Sections 8.2–8.4.

Now, thanks to Lemma 3.7, we can apply the point (i) of Theorem 3.6 to ensure the existence of
eigenmodes for lower frequencies. Accordingly, there exist an n0 ∈ N∗ and a finite set eigenvalues

Λ0 := {λ̂n}n0
1

of the operator A∗. But there may exist some generalized eigenfunctions corresponding to the eigenvalues
of the finite set Λ0. Thus, for each λ ∈ Λ0, we associate a Jordan chain of length mλ ≥ 1, denoted by
Φ0

λ, . . . ,Φ
mλ−1
λ which verify

(A∗ − λI)Φi
λ = Φi−1

λ , ∀i ∈ {1, . . . ,mλ − 1}, λ ∈ Λ0,
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where in particular Φ0
λ := Φλ, the eigenfunction corresponding to λ. Moreover, by virtue of Theorem 3.6,

we can guarantee that the family, given by

E(A∗) :=
{
Φλp

k
, k ≥ k0

}
∪
{
Φλh

k
, |k| ≥ k0

}
∪
{
Φλ0

}
∪
{
Φi

λ; λ ∈ Λ0, i = 0, . . . ,mλ − 1
}
,

forms a Riesz basis in L2(0, 1)× L2(0, 1).
The proof ends. □

Remark 3.8. In the same way, one can prove that the set of eigenvalues and (generalized) eigenfunctions
of A (denoted by σ(A) and E(A) respectively) have similar properties as of the eigenpairs of A∗.

In this case, we can find some k̃0 ∈ N∗ (large enough) such that A has the eigenvalues of parabolic

and hyperbolic nature for k ≥ k̃0 and |k| ≥ k̃0 respectively. For later use, we denote the eigenfunctions

of A, respectively by Φ̃p
k, k ≥ k̃0 and Φ̃h

k , |k| ≥ k̃0 corresponding to the parabolic and hyperbolic branches
of eigenvalues.

Moreover, using the result of Theorem 3.6, we can show that the set E(A) forms a Riesz basis for the
space L2(0, 1)× L2(0, 1).

4. Estimations of the observation terms

In this section, we are going to find some lower bounds of the observation terms associated to our control
systems. In this regard, we use the notations B∗

ρ and B∗
u which represent the observation operators for

the density and velocity case respectively, and their formal expressions are given below.

• The observation operator corresponding to (1.5) (control in density) is defined by

B∗
ρ =

(
1
0

)
1{x=1} : D(A∗) → R,(4.1)

such that

B∗
ρΦ = ξ(1), ∀Φ = (ξ, η) ∈ D(A∗).(4.2)

• The observation operator corresponding to (1.4) (control in velocity) is defined by

B∗
u = b1{x=1}

(
1
0

)
+ 1{x=1}

(
0
1

)
∂

∂x
: D(A∗) → R,(4.3)

such that

B∗
uΦ = bξ(1) + η′(1), ∀Φ = (ξ, η) ∈ D(A∗).(4.4)

4.1. Characteristics of the observation terms. Let us pick any

Φ := (ξ, η) ∈
{
Φλ; λ ∈ Λp ∪ Λh ∪ Λ0

}
,

and recall the eigenvalue problem (3.1). Substituting the first equation of (3.1) in the second one, we get

η′′(x)− (b2 − 1)η′(x) + bλξ(x)− λη(x) = 0, ∀x ∈ (0, 1).(4.5)

Differentiating, we have

η′′′(x)− (b2 − 1)η′′(x) + bλξ′(x)− λη′(x) = 0, ∀x ∈ (0, 1).

By substituting bξ′ = λη − η′′ − η′ in above, we get a third order ode satisfied only by η as follows

(4.6)


η′′′(x)− (λ+ b2 − 1)η′′(x)− 2λη′(x) + λ2η(x) = 0, ∀x ∈ (0, 1),

η(0) = 0, η(1) = 0,

η′′(0)− (b2 − 1)η′(0) = η′′(1)− (b2 − 1)η′(1).

Let m1,m2 and m3 be roots of the cubic auxiliary equation (associated to (4.6))

(4.7) m3 − (λ+ b2 − 1)m2 − 2λm+ λ2 = 0.

Then, we have the following result which states some properties of the roots m1,m2 and m3.

Lemma 4.1. The following statements hold:

• Roots of the cubic equation (4.7) has multiplicity less than 3.
• If b > 0 is such that b4 + 8b2 + 5 < 4π2, the relation em1 = em2 = em3 cannot hold.



BOUNDARY NULL-CONTROLLABILITY OF 1D NAVIER-STOKES SYSTEM 13

Proof. From the relation between roots and the coefficients, we have

(4.8)


m1 +m2 +m3 = λ+ b2 − 1,

m1m2 +m2m3 +m3m1 = −2λ,

m1m2m3 = −λ2.

We prove all the statements separately.

• Let m1 = m2 = m3 = m. Then, we have from the first equation of (4.8)

m =
1

3
(λ+ b2 − 1).

Next, from the second and third equations of (4.8), we have 3m2 = −2λ and m3 = −λ2 which
further yields

(4.9) (λ+ b2 − 1)2 = −6λ, (λ+ b2 − 1)3 = −27λ2,

so that λ + b2 − 1 = 9
2λ. By means of the first equality in (4.9), we then have λ = − 8

27 which
eventually gives

b2 = 1 +
7

2
λ = 1− 28

27
= − 1

27
< 0,

and this is not possible. Hence m1,m2 and m3 cannot be equal together.
• Let us now assume

em1 = em2 = em3 ,

that is,

m2 = m1 + 2ilπ, m3 = m1 + 2inπ,

for some l, n ∈ Z. From the first equation of (4.8), we have that

(4.10) 3m1 + 2ilπ + 2inπ = λ+ b2 − 1, i.e., m1 =
1

3
(λ+ b2 − 1− 2ilπ − 2inπ),

and so,

(4.11) m2 =
1

3
(λ+ b2 − 1 + 4ilπ − 2inπ), m3 =

1

3
(λ+ b2 − 1− 2ilπ + 4inπ).

Substituting the above m1,m2,m3 in the second equation of (4.8), we deduce (upon simplifica-
tions)

λ2 + 2(b2 + 2)λ+ 4(l2 − ln+ n2)π2 + (b2 − 1)2 = 0.

Solving the above equation, we get some particular values of λ, namely

λ =
−2(b2 + 2)±

√
4(b2 + 2)2 − 16π2(l2 − ln+ n2)− 4(b2 − 1)2

2

= −b2 − 2±
√
3(2b2 + 1)− 4π2(l2 − ln+ n2).

Since l, n ∈ Z, one has l2 − ln+ n2 ≥ 01 and l2 − ln+ n2 = 0 if and only if l = n = 02. Thus for
(l, n) ̸= (0, 0) the values of λ are

(4.12) λ = −b2 − 2± i
√
4π2(l2 − ln+ n2)− 3(2b2 + 1).

Note that 4π2(l2− ln+n2)−3(2b2+1) is always non-negative under the assumption b4+8b2+5 <
4π2 and for all (l, n) ̸= (0, 0).

On the other hand, putting the values of m1,m2,m3 (given by (4.10)–(4.11)) in the third
equation of (4.8), we get

(λ+ b2 − 1− 2ilπ − 2inπ)(λ+ b2 − 1 + 4ilπ − 2inπ)(λ+ b2 − 1− 2ilπ + 4inπ) = −27λ2,

which further yields

λ3 + 3(b2 + 8)λ2 + (3(b2 − 1)2 + 12l2π2 − 12lnπ2 + 12n2π2)λ+ (b2 − 1)3

+ 12π2(b2 − 1)(l2 − ln+ n2)− 16il3π3 + 24il2nπ3 + 24iln2π3 − 16in3π3 = 0.

1For ln = 0, l2 − ln+ n2 = l2 + n2 ≥ 0, for ln < 0, l2 − ln+ n2 > 0 and for ln > 0, l2 − ln+ n2 = (l − n)2 + ln > 0.
2If l2 − ln+ n2 = 0 and n ̸= 0 then ( l

n
)2 − ( l

n
) + 1 = 0 has no real solutions. Therefore n = 0 and hence l = 0.
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The real part of above equality satisfies

(4.13)
Re(λ3) + 3(b2 + 8)Re(λ2) + [3(b2 − 1)2 + 12π2(l2 − ln+ n2)]Re(λ)

+(b2 − 1)3 + 12π2(b2 − 1)(l2 − ln+ n2) = 0.

Now, from (4.12), one may find that

Re(λ) = −(b2 + 2),

Re(λ2) = b4 + 10b2 + 7− 4π2(l2 − ln+ n2),

Re(λ3) = −b6 − 24b4 − 57b2 − 26 + 12π2(b2 + 2)(l2 − ln+ n2).

Replacing the above values in (4.13), we obtain

− b6 − 24b4 − 57b2 − 26 + 12π2(b2 + 2)(l2 − ln+ n2)

+ 3(b2 + 8)[b4 + 10b2 + 7− 4π2(l2 − ln+ n2)]

− [3(b2 − 1)2 + 12π2(l2 − ln+ n2)](b2 + 2) + (b2 − 1)3 + 12π2(b2 − 1)(l2 − ln+ n2) = 0

Simplifying, we eventually have

27b4 + 216b2 + 135− 108π2(l2 − ln+ n2) = 0,

so that

l2 − ln+ n2 =
27b4 + 216b2 + 135

108π2
=
b4 + 8b2 + 5

4π2
< 1,

by our assumption b4 + 8b2 + 5 < 4π2, which is a contradiction as l2 − ln + n2 ≥ 1 for any
(l, n) ̸= (0, 0).

Therefore, the only possibility could be l = n = 0, but in that case, the expressions (4.10) and
(4.11) provides us m1 = m2 = m3, which is again a contradiction to the first part of the lemma.

Hence, the results of this lemma are true. □

We are now ready to prove that all the observation terms are non-zero for both density and velocity
control cases. For λ = 0, the eigenfunction is (1, 0), and thus from the expressions of observation terms
(4.2) and (4.4), we immediately get

B∗
ρ(1, 0) = 1, B∗

u(1, 0) = b,

which are non-zero.
We thus focus only on the case when λ ̸= 0. In such situation, for any eigenfunction Φ of A∗, the

observation terms can be rewritten as

B∗
ρΦ = − 1

bλ

(
η′′(1)− (b2 − 1)η′(1)

)
,(4.14)

B∗
uΦ = − 1

λ

(
η′′(1)− (λ+ b2 − 1)η′(1)

)
,(4.15)

where we have used the equation (4.5).
We now prove the proposition written below.

Proposition 4.2. We have the following results for any non-zero eigenvalue λ of A∗.

(1) Let b > 0 be such that b4 + 8b2 + 5 < 4π2. Then, the solution η of (4.6) satisfies η′′(1) ̸=
(b2 − 1)η′(1).

(2) There exists a countable set N ⊂ (0,∞) such that for all b ∈ (0,∞) \N with b4 + 8b2 + 5 < 4π2,
the solution η of (4.6) satisfies η′′(1) ̸= (λ+ b2 − 1)η′(1).

Proof. (1) To prove the first part, we suppose on contrary that η′′(1) = (b2 − 1)η′(1). This will
also give us η′′(0) = (b2 − 1)η′(0) since ξ(0) = ξ(1) and consequently, η′′(1) − (b2 − 1)η′(1) =
η′′(0) − (b2 − 1)η′(0). We will use the Fourier transform technique together with some complex
analytic arguments to prove that η = 0 on (0, 1). This kind of technique is applied in many
works, see for instance [52] for KdV the equation.

Let us define an extension map ϑ : R → R by

(4.16) ϑ(x) =

{
η(x), x ∈ (0, 1),

0, x ∈ R \ (0, 1).
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Then the transformed equation for (4.6) is

(4.17)
ϑ′′′(x)− (λ+ b2 − 1)ϑ′′(x)− 2λϑ′(x) + λ2ϑ(x)

= −η′′(1)δx=1 + η′′(0)δx=0 − η′(1)
[
δ′x=1 − (λ+ b2 − 1)δx=1

]
+ η′(0)

[
δ′x=0 − (λ+ b2 − 1)δx=0

]
for all x ∈ R.

Let us use the conditions η′′(1) = (b2− 1)η′(1) and η′′(0) = (b2− 1)η′(0) in (4.17), which gives

ϑ′′′(x)− (λ+ b2 − 1)ϑ′′(x)− 2λϑ′(x) + λ2ϑ(x)(4.18)

= −η′(1) [δ′x=1 − λδx=1] + η′(0) [δ′x=0 − λδx=0] , ∀x ∈ R.

Observe that, the existence of an η satisfying (4.6) is equivalent to the existence of α, β, λ with
(α, β) ̸= (0, 0), such that

(4.19)
ϑ′′′(x)− (λ+ b2 − 1)ϑ′′(x)− 2λϑ′(x) + λ2ϑ(x)

= −α [δ′x=1 − λδx=1] + β [δ′x=0 − λδx=0] , ∀x ∈ R.

Without loss of generality, we can assume α ̸= 0. Indeed, α = η′(1) = 0 implies η′′(1) = 0 from
our assumption and thus from the equation (4.6), one has η = 0.

Taking Fourier transform on both sides of (4.19), we get(
(iz)3 − (λ+ b2 − 1)(iz)2 − 2λ(iz) + λ2

)
ϑ̂(z)

= −α(ize−iz − λe−iz) + β(iz − λ), for z ∈ C,

which yields

ϑ̂(z) =
(−αe−iz + β)(iz − λ)

(iz)3 − (λ+ b2 − 1)(iz)2 − 2λ(iz) + λ2
, for z ∈ C.

Since ϑ̂ is the Fourier transform of a function η ∈ H1
0 (0, 1), by the Paley-Wiener theorem, the

function ϑ̂ is entire. Thus, the roots of (iz)3 − (λ+ b2 − 1)(iz)2 − 2λ(iz) + λ2 are also the roots
of (−αe−iz − β)(λ− iz) with the same multiplicity. So, the main work is to find the roots of

(−αe−iz + β)(iz − λ) = 0, for z ∈ C.(4.20)

In fact, rewriting ϑ̂ as a function iz ∈ C, we have

(4.21) ϑ̂(iz) =
(−αez + β)(−z − λ)

−z3 − (λ+ b2 − 1)z2 + 2λz + λ2
, for z ∈ C.

In (4.21), the roots of (−αez+β)(−z−λ) are z = −λ and the zeros of ez = β
α (as we have α ̸= 0).

We also note that −λ is not a root of the polynomial equation

−z3 − (λ+ b2 − 1)z2 + 2λz + λ2 = 0,(4.22)

since λb ̸= 0.
Let r1, r2, r3 be the roots of the equation (4.22). Then one must have

er1 = er2 = er3 =
β

α
,

which is not possible, due to Lemma 4.1.
Therefore, the only possibility is α = β = 0, which gives (comparing (4.18) and (4.19)) that

η′(0) = η′(1) = 0. But, we have the boundary condition η(0) = η(1) = 0 and by assumption
η′′(1)− (b2−1)η′(1) = η′′(0)− (b2−1)η′(0), i.e., η′′(1) = η′′(0) = 0. Consequently, η = 0 in (0, 1)
and thus ξ = 0 in (0, 1).

So our assumption was false, and that the assertion of first part holds true.

(2) To prove the second statement, we assume on contrary that

η′′(1) = (λ+ b2 − 1)η′(1).(4.23)

Now, our claim is to show that η = 0 in (0, 1). We note here that the Fourier transform technique
used earlier will not work here due to the difficulty of the boundary condition η′′(1) = (λ+ b2 −
1)η′(1). However, we use a different complex analytic method, addressed for instance in [42], to
conclude the proof.
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Consider the following adjoint system of (4.6) as

(4.24)

{
−θ′′′(x)− (λ+ b2 − 1)θ′′(x) + 2λθ′(x) + λ2θ(x) = 0,

θ(0) = 0, θ′(0) = 0, θ′(1) ̸= 0.

Multiplying the equation (4.6) by θ and then integrating by parts, we obtain

η′′(1)θ(1)− η′(1)θ′(1)− (λ+ b2 − 1)η′(1)θ(1) = 0.

Then, due to our assumption (4.23), we get

(4.25) η′(1)θ′(1) = 0.

Let us make the following claim.

Claim. There exists a countable set N such that for any b ∈ (0,∞) \N with b4 +8b2 +5 < 4π2,
the equation (4.24) has a non-trivial solution.

Proof of the Claim. Let m∗
1,m

∗
2,m

∗
3 be roots of the following auxiliary equation

(4.26) −m3 − (λ+ b2 − 1)m2 + 2λm+ λ2 = 0.

Since b satisfies b4 +8b2 +5 < 4π2, the roots of (4.26) does not satisfy em
∗
1 = em

∗
2 = em

∗
3 , thanks

to Lemma 4.1. Note also that the map b 7→ m(b) is injective. In fact, m(b1) = m(b2) implies
(b21−b22)m(b1) = 0 and hence b1 = b2 (since m(b1) ̸= 0 for any λ ̸= 0). We then write the solution
θ of (4.24) as

(4.27) θ(x) = C1e
m∗

1x + C2e
m∗

2x + C3e
m∗

3x, x ∈ (0, 1).

Consider the following system of equations

C1 + C2 + C3 = 0

C1m
∗
1 + C2m

∗
2 + C3m

∗
3 = 0

C1m
∗
1e

m∗
1 + C2m

∗
2e

m∗
2 + C3m

∗
3e

m∗
3 = θ′(1),

which has a solution if and only if the matrix

(4.28) Rb :=

 1 1 1

m∗
1 m∗

2 m∗
3

m∗
1e

m∗
1 m∗

2e
m∗

2 m∗
3e

m∗
3


is invertible. The determinant of Rb is given by

(4.29) det(Rb) = m∗
2m

∗
3(e

m∗
2 − em

∗
3 ) +m∗

3m
∗
1(e

m∗
3 − em

∗
1 ) +m∗

1m
∗
2(e

m∗
1 − em

∗
2 ).

We now characterize all b ∈ (0,∞) such that det(Rb) ̸= 0. Let us define three entire functions
Fi : C → C (i = 1, 2, 3) by

F1(z) : = z
[
(m∗

2 −m∗
3)e

z −m∗
2e

m∗
2 +m∗

3e
m∗

3

]
+m∗

2m
∗
3

(
em

∗
2 − em

∗
3

)
(4.30)

F2(z) : = z
[
(m∗

3 −m∗
1)e

z +m∗
1e

m∗
1 −m∗

3e
m∗

3

]
+m∗

3m
∗
1

(
em

∗
3 − em

∗
1

)
(4.31)

F3(z) : = z
[
(m∗

1 −m∗
2)e

z −m∗
1e

m∗
1 +m∗

2e
m∗

2

]
+m∗

1m
∗
2

(
em

∗
1 − em

∗
2

)
.(4.32)

We first consider the function F1. Note that if F1(0) = 0, then em
∗
2 = em

∗
3 , which implies

F1(z) = (m∗
2 − m∗

3)z(e
z − em

∗
3 ) and hence F1(m

∗
1) ̸= 0, else em

∗
1 = em

∗
2 = em

∗
3 which is not

possible due to Lemma 4.1. Therefore, the function F1 does not vanish identically. This implies
that the zero set of F1, defined as

(4.33) ZF1
:= {z ∈ C : F1(z) = 0}

is at most countable. In a similar manner, we can say that the zero sets of F2 and F3, defined as

ZF2
: = {z ∈ C : F2(z) = 0} ,(4.34)

ZF3 : = {z ∈ C : F3(z) = 0}(4.35)

are at most countable. Since the map b 7→ m(b) is injective, the set

(4.36) Nj := {b ∈ (0,∞) : Fj(mj(b)) = 0}
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for j = 1, 2, 3, is also at most countable. Let us then define the set

(4.37) N :=

3⋃
j=1

Nj .

From the construction of the set N , it is clear that for all b ∈ (0,∞) \N with b4 +8b2 +5 < 4π2,
det(Rb) is non-zero. This proves our claim.

From the previous fact, we can see that for b ∈ (0,∞) \ N with b4 + 8b2 + 5 < 4π2, solution
of the adjoint equation (4.24) verifies θ′(1) ̸= 0, which implies from (4.25) that η′(1) = 0. Hence
η ≡ 0 on (0, 1).

This completes the proof of the Lemma. □

4.2. Lower bounds of the observation terms. The next lemmas show that the observation terms
satisfy some lower bounds which are not exponentially small. In fact, these lower bounds are crucial to
conclude the null-controllability of the concerned systems (1.4) and (1.5).

Lemma 4.3 (Observation estimates: control on density). There exist constants C1, C2 > 0, independent
in k, such that we have the following observation estimates for the parabolic and hyperbolic parts of the
set of eigenfunctions of A∗, namely

C1

kπ
≤ |B∗

ρΦλp
k
| ≤ C2

kπ
, for k ≥ k0,(4.38a)

C1 ≤ |B∗
ρΦλh

k
| ≤ C2, for |k| ≥ k0,(4.38b)

where the number k0 is introduced by Lemma 3.2.

Proof. Using the definition of B∗
ρ introduced by (4.2), we have

B∗
ρΦλp

k
= ξλp

k
(1), ∀k ≥ k0,

B∗
ρΦλh

k
= ξλh

k
(1), ∀|k| ≥ k0.

(i) Let us recall the expressions of ξλp
k
from (3.7), so that we have

ξλp
k
(1) =

ib

kπ
e−1 + e−k2π2+O(1) ×O

(
1

k

)
+O

(
1

k2

)
From the above expression, it is easy to observe that

kπ
∣∣∣ξλp

k
(1)
∣∣∣→ be−1 as k → +∞,

and thus the result (4.38a) holds for large enough k.

(ii) On the other hand, from the expression of ξλh
k
given by (3.10), we have

ξλh
k
(1) =

2i

b
sgn(k)e−

1
2−i sgn(k)

√
|kπ| +O

(
|k|−1

)
,

and so, ∣∣∣ξλh
k
(1)
∣∣∣→ 2

b
e−

1
2 as k → +∞.

As a consequence, the estimate (4.38b) follows.

The proof is completed. □

Lemma 4.4 (Observation estimates: control in velocity). There exist some constants C1, C2 > 0, inde-
pendent in k, such that we have the following observation estimates:

C1kπ ≤ |B∗
uΦλp

k
| ≤ C2kπ, for large k,(4.39a)

C1√
|kπ|

≤ |B∗
uΦλh

k
| ≤ C2√

|kπ|
, for large k,(4.39b)

Proof. Using the definition of B∗
u given by (4.3)–(4.4), we have

B∗
uΦλp

k
= bξλp

k
(1) + η′λp

k
(1), ∀k ≥ k0,

B∗
uΦλh

k
= bξλh

k
(1) + η′λh

k
(1), ∀|k| ≥ k0.
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(i) Recall the expressions of ξλp
k
and ηλp

k
, given by (3.7) and (3.8) respectively, so that we have

bξλp
k
(1) + η′λp

k
(1) =

ib2

kπ
e−1 + be−k2π2+O(1) ×O

(
1

k

)
+ kπe−1 +O

(
1

k

)
.

Observe that,

1

kπ

∣∣∣bξλp
k
(1) + η′λp

k
(1)
∣∣∣→ e−1 as k → +∞,

and hence the estimate (4.39a) holds.

(ii) For the set of eigenfunctions (3.10)–(3.11) associated to λhk , the observation terms are

bξλh
k
(1) + η′λh

k
(1) = sgn(k)

√
|kπ| − 1

2 − i sgn(k)
√
|kπ|

kπe
1√
|k|

+O
(
|k|−1

)
Here, one can show that√

|kπ|
∣∣∣bξλh

k
(1) + η′λh

k
(1)
∣∣∣→ √

2 as k → +∞,

which concludes the required observation estimate (4.39b).

The proof ends. □

5. A combined parabolic-hyperbolic Ingham-type inequality

This section is devoted to prove the Ingham-type inequality stated in Proposition 1.7 which will be
intensively used to prove the controllability results of this paper. We will closely follow the decoupling
idea given by [18, Theorem 4.2] and [58, Section 2.4].

Proof of Proposition 1.7. Recall the sequences {λk}k∈N∗ and {γk}k∈Z and the hypothesis of Proposition

1.7. We denote λ̃k = λk−β, ∀k ∈ N∗ and γ̃k = γk−β, ∀k ∈ Z. Let N ∈ N∗ be as given in the hypothesis.
Then, we have the following known parabolic and hyperbolic Ingham inequalities∫ T

0

∣∣∣∣∣∣
∑
k≥N

ake
λ̃k(T−t)

∣∣∣∣∣∣
2

dt ≥ C
∑
k≥N

|ak|2 e2Re(λ̃k)T for any T > 0,(5.1)

C1

∑
|k|≥N

|bk|2 ≤
∫ T

0

∣∣∣∣∣∣
∑

|k|≥N

bke
γ̃k(T−t)

∣∣∣∣∣∣
2

dt ≤ C2

∑
|k|≥N

|bk|2 for any T > 1,(5.2)

see for instance, [25,29,33,35,39,44,45,48].

Let us denote

(5.3) Up(t) =
∑
k≥N

ake
λ̃k(T−t), Uh(t) =

∑
|k|≥N

bke
γ̃k(T−t), t ≥ 0,

and

(5.4) U(t) = Up(t) + Uh(t), t ≥ 0.

Motivating from [58], we define for t > 1

Ũp(t) = Up(t)− Up(t− 1) =
∑
k≥N

ak

(
1− eλ̃k

)
eλ̃k(T−t),(5.5a)

Ũh(t) = Uh(t)− Uh(t− 1) =
∑

|k|≥N

bk
(
1− eγ̃k

)
eγ̃k(T−t),(5.5b)

and

(5.6) Ũ(t) = Ũp(t) + Ũh(t) = U(t)− U(t− 1).

Then, we have ∫ T

1

∣∣∣Ũ(t)
∣∣∣2 dt ≤ ∫ T

1

|U(t)|2 dt+
∫ T

1

|U(t− 1)|2 dt

≤ C

∫ T

0

|U(t)|2 dt.
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We now compute the L2-norms of the functions Ũp and Ũh separately. Applying the hyperbolic Ingham
inequality given by (5.2), we get∫ T

1

∣∣∣Ũh(t)
∣∣∣2 dt ≤ C

∑
|k|≥N

|bk|2
∣∣1− eγ̃k

∣∣2 .
Since 1 − eγ̃k = 1 − eνk and {νk}|k|≥N ∈ ℓ2, we can choose N large enough such that

∣∣1− eγ̃k
∣∣2 < ε for

all |k| ≥ N . Thus, it follows that,

(5.7)

∫ T

1

∣∣∣Ũh(t)
∣∣∣2 dt ≤ Cε

∑
|k|≥N

|bk|2 .

Now, recall (5.6) so that one has Ũp(t) = Ũ(t)− Ũh(t). Using the triangle inequality, we get∫ T

1

∣∣∣Ũp(t)
∣∣∣2 dt ≤ C

∫ T

1

∣∣∣Ũ(t)
∣∣∣2 dt+ C

∫ T

1

∣∣∣Ũh(t)
∣∣∣2 dt(5.8)

≤ C

∫ T

0

|U(t)|2 dt+ Cε
∑

|k|≥N

|bk|2 .

Let be 0 < τ < T . Applying the parabolic Ingham inequality (5.1) to the quantity Ũp(t) (given by
(5.5a)), we obtain∫ T

T−τ

∣∣∣Ũp(t)
∣∣∣2 dt = ∫ τ

0

∣∣∣Ũp(T − t)
∣∣∣2 dt ≥ C

∑
k≥N

|ak|2 |1− eλ̃k |2e2Re(λ̃k)τ

≥ C
∑
k≥N

|ak|2 e2Re(λ̃k)τ ,

thanks to the properties of λ̃k. Note that the above constant C depends on τ . Let us now choose τ > 0
small enough such that T − τ > 1. Thus, we get∫ T

1

∣∣∣Ũp(t)
∣∣∣2 dt ≥ ∫ T

T−τ

∣∣∣Ũp(t)
∣∣∣2 dt ≥ C

∑
k≥N

|ak|2 e2Re(λ̃k)τ .(5.9)

Recall the function Up(t) given by (5.3), we deduce that∫ T−τ

0

|Up(t)|2 dt ≤
∑
k≥N

|ak|2
∫ T−τ

0

e2Re(λ̃k)(T−t)dt(5.10)

≤
∑
k≥N

|ak|2
∣∣∣∣eRe(λ̃k)τ − e2Re(λ̃k)T

2Re(λ̃k)

∣∣∣∣
≤ C

∑
k≥N

|ak|2 e2Re(λ̃k)τ ,

thanks to fact that
∣∣∣Re(λ̃k)∣∣∣2 ≥ C for k ≥ N large enough (combining the hypothesis (ii) and (iv) in

Proposition 1.7 satisfied by {λk}k∈N∗).
Now, using the facts (5.9) and (5.8) in (5.10), we have

(5.11)

∫ T−τ

0

|Up(t)|2 dt ≤ C

∫ T

0

|U(t)|2 dt+ ε
∑

|k|≥N

|bk|2
 .

Since T−τ > 1, applying the hyperbolic Ingham inequality (5.2) to Uh(t) and then following a triangle
inequality, we have∑

|k|≥N

|bk|2 ≤ C

∫ T−τ

0

∣∣Uh(t)
∣∣2 dt ≤ C

(∫ T−τ

0

|U(t)|2 dt+
∫ T−τ

0

|Up(t)|2 dt

)

≤ C

∫ T

0

|U(t)|2 dt+ ε
∑

|k|≥N

|bk|2
 ,
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thanks to the estimate (5.11).
Now, fix ε > 0 small enough such that 1 − Cε > 0. As a consequence, there is some constant C > 0

depending only on T such that, we have

(5.12)
∑

|k|≥N

|bk|2 dt ≤ C

∫ T

0

|U(t)|2 dt.

On the other hand, using the parabolic Ingham inequality to Up(t), followed by a triangle inequality,
hyperbolic Ingham inequality to Uh(t) and the result (5.12), we obtain∑

k≥N

|ak|2 e2Re(λ̃k)T ≤ C

∫ T

0

|Up(t)|2 dt ≤ C

(∫ T

0

|U(t)|2 dt+
∫ T

0

∣∣Uh(t)
∣∣2 dt)

≤ C

∫ T

0

|U(t)|2 dt+
∑

|k|≥N

|bk|2 dt


≤ C

∫ T

0

|U(t)|2 dt.

Thus, eventually we have

(5.13)
∑
k≥N

|ak|2 e2Re(λ̃k)T +
∑

|k|≥N

|bk|2 ≤ C

∫ T

0

|U(t)|2 dt.

Recall that λ̃k = λk − β, γ̃k = γk − β, and that∫ T

0

|U(t)|2 dt =
∫ T

0

∣∣∣∣∣∣
∑
k≥N

ake
(λk−β)(T−t) +

∑
|k|≥N

bke
(γk−β)(T−t)

∣∣∣∣∣∣
2

dt(5.14)

≤ C

∫ T

0

∣∣∣∣∣∣
∑
k≥N

ake
λk(T−t) +

∑
|k|≥N

bke
γk(T−t)

∣∣∣∣∣∣
2

dt.

Moreover, it is easy to see that

e2Re(λ̃k)T = e2Re(λk)T−2Re(β)T ≥ Ce2Re(λk)T

for some C > 0 and thus combining (5.13) and (5.14), we obtain

∑
k≥N

|ak|2 e2Re(λk)T +
∑

|k|≥N

|bk|2 ≤ C

∫ T

0

∣∣∣∣∣∣
∑
k≥N

ake
λk(T−t) +

∑
|k|≥N

bke
γk(T−t)

∣∣∣∣∣∣
2

dt.

Finally, adding the finitely many terms in the above summation using a similar idea as in [48, Theorem
4.3, Chapter 4] (since {γk}k∈Z and {λk}k∈N∗ are disjoint), we can conclude that

(5.15)
∑
k∈N∗

|ak|2 e2Re(λk)T +
∑
k∈Z

|bk|2 ≤ C

∫ T

0

∣∣∣∣∣∑
k∈N∗

ake
λk(T−t) +

∑
k∈Z

bke
γk(T−t)

∣∣∣∣∣
2

dt.

This completes the proof. □

6. Null-controllability for the velocity case

In this section, we prove the null-controllability of the system (1.4) (that is, Theorem 1.2) by establish-
ing a proper observability inequality. The parabolic-hyperbolic joint Ingham-type inequality as obtained
in Section 5, is the main ingredient to conclude this result.

Let (ρ, u) be the solution to the system (1.4) with a boundary control q acting on the velocity part.
The following lemma gives an equivalent criterion for the null-controllability of the concerned model (1.4).

Lemma 6.1. The system (1.4) is null-controllable at time T > 0 in Ḣ
1
2

♯ (0, 1) × L2(0, 1) if and only if

there exists a control q ∈ L2(0, T ) such that

(6.1)

〈(
σ(0)
v(0)

)
,

(
ρ0
u0

)〉
(Ḣ

1
2
♯ )′×L2,Ḣ

1
2
♯ ×L2

=

∫ T

0

(
bσ(t, 1) + vx(t, 1)

)
q(t)dt,
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where (σ, v) is the solution to the adjoint system (2.1) with (f, g) = (0, 0) and any given final data
(σT , vT ) ∈ D(A∗).

With this result, we can now write the observability inequality that is required to prove null-controllability
of the system (1.4). Recall the observation operator B∗

u defined by (4.3)–(4.4).

Theorem 6.2. The system (1.4) is null-controllable at time T > 0 in the space Ḣ
1
2

♯ (0, 1) × L2(0, 1) if
and only if the following observability inequality

(6.2)

∫ T

0

|B∗
u(σ(t), v(t))|

2
dt ≥ C ∥(σ(0), v(0))∥2

(Ḣ
1
2
♯ (0,1))′×L2(0,1)

,

where (σ, v) is the solution to the adjoint system (2.1) with (f, g) = (0, 0) and any given final data
(σT , vT ) ∈ D(A∗).

Proof. We only give a proof of the null-controllability by assuming the observability inequality (6.2); for
the other part we refer to the article [48]. To prove null-controllability of the system (1.4), it is enough
to prove the existence of a minimizer of certain quadratic functional, see for instance [48, 57]. For this,
we define the following set

H :=

{
(σT , vT ) ∈ (Ḣ

1
2

♯ (0, 1))
′ × L2(0, 1) : ∃ q ∈ L2(0, T ) such that

∫ T

0

|B∗
u(σ(t), v(t))|

2
dt <∞

}
and define a quadratic functional Ju : H → R by

(6.3) Ju(σT , vT ) :=
1

2

∫ T

0

|B∗
u(σ(t), v(t))|

2
dt+

〈(
σ(0)
v(0)

)
,

(
ρ0
u0

)〉
(Ḣ

1
2
♯ )′×L2,Ḣ

1
2
♯ ×L2

, (σT , vT ) ∈ H.

Here (σ, v) denotes the solution of the adjoint system (2.2) with this terminal data (σT , vT ) ∈ H and
(f, g) = (0, 0). We note here that the map Ju may not be coercive in H with respect to the usual

(Ḣ
1
2

♯ )
′ × L2-norm. Thus, we define a new norm on H by

∥(σT , vT )∥H :=

(∫ T

0

|B∗(σ(t), v(t))|2 dt

) 1
2

.

Indeed, if ∥(σT , vT )∥H = 0 then B∗
u(σ(t), v(t)) = 0 for all t ∈ (0, T ). The observability inequality (6.2) is

then yields (σ(0), v(0)) = (0, 0) and as a consequence of the backward uniqueness property of the adjoint
system (2.2) with (f, g) = (0, 0) (see Section 9), it follows that (σ, v) ≡ (0, 0).

With this new norm on H, the operator Ju is continuous and coercive in H. Thus, it has a unique
minimizer (σ̂T , v̂T ) ∈ H. Let (σ̂, v̂) be the solution of (2.2) with respect to this terminal data (σ̂T , v̂T ) and
(f, g) = (0, 0). Then the function q = B∗

u(σ̂, v̂) ∈ L2(0, T ) will be a null-control of the system (1.4). □

We are now ready to prove our first main result, i.e., Theorem 1.2 of our work.

Proof of Theorem 1.2. We prove each part separately.

Null-controllability in Ḣ
1
2

♯ (0, 1)× L2(0, 1). Recall that the set of (generalized) eigenfunctions{
Φλp

k
, k ≥ k0

}
∪
{
k

1
2Φλh

k
, |k| ≥ k0

}
∪
{
Φi

λ; λ ∈ Λ0, i = 0, ...,mλ − 1
}

forms a Riesz basis in (Ḣ
1
2

♯ (0, 1))
′ × L2(0, 1), due to Proposition 3.3 and Corollary 3.4, and thus one can

consider any given final data (σT , vT ) ∈ (Ḣ
1
2

♯ (0, 1))
′ × L2(0, 1) as follows:

(σT , vT ) =
∑
k≥k0

akΦλp
k
+
∑

|k|≥k0

bkk
1
2Φλh

k
+
∑
λ∈Λ0

mλ−1∑
j=0

cλ,jΦ
j
λ,(6.4)

where
∑
k≥k0

|ak|2 +
∑

|k|≥k0

|bk|2 < +∞, and cλ,j for λ ∈ Λ0 and j ∈ {0, · · · ,mλ − 1} are constants.
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Therefore, the solution to the adjoint system (2.1) with this terminal data (σT , vT ) and (f, g) = (0, 0)
can be written as

(6.5) (σ(t), v(t)) =
∑
k≥k0

ake
λp
k(T−t)Φλp

k
+
∑

|k|≥k0

bkk
1
2 eλ

h
k(T−t)Φλh

k
+
∑
λ∈Λ0

mλ−1∑
j=0

cλ,j(T − t)jeλ(T−t)Φj
λ,

for t ∈ [0, T ]. Now, we find that

B∗
u(σ(t), v(t)) = bσ(t, 1) + vx(t, 1)

=
∑
k≥k0

ak e
λp
k(T−t)B∗

uΦλp
k
+
∑

|k|≥k0

bkk
1
2 eλ

h
k(T−t)B∗

uΦλh
k
+
∑
λ∈Λ0

mλ−1∑
j=0

cλ,j(T − t)jeλ(T−t)B∗
uΦ

j
λ,

for t ∈ (0, T ). At this point, we may assume that

B∗
uΦ

j
λ ̸= 0, ∀λ ∈ Λ0, j = 1, · · · ,mλ − 1,

which can be ensured as one can add any multiple of the eigenfunction to each (finitely many) generalized
eigenfunction and adjust accordingly.

We start with T > 1. Then, in one hand, using the Ingham-type inequality (1.13) for |k| ≥ k0 we have

(6.6)

∫ T

0

∣∣∣∣∑
k≥k0

ak e
λp
k(T−t)B∗

uΦλp
k
+
∑

|k|≥k0

bkk
1
2 eλ

h
k(T−t)B∗

uΦλh
k

∣∣∣∣2 dt
≥ C1

( ∑
k≥k0

∣∣∣akB∗
uΦλp

k

∣∣∣2 e2Re(λp
k)T +

∑
|k|≥k0

∣∣∣bkk 1
2B∗

uΦλh
k

∣∣∣2)

≥ C1

∑
k≥k0

|ak|2k2e2Re(λp
k)T +

∑
|k|≥k0

|bk|2
 ,

for some C1 > 0, where we have also used the observation estimates given by Lemma 4.4.

On the other hand, thanks to the Riesz basis property (Corollary 3.4), we have∥∥∥∥ ∑
k≥k0

ake
λp
kTΦλp

k
+
∑

|k|≥k0

bkk
1
2 eλ

h
kTΦλh

k

∥∥∥∥2
(Ḣ

1
2
♯ )′×L2

≤ C2

( ∑
k≥k0

|ak|2e2Re(λp
k)T +

∑
|k|≥k0

|bk|2e2Re(λh
k)T

)
,

for some C2 > 0. Thus, we deduce that∫ T

0

∣∣∣∣∑
k≥k0

ak e
λp
k(T−t)B∗

uΦλp
k
+
∑

|k|≥k0

bkk
1
2 eλ

h
k(T−t)B∗

uΦλh
k

∣∣∣∣2 dt(6.7)

≥ C

∥∥∥∥ ∑
k≥k0

ake
λp
kTΦλp

k
+
∑

|k|≥k0

bkk
1
2 eλ

h
kTΦλh

k

∥∥∥∥2
(Ḣ

1
2
♯ )′×L2

for some C > 0. But the solution (σ, v) also contains some finitely many terms as written in (6.5). Thus,
to conclude the required observability inequality (6.2), we need to consider those finite number of terms
in the inequality (6.7). Indeed, this can be done by using the strategy developed in [39] and [18, Section
4.2] since all the observation terms B∗

uΦ ̸= 0 for any (generalized) eigenfunction Φ of A∗ as long as we
consider b /∈ N with b4 + 8b2 + 5 < 4π2 (see Proposition 4.2– Part 2). However, we give a detailed proof
here for the sake of completeness.

Let (σT , vT ) ∈ (Ḣ
1
2

♯ (0, 1))
′ × L2(0, 1) be given. We write (σT , vT ) = (σT,1, vT,1) + (σT,2, vT,2) with

(σT,1, vT,1) =
∑
λ∈Λ0

mλ−1∑
j=0

cλ,jΦ
j
λ, and (σT,2, vT,2) =

∑
k≥k0

akΦλp
k
+
∑

|k|≥k0

bkk
1
2Φλh

k
.
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The corresponding solutions of the adjoint system (2.2) with these (σT,1, vT,1), (σT,2, vT,2) and (f, g) =
(0, 0) are respectively

(σ1(t), v1(t)) =
∑
λ∈Λ0

mλ−1∑
j=0

cλ,je
λ(T−t)(T − t)jΦj

λ,

(σ2(t), v2(t)) =
∑
k≥k0

ake
λp
k(T−t)Φλp

k
+
∑

|k|≥k0

bkk
1
2 eλ

h
k(T−t)Φλh

k
.

From the previous computations (the case of high frequencies), we have the following inequality

(6.8)

∫ T

0

|B∗
u(σ2(t), v2(t))|

2
dt ≥ C ∥(σ2(0), v2(0))∥2

(Ḣ
1
2
♯ )′×L2

.

To prove the observability inequality (6.2), we have to include the observation term B∗
u(σ1(t), v1(t)) =∑

λ∈Λ0

∑mλ−1
j=0 cλ,je

λ(T−t)(T −t)jB∗
uΦ

j
λ in the above inequality. We give a detailed proof below by adding

only one term, say for instance eλj0
(T−t)

(
cj0B∗

uΦj0 + (T − t)c̃j0B∗
uΦ̃j0

)
corresponding to the eigenvalue

λ = λj0 ∈ Λ0, where Φj0 and Φ̃j0 denote the (generalized) eigenfunctions corresponding to λj0 . All the
remaining finitely many terms can be added one by one using the same argument. We denote

(6.9) F(t) := B∗
u(σ2(t), v2(t)) + eλj0 (T−t)

(
cj0B∗

uΦj0 + (T − t)c̃j0B∗
uΦ̃j0

)
, for t ∈ (0, T ),

and define

G(t) := F(t)− 1

2δ

∫ δ

−δ

eλj0
sF(t+ s)ds, t ∈ (δ, T − δ),

where we will choose δ > 0 later accordingly. Then, one can obtain the following estimate (see for
instance [39, Section 4.4]):

(6.10)

∫ T−δ

δ

|G(t)|2 dt ≤ C

∫ T

0

|F(t)|2 dt

for some constant C > 0.
On the other hand, we have

G(t) =
∑
k≥k0

ake
λp
k(T−t)B∗

uΦλp
k

(
1−

sinh((λpk − λj0)δ)

(λpk − λj0)δ

)

+
∑

|k|≥k0

bkk
1
2 eλ

h
k(T−t)B∗

uΦλh
k

(
1− sinh((λhk − λj0)δ)

(λhk − λj0)δ

)
for t ∈ (δ, T − δ). Since T > 1, choosing δ > 0 small enough so that T − 2δ > 1, we obtain by using the
Ingham-type inequality (1.13)∫ T−δ

δ

|G(t)|2 dt ≥ C

∑
k≥k0

∣∣∣akB∗
uΦλp

k

∣∣∣2 e2Re(λp
k)T +

∑
|k|≥k0

∣∣∣bkk 1
2B∗

uΦλh
k

∣∣∣2
 .

This can be ensured from the fact that infk≥k0
|λpk − λj0 | , infk≥k0

∣∣λhk − λj0
∣∣ > 0, which then gives (by

taking δ > 0 suitably) that

inf
k≥k0

∣∣∣∣1− sinh((λpk − λj0)δ)

(λpk − λj0)δ

∣∣∣∣ , inf
k≥k0

∣∣∣∣1− sinh((λhk − λj0)δ)

(λhk − λj0)δ

∣∣∣∣ > 0.

Using this inequality, we readily have (see eq. (6.6)-(6.7))∫ T−δ

δ

|G(t)|2 dt ≥ C ∥(σ2(0), v2(0))∥2
(Ḣ

1
2
♯ )′×L2

.

Combining this with the estimate (6.10), we deduce that

(6.11)

∫ T

0

|F(t)|2 dt ≥ C ∥(σ2(0), v2(0))∥2
(Ḣ

1
2
♯ )′×L2

.
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Since T > 1, we can choose ε > 0 small enough so that T − ε > 1. Then, we obtain from the above
inequality

(6.12)

∫ T

0

|F(t)|2 dt ≥
∫ T

ε

|F(t)|2 dt ≥ C ∥(σ2(ε), v2(ε))∥2
(Ḣ

1
2
♯ )′×L2

.

We now prove a weak admissibility inequality

(6.13)

∫ ε
2

0

|B∗
u(σ2(t), v2(t))|

2
dt ≤ C ∥(σ2(ε), v2(ε))∥2

(Ḣ
1
2
♯ )′×L2

.

In fact, applying Hölder’s inequality and the hyperbolic Ingham inequality (5.2) (right side), we deduce
that∫ ε

2

0

|B∗
u(σ2(t), v2(t))|

2
dt ≤ 2

∫ ε
2

0

∣∣∣∣∣∣
∑
k≥k0

ake
λp
k(T−t)B∗

uΦλp
k

∣∣∣∣∣∣
2

dt+ 2

∫ ε
2

0

∣∣∣∣∣∣
∑

|k|≥k0

bkk
1
2 eλ

h
k(T−t)B∗

uΦλh
k

∣∣∣∣∣∣
2

dt

≤ C
∑
k≥k0

|ak|2 e2Re(λp
k)(T−ε)

∑
k≥k0

∣∣∣B∗
uΦλp

k

∣∣∣2 e−2Re(λp
k)(T−ε)

∫ ε
2

0

e2Re(λp
k)(T−t)dt

+ C
∑

|k|≥k0

∣∣∣bkk 1
2B∗

uΦλh
k

∣∣∣2
≤ C

∑
k≥k0

|ak|2 e2Re(λp
k)(T−ε) + C

∑
|k|≥k0

|bk|2 ,

thanks to the observation estimate (4.39b). On the other hand, using the Riesz basis property of the
eigenfunctions (see Corollary 3.4), we obtain

∥(σ2(ε), v2(ε))∥2
(Ḣ

1
2
♯ )′×L2

≥ C
∑
k≥k0

|ak|2 e2Re(λp
k)(T−ε) + C

∑
|k|≥k0

|bk|2 .

Combining the above estimates, the weak admissibility inequality (6.13) follows. With this, we get from
(6.12) that

(6.14)

∫ T

0

|F(t)|2 dt ≥ C

∫ ε
2

0

|B∗
u(σ2(t), v2(t))|

2
dt.

We now introduce the finite dimensional space generated by the (generalized) eigenfunctions

X := span
{
Φj0 , Φ̃j0

}
and define the norms on X as

∥(σ̂T,1, v̂T,1)∥21 : =

∫ ε
2

0

∣∣∣eλj0
(T−t)

(
cj0B∗

uΦj0 + (T − t)c̃j0B∗
uΦ̃j0

)∣∣∣2 dt,(6.15)

∥(σ̂T,1, v̂T,1)∥2 : = ∥(σ̂1(0), v̂1(0))∥
(Ḣ

1
2
♯ )′×L2

,(6.16)

where (σ̂1(t), v̂1(t)) = eλj0 (T−t)
(
cj0Φj0 + c̃j0Φ̃j0

)
for t ∈ (0, T ) is the solution of the adjoint system (2.2)

with the terminal data (σ̂T,1, v̂T,1) ∈ X and (f, g) = (0, 0). In fact, the norms (6.15) and (6.16) are

well-defined since we have B∗Φj0 ,B∗Φ̃j0 ̸= 0 and (σ̂1(0), v̂1(0)) = (0, 0) implies Φj0 = Φ̃j0 = 0. Moreover,
as any two norms in a finite dimensional space are equivalent, we deduce that∫ ε

2

0

∣∣∣eλj0
(T−t)

(
cj0B∗

uΦj0 + (T − t)c̃j0B∗
uΦ̃j0

)∣∣∣2 dt ≥ C ∥(σ̂1(0), v̂1(0))∥2
(Ḣ

1
2
♯ )′×L2

.

As a consequence, we obtain (recall the function F defined by (6.9))

∥(σ̂1(0), v̂1(0))∥2
(Ḣ

1
2
♯ )′×L2

≤ C

∫ ε
2

0

|F(t)|2 dt+ C

∫ ε
2

0

|B∗
u(σ2(t), v2(t))|

2
dt ≤ C

∫ T

0

|F(t)|2 dt,

thanks to the lower bound (6.14). This inequality together with (6.11), we deduce that

(6.17)

∫ T

0

|F(t)|2 dt ≥ C ∥(σ(0) + σ̂1(0), v(0) + v̂1(0))∥2
(Ḣ

1
2
♯ )′×L2

.
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In a similar way, we can add the remaining finitely many terms in the above inequality. As a result, we
eventually get for T > 1, ∫ T

0

|B∗
u(σ(t), v(t))|2dt ≥ C∥(σ(0), v(0))∥2

(Ḣ
1
2
♯ )′×L2

,(6.18)

for given data (σT , vT ) ∈ D(A∗).
This is a necessary and sufficient for the null-controllability of system (1.4) with given initial data

(ρ0, u0) ∈ Ḣ
1
2

♯ (0, 1)× L2(0, 1), when T > 1, which proves the first part of Theorem 1.2.

Lack of null-controllability for less regular initial states. Consider (σT,k, vT,k) = Φλh
k
for |k| ≥

k0. Then, the solution to the adjoint system (2.2) with this (σT,k, vT,k) and (f, g) = (0, 0) reads as

(σk(t, x), vk(t, x)) = eλ
h
k(T−t)Φλh

k
(x), ∀|k| ≥ k0, (t, x) ∈ (0, T )× (0, 1).

Now, in one hand we have ∥∥∥Φλh
k

∥∥∥
(Ḣs

♯ )
′×L2

≥ C

|k|s
, ∀|k| ≥ k0,

by Lemma 3.5–eq. (3.15), and thus

∥(σk(0), vk(0))∥2(Ḣs
♯ )

′×L2 ≥ C

|k|2s
, ∀|k| ≥ k0.

for all k ∈ Z∗, since Re(λhk) is bounded. On the other hand, we have the following upper bounds of the
observation terms, namely ∫ T

0

|B∗
u(σk(t), vk(t))|

2
dt ≤ C

|k|
, ∀|k| ≥ k0,

in view of Lemma 4.4–eq. (4.39b). Thus, if the observability inequality (6.18) holds, we would have

C

|k|2s
≤ C

|k|
=⇒ |k|1−2s ≤ C,

which is not possible since 0 ≤ s < 1
2 . Therefore, the system (1.4) is not null-controllable at any time T

whenever 0 < s < 1
2 .

This concludes the proof of Theorem 1.2. □

7. Null-controllability for the density case

This section is devoted to prove the null-controllability of the system (1.5), more precisely Theorem
1.3. The proof is made of two steps:

– First, we use the Ingham-type inequality (1.13) (introduced as before) to show the null-controllability

of (1.5) in the space L̇2(0, 1)×H1
0 (0, 1).

– Secondly, by developing the moments method for parabolic-hyperbolic coupled system (due to

Hansen [34]), we prove that the same system (1.5) is null-controllable in the space Ḣs
♯ (0, 1) ×

L2(0, 1) for any s > 1
2 .

As a consequence, we conclude the null-controllability of our system (1.6) in the space L̇2(0, 1)×L2(0, 1).

The following lemma gives an equivalent criterion for the null-controllability of system (1.5).

Lemma 7.1. Let s1, s2 ≥ 0 be given. The system (1.5) is null-controllable at time T > 0 in Ḣs1
♯ (0, 1)×

Hs2
0 (0, 1) if and only if there exists a control p ∈ L2(0, T ) such that

(7.1)

〈(
σ(0)
v(0)

)
,

(
ρ0
u0

)〉
(Ḣ

s1
♯ )′×H−s2 ,Ḣ

s1
♯ ×H

s2
0

= −
∫ T

0

σ(t, 1)p(t)dt,

where (σ, v) is the solution to the adjoint system (2.1) with (f, g) = (0, 0) and any given final data
(σT , vT ) ∈ D(A∗).
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7.1. Null-controllability in L̇2 ×H1
0 : using Ingham-type inequality. We first write the following

result, the proof of which is similar to the velocity case (Theorem 6.2) and so we omit the details here.

Theorem 7.2. The system (1.5) is null-controllable at time T > 0 in the space L̇2(0, 1)×H1
0 (0, 1) if and

only if the following observability inequality

(7.2)

∫ T

0

∣∣B∗
ρ(σ(t), v(t))

∣∣2 dt ≥ C ∥(σ(0), v(0))∥2L̇2×H−1

hold for every (σT , vT ) ∈ D(A∗).

Let (σT , vT ) ∈ L̇2(0, 1)×H−1(0, 1) be given. Since the set of (generalized) eigenfunctions{
k Φλp

k
, k ≥ k0

}
∪
{
Φλh

k
, |k| ≥ k0

}
∪
{
Φi

λ; λ ∈ Λ0, i = 0, ...,mλ − 1
}

forms a Riesz basis of L̇2(0, 1)×H−1(0, 1), thanks to Corollary 3.4, we can write (σT , vT ) as

(σT , vT ) =
∑
k≥k0

akk Φλp
k
+
∑

|k|≥k0

bkΦλh
k
+
∑
λ∈Λ0

mλ−1∑
j=0

cλ,jΦ
j
λ.

Therefore, the solution to the adjoint system (2.1) with this terminal data (σT , vT ) and (f, g) = (0, 0)
can be written as

(σ(t), v(t)) =
∑
k≥k0

akk e
λp
k(T−t)Φλp

k
+
∑

|k|≥k0

bke
λh
k(T−t)Φλh

k
+
∑
λ∈Λ0

mλ−1∑
j=0

cλ,j(T − t)jeλ(T−t)Φj
λ,

for t ∈ [0, T ]. Note that

B∗
ρ(σ(t), v(t)) =

∑
k≥k0

akk e
λp
k(T−t)B∗

ρΦλp
k
+
∑

|k|≥k0

bke
λh
k(T−t)B∗

ρΦλh
k
+
∑
λ∈Λ0

mλ−1∑
j=0

cλ,j(T − t)jeλ(T−t)B∗
ρΦ

j
λ,

for all t ∈ (0, T ). Since T > 1, we use the Ingham-type inequality (1.13) to obtain

(7.3)

∫ T

0

∣∣∣∣∑
k≥k0

akk e
λp
k(T−t)B∗

ρΦλp
k
+
∑

|k|≥k0

bk e
λh
k(T−t)B∗

ρΦλh
k

∣∣∣∣2 dt
≥ C1

( ∑
k≥k0

∣∣∣akkB∗
ρΦλp

k

∣∣∣2 e2Re(λp
k)T +

∑
|k|≥k0

∣∣∣bkB∗
ρΦλh

k

∣∣∣2)

≥ C1

∑
k≥k0

|ak|2e2Re(λp
k)T +

∑
|k|≥k0

|bk|2
 ,

for some C1 > 0, where we also have used the observation estimates from Lemma 4.3.
On the other hand, we have∥∥∥∥ ∑

k≥k0

akk e
λp
kTΦλp

k
+
∑

|k|≥k0

bke
λh
kTΦλh

k

∥∥∥∥2
L̇2×H−1

≤ C2

( ∑
k≥k0

|ak|2e2Re(λp
k)T +

∑
|k|≥k0

|bk|2e2Re(λh
k)T

)
,

for some C2 > 0, thanks to the Riesz basis property (Corollary 3.4).
Thus we deduce that∫ T

0

∣∣∣∣∑
k≥k0

akk e
λp
k(T−t)B∗

ρΦλp
k
+
∑

|k|≥k0

bk e
λh
k(T−t)B∗

ρΦλh
k

∣∣∣∣2 dt(7.4)

≥ C

∥∥∥∥ ∑
k≥k0

akk e
λp
kTΦλp

k
+
∑

|k|≥k0

bke
λh
kTΦλh

k

∥∥∥∥2
L̇2×H−1

,

for some C > 0.
On the other hand, since b4 + 8b2 + 5 < 4π2, all the observation terms B∗

ρΦ ̸= 0 for any (generalized)
eigenfunction Φ of A∗ and hence it is enough to consider only the large frequencies of eigenvalues. In
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fact, the lower frequencies can be added one by one by proceeding in a similar way as in the proof of
Theorem 1.2 to deduce the required observability inequality∫ T

0

|B∗
ρ(σ(t), v(t))|2dt ≥ C ∥(σ(0), v(0))∥2L̇2×H−1 ,

for given data (σT , vT ) ∈ D(A∗) provided T > 1.
This proves the null-controllability of the system (1.5) at time T > 1 for given initial data (ρ0, u0) ∈

L̇2(0, 1)×H1
0 (0, 1).

7.2. Null-controllability in Ḣs
♯ × L2, s > 1

2 by moments method. To prove the null-controllability

of system (1.5) at T > 1 in the space Ḣs
♯ (0, 1)× L2(0, 1) for s > 1

2 , we shall formulate and solve a set of

moments problem using the strategy developed in [34]. For the sake of completeness, we recall the main
results from [34] and use these results with respect to our setting.

7.2.1. Parabolic-hyperbolic joint moments problem: results by S. W. Hansen. Let us first recall some
important results by S. W. Hansen [34] which will be used to prove the required null-controllability result

of the system (1.5) in the space Ḣs
♯ (0, 1)× L2(0, 1) for s > 1

2 .

The author in [34] made the following assumptions in his work.

Hypothesis 7.3. Let {λk}k∈N∗ and {γk}k∈Z be two sequences in C with the following properties:

(H1) for all k, j ∈ Z, γk ̸= γj unless j = k,
(H2) γk = β + ckπi+ νk for all k ∈ Z,

where β ∈ C, c > 0 and {νk}k∈Z ∈ ℓ2.
Also, there exist positive constants A0, B0, δ, ε and 0 ≤ θ < π/2 for which {λk}k∈N∗ satisfies

(P1) |arg(−λk)| ≤ θ for all k ∈ N∗,
(P2) |λk − λj | ≥ δ

∣∣k2 − j2
∣∣ for all k ̸= j, k, j ∈ N∗,

(P3) ε(A0 +B0k
2) ≤ |λk| ≤ A0 +B0k

2 for all k ∈ N∗.

We also assume that the families are disjoint, i.e.,

{γk, k ∈ Z} ∩ {λk, k ∈ N∗} = ∅.

Then, he introduced the following spaces: for any 0 ≤ a < d,

W[a,d] = closed span {eγkt}k∈Z in L2(a, d),

E[a,d] = closed span {e−λkt}k∈N∗ in L2(a, d).

With these, the author in [34] has proved the following results.

Theorem 7.4. Assume that the Hypothesis 7.3 holds true. Then, for each T > 2/c, where c is defined as
in Hypothesis 7.3, the spaces W[0,T ] and E[0,T ] are uniformly separated. This does not hold for T ≤ 2/c.

The proof mainly relies upon the following lemma. Hereinafter, we denote tc = 2/c.

Lemma 7.5. For any a ∈ R, W[a,a+tc] = L2(a, a + tc). Furthermore, for T ≥ tc, {eγkt}k∈Z forms a
Riesz basis for each of the spaces W[a,a+T ].

We refer [34] for the proofs of Theorem 7.4 and Lemma 7.5.

Let us write the following set of moments problem,

pk =

∫ T

0

eλktf(t)dt, k ∈ N∗,(7.5)

hk =

∫ T

0

eγktf(t)dt, k ∈ Z.(7.6)

The space of all sequences {pk}k∈N∗ ∪ {hk}k∈Z for which there exists a f ∈ L2(0, T ) that solves the set
of equations (7.5)–(7.6) is called the moment space.

Now, we recall the following results from the same paper which relate Theorem 7.4 to the moments
problem (7.5)–(7.6).

Proposition 7.6. Let {hk}k∈Z ∈ ℓ2. Then, for any T ≥ tc, there exists f ∈ W[0,T ], which solves the

moment problem (7.6). Moreover, any f̃ ∈ L2(0, T ) given by f̃ = f + f̂ with f̂ ∈W⊥
[0,T ] also solves (7.6).

The proof follows as a consequence of Lemma 7.5.
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Proposition 7.7. Assume that for any r > 0, the sequence {pk}k∈N∗ satisfies

|pk|erk → 0 as k → +∞.(7.7)

Then, for given any τ > 0, there exists g ∈ E[0,τ ], which solves the moment problem (7.5). Moreover,

any g̃ ∈ L2(0, τ) given by g̃ = g + ĝ with ĝ ∈ E⊥
[0,τ ] also solves (7.5).

The proof of the above proposition is standard. It relies on the existence of bi-orthogonal family in
the space E[0,τ ] to the family of exponentials {eλkt}k∈N∗ ; see [33] for a proof.

Let us now present the main theorem that tells the solvability of the mixed moment problems (7.5)–
(7.6).

Theorem 7.8. Let any T > tc be given. Then, under Hypothesis 7.3, given any sequence {pk}k∈N∗

satisfying (7.7) and any {hk}k∈Z ∈ ℓ2, there exists a function f ∈ L2(0, T ) that simultaneously solves the
set of moments problem (7.5)–(7.6). This does not hold for T ≤ tc.

The proof of above theorem can be found in [34, Theorem 4.11]. For the sake of completeness, we give
the proof below.

Proof. For T ≤ tc, the set of moments problem (7.5)–(7.6) does not necessarily have a solution. Thus,
we start with T > tc. By Theorem 7.4, the spaces E := E[0,T ] and W :=W[0,T ] are uniformly separated.

Thus the space V := E +W is closed in L2(0, T ) with its norm ∥ · ∥V := ∥ · ∥L2(0,T ) and so V := E ⊕W .

Moreover, the orthogonal complements E⊥ andW⊥ of E andW (resp.) in V are also uniformly separated
using a result by T. Kato [37, Chap. 4, §4] and therefore, V = E⊥ ⊕W⊥. From this, one can show that
the restrictions PE |W⊥ and PW |E⊥ are isomorphisms, where PE and PW are the orthogonal projections
respectively onto E and W in V . By Propositions 7.7 and 7.6, there exist functions f1 ∈ E and f2 ∈ W
which solve the equations (7.5) and (7.6) respectively. Set,

f = (PE |W⊥)−1f1 + (PW |E⊥)−1f2,

which simultaneously solves the equations (7.5)–(7.6) and moreover f ∈ L2(0, T ). □

7.2.2. Formulation of the parabolic-hyperbolic moments problem. Let us recall the set of eigenvalues
σ(A∗), given by (3.5).

The sequence {λhk}|k|≥k0
satisfies (H1) and (H2) of Hypothesis 7.3 with

β = −b2, c = 2, νk = O(|k|−1).

Moreover, it is easy to observe that {λpk}k≥k0
satisfies the properties (P1), (P2), (P3) of Hypothesis 7.3.

Thus, the spectrum σ(A∗) satisfies Hypothesis 7.3 except for the finite set {λ0} ∪ {λ̂n}n0
n=1. But this

will not lead any problem to construct and solve the associated moments equations. Let us go to the
detail.

General setting. We first recall Theorem 7.4 and Theorem 7.5. As per those results, our goal is to find
uniformly separated spaces W[0,T ] and E[0,T ] in L

2(0, T ) for T > tc = 1 (where tc = 2/c as introduced in
Section 7.2.1 and in our case c = 2).

We start with T > 1. Then, we pick a subset of complex numbers {λ̂nl
}l0l=1 in such a way that

W[a,a+1] := closed span
(
{eλ

h
kt}|k|≥k0

∪ {eλ̂nl
t}l0l=1

)
in L2(a, a+ 1), for any a ∈ R,(7.8)

equals the space L2(a, a+ 1); and moreover the above set forms a Riesz basis for the space W[a,a+T ] for
each T ≥ 1.

In particular,

W[0,T ] = closed span
(
{eλ

h
kt}|k|≥k0

∪ {eλ̂nl
t}l0l=1

)
in L2(0, T ).(7.9)

Next, we consider the space

E[0,T ] = closed span
(
{e−λp

kt}k≥k0
∪ {e−λt}λ∈Λ0

∪ {1}
)

in L2(0, T ).(7.10)

Then, we have the following result which follows from Theorem 7.4.

Lemma 7.9. The spaces W[0,T ] and E[0,T ] defined by (7.9) and (7.10) respectively, are uniformly separated

in L2(0, T ) for T > 1. This does not hold for T ≤ 1.
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The set of moments problem. To begin with, let us recall that the eigenvalues for parabolic and
hyperbolic parts, namely Λp and Λh given by (3.3) are simple. Also, recall that the set of eigenfunctions

E(A∗) =
{
Φλp

k
, k ≥ k0

}
∪
{
ksΦλh

k
, |k| ≥ k0

}
∪
{
Φi

λ; λ ∈ Λ0, i = 0, ...,mλ − 1
}

of A∗ defines a Riesz basis in (Ḣs
♯ (0, 1))

′ × L2(0, 1) for any s > 0, thanks to Corollary 3.4. Thus, it is

enough to check the control problem (7.1) for the eigenfunctions of A∗. In what follows, the problem
(1.5) is null-controllable at given time T > 1 if and only if there exists some p ∈ L2(0, T ) such that we
have the following:

−
∫ T

0

eλ
p
k(T−t)p(t) dt = m1,k, ∀k ≥ k0,

−
∫ T

0

(T − t)jeλ(T−t)p(t) dt = mj
λ, ∀λ ∈ Λ0, j = 0, 1, . . . ,mλ − 1,

(7.11)

and

−
∫ T

0

eλ
h
k(T−t)p(t) dt = m2,k, ∀|k| ≥ k0,(7.12)

where 

m1,k =

eλ
p
kT

〈(
ξλp

k

ηλp
k

)
,

(
ρ0

u0

)〉
(Ḣs

♯ )
′×L2,Ḣs

♯×L2

ξλp
k
(1)

, ∀k ≥ k0,

mj
λ =

eλT

〈(
ξjλ

ηjλ

)
,

(
ρ0

u0

)〉
(Ḣs

♯ )
′×L2,Ḣs

♯×L2

ξjλ(1)
, ∀λ ∈ Λ0, j = 0, 1 . . . ,mλ − 1,

(7.13)

and

m2,k =

eλ
h
kT

〈(
ξλh

k

ηλh
k

)
,

(
ρ0

u0

)〉
(Ḣs

♯ )
′×L2,Ḣs

♯×L2

ξλh
k
(1)

, ∀|k| ≥ k0.(7.14)

The above set of equations (7.11)–(7.12) are the so-called moments problem which are well-defined since
B∗
ρΦ = ξ(1) ̸= 0 for any (generalized) eigenfunction Φ ∈ E(A∗) as proved in Proposition 4.2–Part 1 under

the assumption b4 + 8b2 + 5 < 4π2. Let us now study the solvability of those equations.

Proof of the null-controllability result in Ḣs
♯ × L2, s > 1

2 . Let any parameter s > 1/2, initial data

(ρ0, u0) ∈ Ḣs
♯ (0, 1) × L2(0, 1) and time T > 1 be given. We now consider the finitely many complex

numbers (λ̂nl
)l0l=1 introduced earlier (see eq. (7.8)) in the above moments problem (hyperbolic part)

(7.15) −
∫ T

0

eλ̂nl
(T−t)p(t)dt = m2,l, ∀ l = 1, . . . , l0,

where m2,l ∈ C for all l = 1, . . . , l0. Then, our goal is to apply the result of Theorem 7.8 to solve the set
of moments problem (7.11)–(7.12)-(7.15). To do this, it suffices to show the following facts: for any r > 0

|m1,k|erk → 0 as k → +∞,(7.16)

and ∑
|k|≥k0

|m2,k|2 < +∞.(7.17)

– Recall the expression of m1,k for k ≥ k0 from (7.13). We have

|m1,k| ≤ C∥(ρ0, u0)∥Ḣs
♯×L2 e

Re(λp
k)T

∥ξλp
k
∥(Ḣs

♯ )
′ + ∥ηλp

k
∥L2

|ξλp
k
(1)|

(7.18)

≤ C∥(ρ0, u0)∥Ḣs
♯×L2 e

−k2π2T kπ
(
k−s−1 + 1

)
,
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thanks to the bounds of the eigenfunctions (3.14) and observation estimate (4.38a). Indeed, the

bound (7.18) directly implies the Claim (7.16) due to the presence of e−k2π2T in the right hand
side of (7.18).

Thus, in view of Proposition 7.7, there exists a function p1 ∈ E := E[0,T ] that solves the set of
equations (7.11) for the case of simple eigenvalues. To add the finitely many generalized eigen-
functions, one can adapt the strategy developed for instance in [29] or [9], where the authors have
proved the existence of bi-orthogonal family for a general sequence of type {tjeλnt}j=0,··· ,J;n≥1

for any J ∈ N∗, where {λn}n≥1 verifies the properties like (P1) and (P2) at least for large index
n ∈ N∗. As a consequence, we can find a p1 ∈ E0,T solving the parabolic moment problem (7.11).

– On the other hand, we show that {m2,k}|k|≥k0
∈ ℓ2. In this regard, we recall the bounds of the

eigenfunctions given by (3.15) and the observation estimate (4.38b), which yields

∑
|k|≥k0

|m2,k|2 ≤ C∥(ρ0, u0)∥2Ḣs
♯×L2

∑
|k|≥k0

∥ξλh
k
∥2
(Ḣs

♯ )
′ + ∥ηλh

k
∥2L2

|ξλh
k
(1)|2

≤ C∥(ρ0, u0)∥2Ḣs
♯×L2

∑
|k|≥k0

(
|k|−2s

+ |k|−2
)

≤ C∥(ρ0, u0)∥2Ḣs
♯×L2 .

The above series converges due to the sharp choice s > 1/2 and indeed, it is clear that for s ≤ 1/2,

the series
∑

|k|≥k0

1

|k|2s
diverges.

Therefore, in view of Proposition 7.6, there exists a function p2 ∈ W := W[0,T ] that solves the
set of equations (7.12)–(7.15).

Now, as consequence of Lemma 7.9, the space

V := E+W(7.19)

is closed and thus a Hilbert space with ∥·∥V := ∥·∥L2(0,T ), so V = E⊕W. Likewise, we have V := E⊥⊕W⊥.
Therefore, the restrictions PE|W⊥ and PW |E⊥ are isomorphisms, where PE and PW denote the orthogonal
projections from V onto E and W respectively. Let us set

p := (PE|W⊥)−1p1 + (PW |E⊥)−1p2,(7.20)

which certainly belongs to the space L2(0, T ) and simultaneously solves the set of moments problem

(7.11)–(7.12)–(7.15) for T > 1 and any ρ0 ∈ Ḣs
♯ (0, 1) for s > 1/2, u0 ∈ L2(0, 1). This concludes the proof

of the result of this section.

7.3. Null-controllability result with L̇2 × L2 initial data.

Proof of Theorem 1.3. We start with b4 + 8b2 + 5 < 4π2 and pick any initial data (ρ0, u0) ∈ L̇2(0, 1)×
L2(0, 1) for the system (1.5). We express the initial data as

(ρ0, u0) = (ρ0, 0) + (0, u0),

and consider the following two systems

(7.21)



ρ1,t + ρ1,x + bu1,x = 0, in (0, T )× (0, 1),

u1,t − u1,xx + u1,x + bρ1,x = 0, in (0, T )× (0, 1),

ρ1(t, 0) = ρ1(t, 1) + p1(t), on (0, T ),

u1(t, 0) = 0, u1(t, 1) = 0, on (0, T ),

ρ1(0, x) = ρ0(x), u1(0, x) = 0, in (0, 1),

and

(7.22)



ρ2,t + ρ2,x + bu2,x = 0, in (0, T )× (0, 1),

u2,t − u2,xx + u2,x + bρ2,x = 0, in (0, T )× (0, 1),

ρ2(t, 0) = ρ2(t, 1) + p2(t), on (0, T ),

u2(t, 0) = 0, u2(t, 1) = 0, on (0, T ),

ρ2(0, x) = 0, u2(0, x) = u0(x), in (0, 1).
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Here p1, p2 ∈ L2(0, T ) are boundary controls which are to be determined.

Now, from the analysis pursued in Section 7.1, if we start with initial data (ρ0, 0) with ρ0 ∈ L̇2(0, 1),
then there exists a control p1 ∈ L2(0, T ) such that the solution (ρ1, u1) to the system (7.21) verifies

(ρ1(T, ·), u1(T, ·)) = (0, 0), in (0, 1).

On the other hand, it is also known from Section 7.2 that, starting with initial data (0, u0) with
u0 ∈ L2(0, 1), we can find a control p2 ∈ L2(0, T ) such that the solution (ρ2, u2) to the system (7.22)
satisfies

(ρ2(T, ·), u2(T, ·)) = (0, 0), in (0, 1).

Let us define p(t) = p1(t) + p2(t) for t ∈ (0, T ). Then p ∈ L2(0, T ), and the solution (ρ, u) to the main

system (1.5), with this control p and the prescribed initial state (ρ0, u0) ∈ L̇2(0, 1)× L2(0, 1), satisfies

(ρ(T, ·), u(T, ·)) = (0, 0) in (0, 1).

□

Proof of Theorem 1.6. We have already shown the existence of a null-control p ∈ L2(0, T ) for the
system (1.5). Now, to prove the existence of a null-control h ∈ L2(0, T ) for the control problem (1.6), all
we need to show that ρ(·, 1) ∈ L2(0, T ), where ρ is the solution component of the system (1.5) associated
with the control function p ∈ L2(0, T ). But the proof for ρ(·, 1) ∈ L2(0, T ) follows from a hidden regularity
result given in Appendix B (Lemma B.1).

Hence, we define h(t) = ρ(t, 1)+p(t) for all t ∈ (0, T ), which plays the role of a Dirichlet (null) control
function for the main system (1.6). The proof is complete. □

7.4. Lack of null-controllability at small time. This section is devoted to prove the lack of null-
controllability result of the system (1.5) for 0 < T < 1, that is precisely Proposition 1.5. In this regard,
we mention the work [8] where the authors proved the lack of null-controllability for a transport-parabolic
system with localized interior control. Similar result has been treated in [15] in the context of boundary
controllability for a transport-elliptic system (the so-called creeping flow model).

Proof of Proposition 1.5. Let 0 < T < 1. Consider the transport equation

(7.23)


σ̃t(t, x) + σ̃x(t, x)− b2σ̃(t, x) = 0, (t, x) ∈ (0, T )× (0, 1),

σ̃(t, 0) = σ̃(t, 1), t ∈ (0, T ),

σ̃(T, x) = σ̃T (x), x ∈ (0, 1),

with σ̃T ∈ L2(0, 1). Since T < 1, there exists a nontrivial function σ̃T ∈ C∞(0, 1) with supp(σ̃T ) ⊂ (T, 1)
such that the associated solution σ̃ of (7.23) satisfies σ̃(t, 0) = σ̃(t, 1) = 0 for all t ∈ (0, T ) and σ̃ ̸= 0 in
(0, T )× (0, 1). Let N > 0 be a fixed integer. We define the polynomial

PN (x) :=

N∏
l=−N

(x− l), x ∈ (0, 1)

and the function

σ̃N
T := PN

(
−i d
dx

)
σ̃T .

We write the terminal state σ̃T ∈ L2(0, 1) as

σ̃T (x) :=
∑
n∈Z

ane
2inπx, x ∈ (0, 1).

Then the above function σ̃N
T becomes

σ̃N
T (x) =

∑
n∈Z

an

N∏
l=−N

(
−i d
dx

− l

)
e2inπx =

∑
n∈Z

an

N∏
l=−N

(n− l) e2inπx =
∑
n∈Z

anP
N (n)e2inπx,

for x ∈ (0, 1). Note that PN (n) = 0 for all |n| ≤ N and therefore

σ̃N
T (x) =

∑
|n|≥N+1

anP
N (n)e2inπx.
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With this σ̃N
T , let us now consider the following system

(7.24)


σ̃t(t, x) + σ̃x(t, x)− b2σ̃(t, x) = 0, (t, x) ∈ (0, T )× (0, 1),

σ̃(t, 0) = σ̃(t, 1), t ∈ (0, T ),

σ̃(T, x) = σ̃N
T (x), x ∈ (0, 1).

Since supp(σ̃N
T ) ⊂ supp(σ̃T ) ⊂ (T, 1), the solution σ̃ to this system (7.24) satisfies σ̃N (t, 0) = σ̃N (t, 1) = 0

for all t ∈ (0, T ). On the other hand, we consider the following adjoint system

(7.25)



σt(t, x) + σx(t, x) + bvx(t, x) = 0, (t, x) ∈ (0, T )× (0, 1),

vt(t, x)− vxx(t, x) + vx(t, x) + bσx(t, x) = 0, (t, x) ∈ (0, T )× (0, 1),

σ(t, 0) = σ(t, 1), t ∈ (0, T ),

v(t, 0) = 0, v(t, 1) = 0, t ∈ (0, T ),

σ(T, x) = σ̃N
T (x), v(T, x) = vNT (x), x ∈ (0, 1),

where we choose vNT such that

(σ̃N
T , v

N
T )† =

∑
|n|≥N+1

ãhnΦλh
n

with ãhn := anP
N (n)

ξ
λh
n
(1) for all |n| ≥ N + 1 (note that ξλh

n
(1) ̸= 0, thanks to the eigen equation). We write

the solutions to the systems (7.24) and (7.25) respectively as

σ̃N (t, x) =
∑

|n|≥N+1

anP
N (n)e(−2inπ−b2)(T−t)e2inπx,(7.26)

σN (t, x) =
∑

|n|≥N+1

anP
N (n)

ξλh
n
(1)

eλ
h
n(T−t)ξλh

n
,(7.27)

vN (t, x) =
∑

|n|≥N+1

anP
N (n)

ξλh
n
(1)

eλ
h
n(T−t)ηλh

n
,(7.28)

for (t, x) ∈ [0, T ]× [0, 2π]. We prove that the solution component σN of (7.25) approximates the solution
σ̃N of (7.24) at the point x = 1. Indeed,∥∥σN (·, 1)− σ̃N (·, 1)

∥∥2
L2(0,T )

≤
∑

|n|≥N+1

|an|2
∣∣PN (n)

∣∣2 ∥∥∥eλh
n(T−t) − e(−2inπ−b2)(T−t)e2inπ

∥∥∥2
L2(0,T )

≤
∑

|n|≥N+1

|an|2
∣∣PN (n)

∣∣2 ∥∥∥eO( 1
n )(T−t) − 1

∥∥∥2
L2(0,T )

≤
∑

|n|≥N+1

1

|n|2
|an|2

∣∣PN (n)
∣∣2 ,

and therefore ∥∥σN (·, 1)− σ̃N (·, 1)
∥∥2
L2(0,T )

≤ C

|N |2
∑

|n|≥N+1

|an|2
∣∣PN (n)

∣∣2 .
Let us now suppose that the following observability inequality holds

(7.29)

∫ T

0

∣∣σN (t, 1)
∣∣2 dt ≥ C

∥∥(σN (0), vN (0))
∥∥2
(L2(0,1))2

.
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Then, we have∥∥(σN (0), vN (0))
∥∥2
(L2(0,1))2

≤ C

∫ T

0

∣∣σN (t, 1)
∣∣2 dt

≤ C

∫ T

0

(∣∣σN (t, 1)− σ̃N (t, 1)
∣∣2 + ∣∣σ̃N (t, 1)

∣∣2) dt
≤ C

N2

∑
|n|≥N+1

|an|2
∣∣PN (n)

∣∣2 ,
as we have σ̃N (t, 0) = 0 = σ̃N (t, 1) for all t ∈ (0, T ). Thus we get∥∥σN (0)

∥∥2
L2(0,1)

≤
∥∥(σN (0), vN (0))

∥∥2
(L2(0,1))2

≤ C

N2

∑
|n|≥N+1

|an|2
∣∣PN (n)

∣∣2 ≤ C

N2

∥∥σN (0)
∥∥2
L2(0,1)

,

since Re(νhn) is bounded and
∥∥ξλh

n

∥∥
L2(0,1)

≥ C,
∣∣ξλh

n
(0)
∣∣ ≥ C. Therefore, 1 ≤ C

N2 for all N and hence

the above inequality is not true. This shows that the observability inequality (7.29) cannot hold; as a
consequence the system is not null-controllable at time T . This completes the proof. □

8. Detailed spectral analysis of the adjoint operator

In this section, we study the detailed spectral analysis of the adjoint operator A∗. We hereby recall
the eigenvalue problem (3.1) from Section 3 which has been rewritten below,

(8.1)

ξ′(x) + bη′(x) = λξ(x), x ∈ (0, 1),

η′′(x) + η′(x) + bξ′(x) = λη(x), x ∈ (0, 1),

ξ(0) = ξ(1),

η(0) = 0, η(1) = 0.

We divide the analysis into several steps. Let us begin by the following results.

Proof of point (ii)-Proposition 3.1: All non-trivial eigenvalues have negative real parts. Let
λ ̸= 0. Multiplying the first equation of (8.1) by ξ, the second one by η and then integrating, we obtain∫ 1

0

ξ(x)ξ′(x)dx+ b

∫ 1

0

ξ(x)η′(x)dx = λ

∫ 1

0

|ξ(x)|2dx∫ 1

0

η(x)η′′(x)dx+

∫ 1

0

η(x)η′(x)dx+ b

∫ 1

0

η(x)ξ′(x)dx = λ

∫ 1

0

|η(x)|2dx.

Adding these two equations, we get∫ 1

0

ξ(x)ξ′(x)dx+

∫ 1

0

η(x)η′(x)dx+ b

∫ 1

0

ξ(x)η′(x)dx+ b

∫ 1

0

η(x)ξ′(x)dx

+

∫ 1

0

η(x)η′′(x)dx = λ

∫ 1

0

|ξ(x)|2dx+ λ

∫ 1

0

|η(x)|2dx,(8.2)

where we have used the following fact

(8.3)

∫ 1

0

ξ(x)ξ′(x)dx =
1

2

∫ 1

0

d

dx
|ξ(x)|2dx+ i

∫ 1

0

Im(ξ(x)ξ′(x))dx = i

∫ 1

0

Im(ξ(x)ξ′(x))dx,

thanks to the boundary condition ξ(0) = ξ(1).
Similarly, we can obtain

(8.4)

∫ 1

0

η(x)η′(x)dx = i

∫ 1

0

Im(η(x)η′(x))dx.

Using the relations (8.3), (8.4) in (8.2) and performing an integration by parts, we deduce that

i

∫ 1

0

(
Im(ξ(x)ξ′(x)) + Im(η(x)η′(x))

)
dx+ b

∫ 1

0

ξ′(x)η(x)dx− b

∫ 1

0

ξ′(x)η(x)dx−
∫ 1

0

|η′(x)|2dx

= λ

∫ 1

0

|ξ(x)|2dx+ λ

∫ 1

0

|η(x)|2dx,
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from which it is clear that

Re(λ) = −
∥η′∥2L2

∥ξ∥2L2 + ∥η∥2L2

< 0,(8.5)

since η′ = 0 is not possible. If yes, then from the boundary condition η(0) = η(1) = 0, we have η = 0
and this yields that ξ = c, for some constant c, which is possible if and only if λ = 0. Therefore, when
λ ̸= 0, then one has the condition (8.5).

Remark 8.1. It can be easily seen that the first component ξ satisfies
∫ 1

0
ξ = 0 provided λ ̸= 0.

Proof of point (iii)- Proposition 3.1: compactness of the resolvent to the adjoint operator.
In this section, we are going to prove the part (iii) of Proposition 3.1.

For any λ /∈ σ(A∗), denote the resolvent operator associated to A∗ by R(λ,A∗) := (λI −A∗)−1 (where
σ(A∗) is the spectrum of A∗ defined by (3.5)).

Let {Yn}n = {(fn, gn)}n be a bounded sequence in Z := L2(0, 1) × L2(0, 1). Our claim is to prove
that for any λ > 0 the sequence

{
R(λ;A∗)Yn

}
n
contains a convergent subsequence. Let Xn = (σn, vn) =

R(λ;A∗)Yn ∈ D(A∗), that is

(8.6) (λI −A∗)Xn = Yn.

More explicitly, 
λσn − (σn)x − b(vn)x = fn in (0, 1),

λvn − b(σn)x − (vn)x − (vn)xx = gn in (0, 1),

σn(0) = σn(1), vn(0) = vn(1) = 0.

(8.7)

Taking inner product with Xn in the equation (8.6), we get

λ ⟨Xn, Xn⟩Z − ⟨A∗Xn, Xn⟩Z = ⟨Xn, Yn⟩Z .

Considering only the real parts, we see

λ ∥Xn∥2Z − Re(⟨A∗Xn, Xn⟩Z) = Re(⟨Xn, Yn⟩Z).

Now, recall that the operator A∗ is dissipative, i.e., Re(⟨A∗Xn, Xn⟩Z) ≤ 0; in what follows, we have

λ ∥Xn∥2Z ≤ Re(⟨Xn, Yn⟩Z) ≤ |⟨Xn, Yn⟩Z| ≤
λ

2
∥Xn∥2Z +

1

2λ
∥Yn∥2Z .

In other words,

∥Xn∥2Z ≤ 1

λ2
∥Yn∥2Z .

Thus, the sequence {Xn}n is bounded in Z. We now prove that {Xn}n is in fact bounded in H1
♯ (0, 1)×

H1
0 (0, 1). Multiplying the second equation of (8.7) by un, we get

λ

∫ 1

0

|vn|2 dx− b

∫ 1

0

(σn)xv̄ndx−
∫ 1

0

(vn)xxv̄ndx =

∫ 1

0

gnv̄ndx.

Performing an integration by parts, we obtain

λ

∫ 1

0

|vn|2 dx+ b

∫ 1

0

σn(v̄n)xdx+

∫ 1

0

|(vn)x|2 dx =

∫ 1

0

gnv̄ndx,

from which, it follows that

λ

∫ 1

0

|vn|2 dx+

∫ 1

0

|(vn)x|2 dx = Re

(∫ 1

0

gnv̄ndx

)
− bRe

(∫ 1

0

σn(v̄n)xdx

)
≤
∣∣∣∣∫ 1

0

gnv̄ndx

∣∣∣∣+ b

∣∣∣∣∫ 1

0

σn(v̄n)xdx

∣∣∣∣
≤ 1

2λ

∫ 1

0

|gn|2 dx+
λ

2

∫ 1

0

|vn|2 dx+
b2

2

∫ 1

0

|σn|2 dx+
1

2

∫ 1

0

|(vn)x|2 dx.

After simplification, we have

λ

2

∫ 1

0

|vn|2 dx+
1

2

∫ 1

0

|(vn)x|2 dx ≤ 1

2λ

∫ 1

0

|gn|2 dx+
b2

2

∫ 1

0

|σn|2 dx,
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that is, the sequence {vn}n is bounded in H1
0 (0, 1). Then, the first equation of (8.7) gives

(σn)x = λσn − b(vn)x − fn,

which shows that the sequence {(σn)x}n is bounded in L2(0, 1).
So, we have proved that {Xn}n is a bounded sequence in H1

♯ (0, 1) × H1
0 (0, 1) (which is compactly

embedded in Z) and therefore, {Xn}n is relatively compact in Z.
This completes the proof.

Proof of point (iv)-Proposition 3.1: all eigenvalues are geometrically simple. Let b > 0 be
such that b4+8b2+5 < 4π2. On contrary, let us assume that for any eigenvalue λ, there are two distinct
eigenfunctions Φ1 := (ξ1, η1) and Φ2 := (ξ2, η2) of A

∗. We prove that Φ1 and Φ2 are linearly dependent.
Let be θ1, θ2 ∈ C \ {0} and consider the linear combination Φ := θ1Φ1 + θ2Φ2. Then Φ := (ξ, η) also

satisfies the eigenvalue problem (8.1). We now choose θ1, θ2 in such a way that ξ(0) = 0 (a particular

choice is θ1 = − θ2ξ2(0)
ξ1(0)

). Then, in the same spirit of Proposition 4.2–Part 1, we can conclude that Φ = 0.

This ensures the assumption that each eigenvalue of A∗ has geometric multiplicity 1.

8.1. Determining the eigenvalues for large modulus. We write the set of equations (8.1) satisfied
by ξ and η into a single equation of η as obtained in (4.6), given by

η′′′(x)− (λ+ b2 − 1)η′′(x)− 2λη′(x) + λ2η(x) = 0, ∀x ∈ (0, 1),(8.8a)

η(0) = η(1) = 0, η′′(0)− (b2 − 1)η′(0) = η′′(1)− (b2 − 1)η′(1).(8.8b)

Then, the auxiliary equation associated to (8.8a) is

(8.9) m3 − (λ+ b2 − 1)m2 − 2λm+ λ2 = 0.

Introduce µ = −λ ∈ C and a1 = µ − b2 + 1, a2 = 2µ, a3 = µ2, so that the roots of cubic polynomial
(8.9) are given by

(8.10)



m1 = −1

3

(
a1 + C +

D0

C

)
,

m2 = −1

3

(
a1 +

(−1 + i
√
3)

2
C +

(−1− i
√
3)

2

D0

C

)
,

m3 = −1

3

(
a1 +

(−1− i
√
3)

2
C +

(−1 + i
√
3)

2

D0

C

)
,

with

D0 = a21 − 3a2, D1 = 2a31 − 9a1a2 + 27a3, C =

(
D1 +

√
D2

1 − 4D3
0

2

)1/3

.

Exerting the values of a1, a2, a3, we can find

D0 = µ2 + (b2 − 1)2 − 2(2 + b2)µ,

D1 = 2µ3 + (15− 6b2)µ2 + (6b4 + 6b2 − 12)µ− 2b6 + 6b4 − 6b2 + 2.

From the above expressions, we calculate

D2
1 − 4D3

0 = 108µ5 − (324b2 + 27)µ4 +O(µ3).

Using the binomial expansion and approximating for large |µ|, we obtain√
D2

1 − 4D3
0 = 6

√
3µ5/2

[
1−

(
12b2 + 1

4µ
+O(µ−2)

)]1/2
= 6

√
3µ5/2

[
1− 12b2 + 1

8µ
+O(µ−2)

]
= 6

√
3µ5/2 − 6

√
3

8
(12b2 + 1)µ3/2 +O(µ1/2).

In terms of the above quantities, we have

C =

[
µ3 + 3

√
3µ5/2 +

(15− 6b2)

2
µ2 − 3

√
3

8
(12b2 + 1)µ3/2 +O(µ)

]1/3
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Now, using binomial expansion and simplifying, one can obtain for large modulus of µ, that

C = µ

[
1 +

(
√
3µ−1/2 +

(15− 6b2)

6
µ−1 −

√
3

8
(12b2 + 1)µ−3/2 +O(µ−2)

)

− 1

9

(
27µ−1 + 3

√
3(15− 6b2)µ−3/2 +O(µ−2)

)
+

5

81

(
81
√
3µ−3/2 +O(µ−2)

)
+O(µ−2)

]

= µ

[
1 +

√
3µ−1/2 − 2b2 + 1

2
µ−1 +

√
3

8
(4b2 − 1)µ−3/2 +O(µ−2)

]

= µ+
√
3µ1/2 − 2b2 + 1

2
+

√
3

8
(4b2 − 1)µ−1/2 +O(µ−1).

Similarly we have,

D0

C
=

(
D1 −

√
D2

1 − 4D3
0

2

) 1
3

=

[
µ3 − 3

√
3µ5/2 +

(15− 6b2)

2
µ2 +

3
√
3

8
(12b2 + 1)µ3/2 +O(µ)

]1/3

= µ−
√
3µ1/2 − 2b2 + 1

2
−

√
3

8
(4b2 − 1)µ−1/2 +O(µ−1).

So, the characteristic roots are (recall (8.10))

m1 = −1

3

[
µ− b2 + 1 +

(
µ+

√
3µ1/2 − 2b2 + 1

2
+

√
3

8
(4b2 − 1)µ−1/2 +O(µ−1)

)

+

(
µ−

√
3µ1/2 − 2b2 + 1

2
−

√
3

8
(4b2 − 1)µ−1/2 +O(µ−1)

)]
= −µ+ b2 +O(µ−1),

m2 = −1

3

[
µ− b2 + 1 +

−1 + i
√
3

2

(
µ+

√
3µ1/2 − 2b2 + 1

2
+

√
3

8
(4b2 − 1)µ−1/2 +O(µ−1)

)

+
−1− i

√
3

2

(
µ−

√
3µ1/2 − 2b2 + 1

2
−

√
3

8
(4b2 − 1)µ−1/2 +O(µ−1)

)]

= −1

2
− iµ1/2 +O(µ−1/2),

m3 = −1

3

[
µ− b2 + 1 +

−1− i
√
3

2

(
µ+

√
3µ1/2 − 2b2 + 1

2
+

√
3

8
(4b2 − 1)µ−1/2 +O(µ−1)

)

+
−1 + i

√
3

2

(
µ−

√
3µ1/2 − 2b2 + 1

2
−

√
3

8
(4b2 − 1)µ−1/2 +O(µ−1)

)]

= −1

2
+ iµ1/2 +O(µ−1/2).

Together, we write 
m1 = −µ+ b2 +O(µ−1),

m2 = −1

2
− iµ1/2 +O(µ−1/2),

m3 = −1

2
+ iµ1/2 +O(µ−1/2),

(8.11)
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with µ = −λ as mentioned earlier. Since, for large modulus of µ, the roots m1,m2 and m3 are distinct,
we can write the general solution to the equation (8.8a) as

(8.12) η(x) = C1e
m1x + C2e

m2x + C3e
m3x, x ∈ (0, 1),

for some constants C1, C2, C3 ∈ C.
Using the boundary conditions (8.8b), we get a system of linear equations in C1, C2 and C3, given by

C1 + C2 + C3 = 0,

C1e
m1 + C2e

m2 + C3e
m3 = 0,

C1m
2
1 (1− em1) + C2m

2
2 (1− em2) + C3m

2
3 (1− em3) = 0.

(8.13)

These system of equations (8.13) has a nontrivial solution if and only if

det

 1 1 1

em1 em2 em3

m2
1 (1− em1) m2

2 (1− em2) m2
3 (1− em3)

 = 0.

Expanding the determinant, we obtain

m2
1 (1− em1) (em3 − em2) +m2

2 (1− em2) (em1 − em3) +m2
3 (1− em3) (em2 − em1) = 0.(8.14)

We shall now compute the determinant term by term for large |µ|.
• Plugging the values of m1, m2 and m3 as given in (8.11), we obtain

m2
1 (1− em1) (em3 − em2)(8.15)

=
(
−µ+ b2 +O(µ−1/2)

)2 (
1− e−µ+b2+O(µ−1/2)

)(
e−1/2+iµ1/2+O(µ−1/2) − e−1/2−iµ1/2+O(µ−1/2)

)
=
(
µ2 − 2b2µ+O(µ1/2)

)(
1− e−µ+b2+O(µ−1)

)(
e−1/2+O(µ−1/2)

(
cos(µ1/2) + i sin(µ1/2)

)
−e−1/2+O(µ−1/2)

(
cos(µ1/2)− i sin(µ1/2)

))
=
(
µ2 − 2b2µ+O(µ1/2)

)(
1− e−µ+b2+O(µ−1)

) [
O(µ−1/2)e−1/2+O(µ−1/2) cos(µ1/2)

+i(2 +O(µ− 1
2 ))e−1/2+O(µ−1/2) sin(µ1/2)

]
,

where we have used the facts that

e−1/2+O(µ−1/2) − e−1/2+O(µ−1/2) = e−1/2+O(µ−1/2)
(
1− eO(µ− 1

2 )
)
= e−1/2+O(µ−1/2) ×O(µ− 1

2 ),

and

e−1/2+O(µ−1/2) + e−1/2+O(µ−1/2) = e−1/2+O(µ−1/2)
(
1 + eO(µ− 1

2 )
)
= e−1/2+O(µ−1/2) × (2 +O(µ− 1

2 )).

• We also compute

m2
2 (1− em2) (em1 − em3)

=

(
−1

2
− iµ1/2 +O(µ− 1

2 )

)2 (
1− e−1/2−iµ1/2+O(µ−1/2)

)(
e−µ+b2+O(µ−1) − e−

1
2+iµ

1
2 +O(µ− 1

2 )

)
=
(
−µ+ iµ

1
2 +O(1)

)(
e−µ+b2+O(µ−1) + e−1+O(µ− 1

2 ) − e−µ+b2− 1
2−iµ

1
2 +O(µ− 1

2 ) − e−
1
2+iµ

1
2 +O(µ− 1

2 )

)
=
(
−µ+ iµ

1
2 +O(1)

)[
e−µ+b2+O(µ−1) + e−1+O(µ− 1

2 ) − e−µ+b2− 1
2+O(µ− 1

2 )
(
cos(µ

1
2 )− i sin(µ

1
2 )
)

−e− 1
2+O(µ− 1

2 )
(
cos(µ

1
2 ) + i sin(µ

1
2 )
)]
.
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• Finally, we have

m2
3 (1− em3) (em2 − em1)

=

(
−1

2
+ iµ1/2 +O(µ− 1

2 )

)2(
1− e−

1
2+iµ

1
2 +O(µ− 1

2 )

)
×
(
e−

1
2−iµ

1
2 +O(µ− 1

2 ) − e−µ+b2+O(µ−1)

)
=
(
−µ− iµ

1
2 +O(1)

)[
−e−µ+b2+O(µ−1) − e−1+O(µ− 1

2 ) + e−µ+b2− 1
2+O(µ− 1

2 )
(
cos(µ

1
2 ) + i sin(µ

1
2 )
)

+e−
1
2+O(µ− 1

2 )
(
cos(µ

1
2 )− i sin(µ

1
2 )
)]
.

• We add now the last two terms, in what follows

m2
2 (1− em2) (em1 − em3) +m2

3 (1− em3) (em2 − em1)(8.16)

=− µO(µ− 1
2 )e−µ+b2+O(µ−1) − µO(µ− 1

2 )e−1+O(µ− 1
2 ) +

(
2iµ

1
2 +O(1)

)
e−µ+b2+O(µ−1)

+
(
2iµ

1
2 +O(1)

)
e−1+O(µ− 1

2 ) + i sinµ
1
2

[(
− 2µ+O(µ

1
2 )
)
e−µ+b2− 1

2+O(µ− 1
2 )

+ iµ
1
2O(µ− 1

2 )e−µ+b2− 1
2+O(µ− 1

2 ) +
(
2µ+O(µ

1
2 )
)
e−

1
2+O(µ− 1

2 ) + iµ
1
2O(µ− 1

2 )e−
1
2+O(µ− 1

2 )

]
+ cosµ

1
2

[(
µ+O(1)

)
O(µ− 1

2 )e−µ+b2− 1
2+O(µ− 1

2 ) +
(
µ+O(1)

)
O(µ− 1

2 )e−
1
2+O(µ− 1

2 )

− iµ
1
2 (2 +O(µ− 1

2 ))e−µ+b2− 1
2+O(µ− 1

2 ) − iµ
1
2 (2 +O(µ− 1

2 ))e−
1
2+O(µ− 1

2 )

]
.

We get after adding (8.15) and (8.16),

m2
1 (1− em1) (em3 − em2) +m2

2 (1− em2) (em1 − em3) +m2
3 (1− em3) (em2 − em1)

=− µO(µ− 1
2 )e−µ+b2+O(µ−1) − µO(µ− 1

2 )e−1+O(µ− 1
2 )

+
(
2iµ

1
2 +O(1)

)
e−µ+b2+O(µ−1) +

(
2iµ

1
2 +O(1)

)
e−1+O(µ− 1

2 )

+ i sinµ
1
2

[(
− 2µ2 +O(µ

3
2 )
)
e−µ+b2− 1

2+O(µ− 1
2 ) +

(
2µ2 +O(µ

3
2 )
)
e−

1
2+O(µ− 1

2 )

]
+ cosµ

1
2

[(
− µ2O(µ− 1

2 ) + (2b2 + 1)µO(µ− 1
2 )− 2iµ

1
2 +O(1)

)
e−µ+b2− 1

2+O(µ− 1
2 )

+
(
µ2O(µ− 1

2 )− µO(µ− 1
2 )− 2iµ

1
2 +O(1)

)
e−

1
2+O(µ− 1

2 )

]
.

Now, replacing the above quantity in the equation (8.14), and then dividing it by µ2 (since µ ̸= 0), we
obtain the equation

F (µ) = 0,(8.17)

where

F (µ) =− 2 sinµ
1
2

(
e−µ+b2 − 1

)
+O(µ− 1

2 ) sinµ
1
2 e−µ+b2+O(µ− 1

2 ) +O(µ− 1
2 ) sinµ

1
2 eO(µ− 1

2 )

+ cosµ
1
2

[
O(µ− 1

2 )e−µ+b2+O(µ− 1
2 ) +O(µ− 1

2 )eO(µ− 1
2 )

]
+O(µ− 3

2 )e−µ+b2+ 1
2+O(µ− 1

2 ) +O(µ− 3
2 )e−

1
2+O(µ− 1

2 ).

Application of Rouche’s theorem. Let G be a function of µ, defined as

G(µ) = −2 sin(µ
1
2 )
(
e−µ+b2 − 1

)
.
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Then

F (µ)−G(µ) = sin(µ
1
2 )

(
O(µ− 1

2 )e−µ+b2+O(µ− 1
2 ) +O(µ− 1

2 )eO(µ− 1
2 )

)
︸ ︷︷ ︸

I1

+ cos(µ
1
2 )

(
O(µ− 1

2 )e−µ+b2+O(µ− 1
2 ) +O(µ− 1

2 )eO(µ− 1
2 )

)
︸ ︷︷ ︸

I2

+O(µ− 3
2 )e−µ+b2+ 1

2+O(µ− 1
2 ) +O(µ− 3

2 )e−
1
2+O(µ− 1

2 )︸ ︷︷ ︸
I3

:=I1 + I2 + I3.

Since the function G has two branches of zeros, we will calculate them separately and in each case, we
use the Rouche’s theorem to talk about the zeros of the function F .

Case 1. We first observe that µ = k2π2 is a zero of G for each k ∈ N∗ and consider the following region
in the complex plane

(8.18) Rk =
{
z = x+ iy ∈ C : kπ − π

2
≤ x ≤ kπ +

π

2
, −π

2
≤ y ≤ π

2

}
, for k ∈ N∗.

Our goal is to prove that |F (µ)−G(µ)| < |G(µ)| on ∂Rk. It is sufficient to prove that

(8.19)

∣∣∣∣F (µ)−G(µ)

G(µ)

∣∣∣∣→ 0 for µ ∈ ∂Rk such that Re(µ) → +∞.

To avoid difficulties in notations, we denote w = µ
1
2 and without loss of generality, we simply write I1,

I2 and I3 as the functions w. Note that∣∣∣∣I1(w)G(w)

∣∣∣∣ =
∣∣∣∣∣O(w−1)e−w2+b2+O(w−1) +O(w−1)eO(w−1)

e−w2+b2 − 1

∣∣∣∣∣ ≤ C

|w|

∣∣∣e−w2+b2
∣∣∣+ 1∣∣e−w2+b2 − 1

∣∣ ,
and since

∣∣∣e−w2+b2
∣∣∣+1

|e−w2+b2−1| is bounded when Re(w) → +∞, therefore∣∣∣∣I1(w)G(w)

∣∣∣∣→ 0, as Re(w) → +∞.

We now compute∣∣∣∣I2(w)G(w)

∣∣∣∣ = ∣∣∣∣cos(w)sin(w)

∣∣∣∣
∣∣∣O(w−1)e−w2+b2+O(w−1) +O(w−1)eO(w−1)

∣∣∣∣∣e−w2+b2 − 1
∣∣ ≤ C

|w|

∣∣∣∣cos(w)sin(w)

∣∣∣∣
∣∣∣e−w2+b2

∣∣∣+ 1∣∣e−w2+b2 − 1
∣∣ ,

which yields ∣∣∣∣I2(w)G(w)

∣∣∣∣→ 0, for w ∈ ∂Rk such that Re(w) → +∞,

because of the fact that
∣∣∣ cos(w)
sin(w)

∣∣∣ is bounded on ∂Rk. We can say similarly for the third term that∣∣∣∣I3(w)G(w)

∣∣∣∣→ 0, for w ∈ ∂Rk such that Re(w) → +∞,

as we have ∣∣∣∣I3(w)G(w)

∣∣∣∣ ≤ C

|w|3

∣∣∣∣ 1

sin(w)

∣∣∣∣
∣∣∣e−w2+b2+ 1

2

∣∣∣+ 1∣∣e−w2+b2 − 1
∣∣ .

Case 2. When sin(µ
1
2 ) ̸= 0, G(µ) = 0 gives e−µ+b2 − 1 = 0, that is µ = b2 +2ikπ for k ∈ Z. In this case,

we consider the following region in the complex plane

(8.20) Sk =
{
z = x+ iy ∈ C : b2 − π

2
≤ x ≤ b2 +

π

2
, 2kπ − π

2
≤ y ≤ 2kπ +

π

2

}
.

We need to show that |F (µ)−G(µ)| < |G(µ)| on ∂Sk. In particular, we prove that∣∣∣∣F (µ)−G(µ)

G(µ)

∣∣∣∣→ 0 for µ ∈ ∂Sk such that Im(µ) → +∞.
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We compute∣∣∣∣I1(µ)G(µ)

∣∣∣∣ = 1∣∣∣sin(µ 1
2 )
∣∣∣
∣∣∣∣∣O(µ− 1

2 )e−µ+b2+O(µ− 1
2 ) +O(µ−1)eO(µ− 1

2 )

e−µ+b2 − 1

∣∣∣∣∣ ≤ C

|µ|
1
2

1∣∣∣sin(µ 1
2 )
∣∣∣
∣∣∣e−µ+b2

∣∣∣+ 1∣∣e−µ+b2 − 1
∣∣ ,

∣∣∣∣I2(µ)G(µ)

∣∣∣∣ =
∣∣∣∣∣cos(µ

1
2 )

sin(µ
1
2 )

∣∣∣∣∣
∣∣∣O(µ− 1

2 )e−µ+b2+O(µ− 1
2 ) +O(µ− 1

2 )eO(µ− 1
2 )
∣∣∣∣∣e−µ+b2 − 1

∣∣ ≤ C

|µ|
1
2

∣∣∣∣∣cos(µ
1
2 )

sin(µ
1
2 )

∣∣∣∣∣
∣∣∣e−µ+b2

∣∣∣+ 1∣∣e−µ+b2 − 1
∣∣ ,

and ∣∣∣∣I3(µ)G(µ)

∣∣∣∣ ≤ C

|µ|
3
2

1∣∣∣sin(µ 1
2 )
∣∣∣
∣∣∣e−µ+b2+ 1

2

∣∣∣+ 1∣∣e−µ+b2 − 1
∣∣ .

On ∂Sk,
∣∣∣cos(µ 1

2 )
∣∣∣ and ∣∣∣sin(µ 1

2 )
∣∣∣ has both lower and upper bounds and

∣∣∣e−µ+b2
∣∣∣+1

|e−µ+b2−1| ,
∣∣∣e−µ+b2+ 1

2

∣∣∣+1

|e−µ+b2−1| are

bounded. Therefore, for each j = 1, 2, 3, we have∣∣∣∣Ij(µ)G(µ)

∣∣∣∣→ 0, for µ ∈ ∂Sk such that Im(µ) → +∞.

Thus, combining the above two cases, we conclude that there exists some k0 ∈ N∗ sufficiently large, such
that

(8.21) |F (µ)−G(µ)| < |G(µ)| , ∀µ ∈ ∂Rk ∪ ∂Sk and for large k.

Since any two regions Rk and Rl are disjoint for k ̸= l and in each region Rk, there is exactly one root
of G (more precisely, the square-root of µ), the same is true for the function F , thanks to the Rouche’s
theorem. Similar phenomenon holds true in the region Sk. To be more precise, we have the following.

On the region Rk: parabolic part. For k ≥ k0, the function F has a unique root in Rk of the
form

µ
1
2

k = (kπ + ck) + idk,

with |ck| , |dk| ≤ π
2 . Therefore, the first set of eigenvalues are given by

(8.22) λpk := −µk := −k2π2 − 2ckkπ − 2idkkπ − (c2k − d2k)− 2ickdk, ∀k ≥ k0.

On the region Sk: hyperbolic part. On the other hand, for |k| ≥ k0, the function F has a unique
root in Sk of the form

µ̃k = b2 + α1,k + i(2kπ + α2,k),

with |α1,k| , |α2,k| ≤ π
2 .

Therefore, the second set of eigenvalues are given by

(8.23) λhk := −µ̃k := −b2 − α1,k − i(2kπ + α2,k), ∀|k| ≥ k0.

This indeed proves the results (3.2a) and (3.2b) of our Lemma 3.2.

8.2. Computing the eigenfunctions for large frequencies. From the set of equations (8.13), one
can obtain the following values of C1, C2, C3

C1 = em2 − em3 ,

C2 = em3 − em1 ,

C3 = em1 − em2 .

(8.24)

Note that C1, C2 and C3 cannot be simultaneously zero for large |µ|. Once we have that, one can easily
obtain the function η(x), defined by (8.12),

η(x) = (em2 − em3)em1x + (em3 − em1)em2x + (em1 − em2)em3x, ∀x ∈ (0, 1).(8.25)

We now compute the first and second derivatives of η which will let us obtain the other component ξ of
the set of equations (8.1). We see

η′(x) = m1(e
m2 − em3)em1x +m2(e

m3 − em1)em2x +m3(e
m1 − em2)em3x,

η′′(x) = m2
1(e

m2 − em3)em1x +m2
2(e

m3 − em1)em2x +m2
3(e

m1 − em2)em3x.
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Now, from equation (8.1), one can obtain

η′′(x) + (1− b2)η′(x) + bλξ(x) = λη(x),

and therefore, (writing µ = −λ)

ξ(x) =
η′′(x) + (1− b2)η′(x) + µη(x)

bµ
(8.26)

=
(m2

1 + (1− b2)m1 + µ

bµ

)
(em2 − em3)em1x +

(m2
2 + (1− b2)m2 + µ

bµ

)
(em3 − em1)em2x

+
(m2

3 + (1− b2)m3 + µ

bµ

)
(em1 − em2)em3x.

Set of eigenfunctions associated with λpk. For the set of eigenvalues {λpk}k≥k0
given by (8.22), we

denote the eigenfunctions by Φλp
k
, ∀k ≥ k0, where we shall use the notation

Φλp
k
(x) =

(
ξλp

k
(x)

ηλp
k
(x)

)
, ∀k ≥ k0.(8.27)

Computing ηλp
k
. Let us recall the values of m1, m2 and m3 from (8.11) and observe that O(µ

−1/2
k ) =

O(k−1). In what follows, we have their explicit expressions for all k ≥ k0 large enough, given by
m1 = −k2π2 − 2ckkπ − 2idkkπ +O(1),

m2 = −1

2
+ dk − i(kπ + ck) +O(k−1),

m3 = −1

2
− dk + i(kπ + ck) +O(k−1).

(8.28)

where we have used the expression of µ = µk from (8.22).
Recall the values of m1, m2, m3, given by (8.28) and from the expression (8.25), we get that

ηλp
k
(x) =

(
e−

1
2+dk−i(kπ+ck)+O(k−1) − e−

1
2−dk+i(kπ+ck)+O(k−1)

)
ex(−k2π2−2ckkπ−2idkkπ+O(1))(8.29)

+
(
e−

1
2−dk+i(kπ+ck)+O(k−1) − e−k2π2−2ckkπ−2idkkπ+O(1)

)
ex(−i(kπ+ck)− 1

2+dk+O(k−1))

+
(
e−k2π2−2ckkπ−2idkkπ+O(1) − e−

1
2+dk−i(kπ+ck)+O(k−1)

)
ex(i(kπ+ck)− 1

2−dk+O(k−1)),

for all x ∈ (0, 1) and for all k ≥ k0 large enough.

Computing ξλp
k
. By using the values of m1,m2,m3 from (8.28), we have

m2
1 = k4π4 + 4ckk

3π3 + 4idkk
3π3 +O(k2),

m2
2 = −k2π2 − 2ckkπ + ikπ − 2idkkπ +O(1),

m2
3 = −k2π2 − 2ckkπ − ikπ − 2idkkπ +O(1),

for all k ≥ k0 large enough.
Also recall that, µk = −λpk = k2π2 + 2ckkπ + 2idkkπ +O(1), using which we find

m2
1 + (1− b2)m1 + µk

bµk
=

1

b
k2π2 +O(k),(8.30)

m2
2 + (1− b2)m2 + µk

bµk
=

ib

kπ
+O(k−2),(8.31)

m2
3 + (1− b2)m3 + µk

bµk
= − ib

kπ
+O(k−2),(8.32)

for all k ≥ k0 large enough.
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Now, by using the quantities (8.30), (8.31) and (8.32) in the expression (8.26), we obtain

(8.33) ξλp
k
(x) =

(
k2π2

b
+O(k)

)(
e−i(kπ+ck)− 1

2+dk+O(k−1) − ei(kπ+ck)− 1
2−dk+O(k−1)

)
× ex(−k2π2−2ckkπ−2idkkπ+O(1))

+

(
ib

kπ
+O(

1

k2
)

)(
ei(kπ+ck)+O(k−1)− 1

2−dk − e−k2π2−2ckkπ−2idkkπ+O(1)
)
ex(−i(kπ+ck)− 1

2+dk+O(k−1))

−
(
ib

kπ
+O(

1

k2
)

)(
e−k2π2−2ckkπ−2idkkπ+O(1) − e−i(kπ+ck)− 1

2+dk+O(k−1)
)
ex(i(kπ+ck)− 1

2−dk+O(k−1)).

Set of eigenfunctions associated with λhk. For the set of eigenvalues {λhk}|k|≥k0
given by (8.23), we

denote the eigenfunctions by Φλh
k
, where we shall use the notation

Φλh
k
(x) =

(
ξλh

k
(x)

ηλh
k
(x)

)
, ∀|k| ≥ k0.(8.34)

Computing ηλh
k
. Recall that µ̃k = −λhk = b2 + α1,k + i(2kπ + α2,k), for all |k| ≥ k0, so that we get

µ̃
1/2
k =

√
|kπ|+ i sgn(k)

√
|kπ|+O(|k|− 1

2 ), ∀|k| ≥ k0,(8.35)

(the sign function sgn has been defined by (3.12)).
Then, using the characteristic roots m1,m2,m3, given by (8.11), we get that

m1 = −α1,k − i(2kπ + α2,k) +O(|k|−1),

m2 = −1

2
+ sgn(k)

√
|kπ| − i

√
|kπ|+O(|k|− 1

2 ),

m3 = −1

2
− sgn(k)

√
|kπ|+ i

√
|kπ|+O(|k|− 1

2 ),

(8.36)

for all |k| ≥ k0 large enough.
Using the above information, we now write the expression of ηλh

k
(x) (we take the formulation after

dividing by kπe

√
|kπ|+ 1√

|k| ), given by

ηλh
k
(x) =

1

kπe

√
|kπ|+ 1√

|k|

(
esgn(k)

√
|kπ|− 1

2−i
√

|kπ|+O(|k|−
1
2 ) − e− sgn(k)

√
|kπ|− 1

2+i
√

|kπ|+O(|k|−
1
2 )

)
(8.37)

× e−x(α1,k+i(2kπ+α2,k)+O(|k|−1))

+
1

kπe

√
|kπ|+ 1√

|k|

(
e− sgn(k)

√
|kπ|− 1

2+i
√

|kπ|+O(|k|−
1
2 ) − e−α1,k−i(2kπ+α2,k)+O(|k|−1)

)
× e

x
(
sgn(k)

√
|kπ|− 1

2−i
√

|kπ|+O(|k|−
1
2 )

)

+
1

kπe

√
|kπ|+ 1√

|k|

(
e−α1,k−i(2kπ+α2,k)+O(|k|−1) − esgn(k)

√
|kπ|− 1

2−i
√

|kπ|+O(|k|−
1
2 )

)
× e

x
(
− sgn(k)

√
|kπ|− 1

2+i
√

|kπ|+O(|k|−
1
2 )

)
,

for all x ∈ (0, 1) and for all |k| ≥ k0.

Computing ξλh
k
. By using the values of m1,m2,m3 from (8.36), we calculate the following quantities

for all |k| ≥ k0 large enough, namely
m2

1 = −4k2π2 + 4ikπα1,k +O(k),

m2
2 = − sgn(k)

√
|kπ| − 2i sgn(k)|kπ|+ i

√
|kπ|+O(1),

m2
3 = sgn(k)

√
|kπ| − 2i sgn(k)|kπ| − i

√
|kπ|+O(1).
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Next, we compute the following: for all |k| ≥ k0 large enough,

m2
1 + (1− b2)m1 + µ̃k

bµ̃k
= −α1,k

b
+

2ikπ

b
+O(1),(8.38)

m2
2 + (1− b2)m2 + µ̃k

bµ̃k
= sgn(k)

b

2
√

|kπ|
+

ib

2
√

|kπ|
+O

( 1

|k|

)
,(8.39)

m2
3 + (1− b2)m3 + µ̃k

bµ̃k
= − sgn(k)

b

2
√
|kπ|

− ib

2
√
|kπ|

+O
( 1

|k|

)
.(8.40)

Using the quantities (8.38), (8.39) and (8.40) in the expression (8.26), we obtain the component ξλh
k
(x),

for all |k| ≥ k0 (upon a division by kπe

√
|kπ|+ 1√

|k| ),

(8.41) ξλh
k
(x) =

(
esgn(k)

√
|kπ|− 1

2−i
√

|kπ|+O(|k|−
1
2 ) − e− sgn(k)

√
|kπ|− 1

2+i
√

|kπ|+O(|k|−
1
2 )

)
× (−α1,k + 2ikπ +O(1))

bkπe

√
|kπ|+ 1√

|k|

× e−x(α1,k+i(2kπ+α2,k)+O(|k|−1))

+

(
e− sgn(k)

√
|kπ|− 1

2+i
√

|kπ|+O(|k|−
1
2 ) − e−α1,k−i(2kπ+α2,k)+O(|k|−1)

)
× 1

kπe

√
|kπ|+ 1√

|k|

(
sgn(k)

b

2
√
|kπ|

+
ib

2
√
|kπ|

+O
( 1

|k|

))
× e

x
(
sgn(k)

√
|kπ|− 1

2−i
√

|kπ|+O(|k|−
1
2 )

)

+

(
e−α1,k−i(2kπ+α2,k)+O(|k|−1) − esgn(k)

√
|kπ|− 1

2−i
√

|kπ|+O(|k|−
1
2 )

)
× 1

kπe

√
|kπ|+ 1√

|k|

(
− sgn(k)

b

2
√
|kπ|

− ib

2
√

|kπ|
+O

( 1

|k|

))
× e

x
(
− sgn(k)

√
|kπ|− 1

2+i
√

|kπ|+O(|k|−
1
2 )

)
,

We can now prove the last part of Lemma 3.2.

8.3. Proof of Lemma 3.2. We have already proved the existence of eigenvalues {λpk}k≥k0 (parabolic

part) and {λhk}|k|≥k0
(hyperbolic part) by (8.22) and (8.23) respectively, which is the first part of Lemma

3.2.
It lefts to show the asymptotic properties of the sequences {ck}k≥k0 , {dk}k≥k0 and {α1,k}|k|≥k0

,
{α1,k}|k|≥k0

.

• Let us use the form of µk (i.e., of −λpk) in the eigenvalue equation (8.17). Then, for large k, it is
easy to observe that

F (µk) = 2 sin(kπ + ck + idk) +O(k−1)

= 2(−1)k sin(ck + idk) +O(k−1).

But µk is a root of F and thus

sin(ck + idk) = O(k−1), for large k ≥ k0.(8.42)

Now, since |sin(ck + idk)|2 = sin2(ck) + sinh2(dk), we can write

sin2(ck), sinh
2(dk) ≤

C

k2
, ∀k ≥ k0 large.

Therefore, |ck|2 , |dk|2 ≤ C

k2
, ∀k ≥ k0, that is to say,

ck, dk = O(k−1), for large k ≥ k0,

which gives the asymptotic formulation (3.2a) of λpk given in Lemma 3.2.

• For the hyperbolic part {λhk}|k|≥k0
, using the property ξλh

k
(0) = ξλh

k
(1) (ξλh

k
is defined by (8.41)),

we obtain that (
1− e−α1,k−i2kπ−iα2,k+O(|k|−1)

)
+O(|k|−1

) = 0,
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that is,

e−α1,k−iα2,k = 1 +O(|k|−1), for large |k| ≥ k0.(8.43)

that is, there exists a C > 0 such that∣∣e−α1,k−iα2,k
∣∣ ≤ (1 + C

|k|

)
, ∀ |k| ≥ k0 large.

As a consequence,

e−α1,k−iα2,k → 1, as |k| → +∞.

But both α1,k and {α2,k} are bounded, which implies

(8.44) α1,k, α2,k → 0, as |k| → ∞.

Since
∣∣e−α1,k−iα2,k

∣∣ = e−α1,k , we have |α1,k| ≤
C

|k|
, ∀ |k| ≥ k0 large and that is

α1,k = O(k−1), for large |k| ≥ k0.

Using the above result, we get

e−iα2,k = 1 +O(k−1), for large |k| ≥ k0.

But, one has
∣∣e−iα2,k − 1

∣∣ = 2| sin(α2,k/2)| and therefore,

|α2,k| ≤
C

|k|
, for large |k| ≥ k0.

that is, α2,k = O(|k|−1). This yields the asymptotic formulation (3.2b) of λhk given in Lemma
3.2.

Finally, we recall that the existence of lower frequencies of eigenvalues are already given in
Section 3.3.

Thus, the proof of Lemma 3.2 is complete.

8.4. Proof of Proposition 3.3–Part 1. In this portion, we shall simplify the expressions of the eigen-
functions (for large frequencies) using the properties of ck, dk, α1,k, α2,k obtained in Section 8.3.

– The parabolic part. Recall the component ξλp
k
given by (8.33). By using the condition ξλp

k
(0) =

ξλp
k
(1), one can deduce that(
e−i(kπ+ck)− 1

2+dk+O(k−1) − ei(kπ+ck)− 1
2−dk+O(k−1)

)
= O

( 1

k3

)
, for large k ≥ k0.

We further observe that (since ck, dk are of O(1/k))

ei(1−x)(kπ+ck+idk)+O(k−1) − e−i(1−x)(kπ+ck+idk)+O(k−1)

= 2i sin((1− x)(kπ + ck + idk)) +O(k−1)

∼+∞ 2i sin(kπ(1− x)) +O(k−1).

Using the above ingredients in the expressions of ηλp
k
and ξλp

k
given by (8.29) and (8.33), we

conclude that

ηλp
k
(x) = e−

1
2 (1+x) sin(kπ(1− x)) +O

(
1

k

)
,

ξλp
k
(x) =

ib

kπ
e−

1
2 (1+x) cos(kπ(1− x)) + ex(−k2π2+O(1)) ×O

(
1

k

)
+O

(
1

k2

)
,

for all x ∈ (0, 1).

– The hyperbolic part. For the hyperbolic part, we simply use the fact: α1,k = O(|k|−1
), α2,k =

O(|k|−1
) in the expressions (8.37) and (8.41), to obtain the required formulations (3.10) and

(3.11).
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8.5. Proof of Lemma 3.5: bounds of the eigenfunctions. In this section, we shall give the sketch
of the estimates for ξλp

k
, ηλp

k
for k ≥ k0 and ξλh

k
, ηλh

k
for |k| ≥ k0. We use the interpolation results of

Sobolev spaces to find the (Hs
♯ (0, 1))

′ and H−s(0, 1)-norms of the eigen-components.
We present the proof for 0 < s < 1. In a similar way, one can prove the estimates for s ≥ 1.

– The parabolic part. Recall the expressions of ξλp
k
and ηλp

k
from (3.7) and (3.8) respectively. Note

that ∥∥∥ξλp
k

∥∥∥
L2(0,1)

≤ C

k
and

∥∥∥ξλp
k

∥∥∥
(H1

♯ (0,1))
′
≤ C

k2
, for k ≥ k0 large.

Therefore, using the interpolation between (H1
♯ (0, 1))

′ and L2(0, 1) spaces, we get for any 0 <

s < 1 (since −s = s× (−1) + (1− s)× 0),∥∥∥ξλp
k

∥∥∥
(Hs

♯ (0,1))
′
≤
∥∥∥ξλp

k

∥∥∥1−s

L2(0,1)

∥∥∥ξλp
k

∥∥∥s
(H1

♯ (0,1))
′
≤ C

|k|1+s , for k ≥ k0 large.

We also have∥∥∥ηλp
k

∥∥∥
L2(0,1)

≤ C and
∥∥∥ηλp

k

∥∥∥
H−1(0,1)

≤ C

k
, for k ≥ k0 large.

Thus, for any 0 < s < 1, we deduce that∥∥∥ηλp
k

∥∥∥
H−s(0,1)

≤
∥∥∥ηλp

k

∥∥∥1−s

L2(0,1)

∥∥∥ηλp
k

∥∥∥s
H−1(0,1)

≤ C

|k|s
, for k ≥ k0 large.

On the other hand, to find the lower bounds, first we observe that∥∥∥ξλp
k

∥∥∥
L2(0,1)

≥ C

k
and

∥∥∥ξλp
k

∥∥∥
H1

♯ (0,1)
≥ C, for k ≥ k0 large.

Now, using the interpolation between (Hs
♯ (0, 1))

′ for 0 < s < 1 and H1
♯ (0, 1), we obtain that (as

0 = 1
1+s × (−s) + s

1+s × 1)∥∥∥ξλp
k

∥∥∥
L2(0,1)

≤
∥∥∥ξλp

k

∥∥∥ 1
1+s

(Hs
♯ (0,1))

′

∥∥∥ξλp
k

∥∥∥ s
1+s

H1
♯ (0,1)

,

and therefore ∥∥∥ξλp
k

∥∥∥
(Hs

♯ (0,1))
′
≥
∥∥∥ξλp

k

∥∥∥1+s

L2(0,1)

∥∥∥ξλp
k

∥∥∥−s

H1
♯ (0,1)

≥ C

k1+s
,

for k ≥ k0 large enough.
Next, we have∥∥∥ηλp

k

∥∥∥
L2(0,1)

≥ C and
∥∥∥ηλp

k

∥∥∥
H1

0 (0,1)
≥ Ck, for k ≥ k0 large,

and thus, by following the similar strategy as previous, we deduce that∥∥∥ηλp
k

∥∥∥
H−s(0,1)

≥
∥∥∥ηλp

k

∥∥∥1+s

L2(0,1)

∥∥∥ηλp
k

∥∥∥−s

H1
0 (0,1)

≥ C

ks
,

for k ≥ k0 large enough.

– The hyperbolic part. The steps will be exactly same as we analysed for the parabolic part. In
this case, we have the following estimates:

C1 ≤
∥∥∥ξλh

k

∥∥∥
L2(0,1)

≤ C2,
∥∥∥ξλh

k

∥∥∥
(H1

♯ (0,1))
′
≤ C

|k|
,
∥∥∥ξλh

k

∥∥∥
H1

♯ (0,1)
≥ C |k| ,

C1

|k|
≤
∥∥∥ηλh

k

∥∥∥
L2(0,1)

≤ C2

|k|
,
∥∥∥ηλh

k

∥∥∥
H−1(0,1)

≤ C

|k|2
,
∥∥∥ηλh

k

∥∥∥
H1

0 (0,1)
≥ C,

for large enough |k| ≥ k0.
Then, by following the interpolation arguments as previous, we can determine the required

norm-estimates of ξλh
k
and ηλh

k
, that is (3.15).

This completes the proof of Lemma 3.5.
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9. Further remarks and conclusion

In the present work, we have proved the boundary null-controllability of our linearized 1D compressible
Navier-Stokes system when a control acting either on the velocity or density part. For the velocity case,

we have shown that when the initial states are chosen from the space Ḣ
1
2

♯ (0, 1) × L2(0, 1), the system

(1.4) is null-controllable at time T > 1. Moreover, for 0 ≤ s < 1
2 , the system fails to verify the null-

controllability at any T > 0 in the space Ḣs
♯ (0, 1) × L2(0, 1). Thus, the space is Ḣ

1
2

♯ (0, 1) × L2(0, 1) is

optimal w.r.t. the null-controllability of the system (1.4).

For the density case, we can even allow the L̇2(0, 1)× L2(0, 1) initial states for the systems (1.5) and
(1.6) to be null-controllable at time T > 1. We further proved that for small time, that is when 0 < T < 1,
the system (1.5) is no more null-controllable in the space L2(0, 1)× L2(0, 1).

In view of the above discussion, one immediate open question is the (non) null-controllability of the
velocity case (the system (1.4)) or the full Dirichlet density case (system (1.6)) in small time 0 < T < 1.
We also cannot conclude the (non) null-controllability of the systems (1.4), (1.5) or (1.6) at the optimal
time T = 1.

Let us make some final remarks related to our work.

• Backward uniqueness and approximate controllability. The backward uniqueness prop-
erty tells that when the solution of a system (without any control) vanishes at some time T > 0,
then it is identically zero at all time. This property plays an important role in the context of
unique continuation and controllability.

In this regard, we mention that the backward uniqueness is well-known for the cases when the
associated operator forms a C0-group (hyperbolic case), for instance the system

ρt + ρx = 0, in (0, T )× (0, 1),

ρ(t, 0) = ρ(t, 1), t ∈ (0, T ),

ρ(0, x) = ρ0(x), x ∈ (0, 1),

or an analytic semigroup (parabolic case), for instance the system
ut − uxx = 0, in (0, T )× (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, 1).

Let us come to our problem. Consider the following system without any control input,

ρt + ρx + bux = 0 in (0, T )× (0, 1),

ut − uxx + ux + bρx = 0 in (0, T )× (0, 1),

ρ(t, 0) = ρ(t, 1) for t ∈ (0, T ),

u(t, 0) = 0, u(t, 1) = 0 for t ∈ (0, T ),

ρ(0, x) = ρ0(x), u(0, x) = u0(x) for x ∈ (0, 1).

(9.1)

Since the system (9.1) is of mixed nature (coupling between parabolic and hyperbolic compo-
nents), the backward uniqueness question is interesting from the mathematical point of view.
In fact, it has been indicated in [4, 5] by Avalos and Triggiani, and in [41] by Lasiecka, Re-
nardy and Triggiani, that the backward uniqueness property is a delicate issue for the coupled
parabolic-hyperbolic systems.

But in our case, the advantage is that the (generalized) eigenfunctions of the operator A forms
a Riesz basis in L2(0, 1) × L2(0, 1) (see Remark 3.8). Also, we have that (A,D(A)) defines a
strongly continuous semigroup in L2(0, 1) × L2(0, 1). As a result, we have the following: if the
solution (ρ, u) to the system (9.1) satisfies

ρ(T, ·) = u(T, ·) = 0 in (0, 1),

then we necessarily have

ρ0 = u0 = 0, in (0, 1), i.e., ρ(t, x) = u(t, x) = 0 in (0, T )× (0, 1).
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The above backward uniqueness property of (9.1), that is the free system of (1.4) (resp. (1.5)),
together with the null-controllability of (1.4) (resp. (1.5)), we deduce the approximate control-

lability of the system (1.4) (resp. (1.5)) at time T > 1 in the space Ḣ
1
2

♯ (0, 1) × L2(0, 1) (resp.

L̇2(0, 1)× L2(0, 1)).

Finally, the approximate controllability of the system (1.6) at time T > 1 in the space L̇2(0, 1)×
L2(0, 1) follows from the null-controllability result Theorem 1.6 and the backward uniqueness of
the free system associated to (1.6) (as proved by Renardy in [51]).

• Growth bound of the semigroup and a stability result when (ρ0, u0) ∈ L̇2(0, 1)×L2(0, 1).
Recall the space

L̇2(0, 1) :=
{
ϕ ∈ L2(0, 1) :

∫ 1

0

ϕ = 0
}
.

We shall point out some stability result associated with the system (9.1) (that is, without any

control) when the initial data (ρ0, u0) ∈ L̇2(0, 1)× L2(0, 1).
In this case, the operator A with its formal expression (1.7) has the domain

D(A) =
{
Φ = (ξ, η) ∈ Ḣ1(0, 1)×H2(0, 1) : ξ(0) = ξ(1), η(0) = η(1) = 0

}
,(9.2)

where Ḣ1(0, 1) contains all the functions in H1(0, 1) with mean zero. Similarly, A∗ has its formal
expression as (1.9) with the same domain D(A∗) = D(A) as of (9.2).

It is enough to obtain the growth bound of the semigroup {S∗(t)}t≥0 generated by (A∗,D(A∗))
in L2(0, 1) × L2(0, 1). Then, using the fact ∥S(t)∥ = ∥S∗(t)∥ we can deduce the growth of the
semigroup {S(t)}t≥0 generated by (A,D(A)) (in L2(0, 1)× L2(0, 1)).

We first ensure that λ = 0 cannot be an eigenvalue of A∗ (or A) with the domain (9.2). If
yes, then the associated eigenfunction will be (1, 0), but this is not possible since (1, 0) /∈ D(A∗).
Also, observe that the first component of the eigenfunction of A∗ (or A) corresponding to any
eigenvalue has mean zero (in the light of Remark 8.1). As a consequence, in this case we can
prove that the set of eigenfunctions of A∗ (or A) with the domain given by (9.2) forms a Riesz

basis for L̇2(0, 1) × L2(0, 1) (using Theorem 3.6). So, (A∗,D(A∗)) (or (A,D(A))) is indeed a
Riesz-spectral operator since there is no accumulation point of the set of eigenvalues of A∗ (or
A), see the book of Curtain and Zwart [24, Chapter 3].

Now in one hand, since λ ̸= 0, all the eigenvalues of A∗ with domain (9.2) have negative real
parts (see (8.5)), i.e.,

Re(λ) < 0, ∀λ ∈ σ(A∗).

On the other hand, thanks to Lemma 3.2, the set of parabolic and hyperbolic branches of the
eigenvalues of A∗ with domain (9.2) have the following asymptotics properties:

λpk = −k2π2 +O(1), for large k ≥ k0,

λhk = −b2 − 2ikπ +O(|k|−1), for large |k| ≥ k0.

Thus, there exists some ω0 ∈ [−b2, 0) such that

ω0 = sup
{
Re(λ) : λ ∈ σ(A)

}
< 0.

Now recall that (A∗,D(A∗)) is a Riesz-spectral operator and so the semigroup {S∗(t)}t≥0 gener-
ated by (A∗,D(A∗)) has the following growth

∥S∗(t)∥ ≤ Ceω0t, ∀t ≥ 0.

But, ∥S(t)∥ = ∥S∗(t)∥ and therefore

∥S(t)∥ ≤ Ceω0t, ∀t ≥ 0.

with −b2 ≤ ω0 < 0, which gives the exponential stability of the system (9.1) with initial data

(ρ0, u0) ∈ L̇2(0, 1)× L2(0, 1).

• Characterization of the coefficient b. We have proved the null-controllability of linearized
compressible Navier-Stokes systems (1.4), (1.5) and (1.6) at a large time provided the coefficient
b is small, in particular b4 + 8b2 + 5 < 4π2. This condition ensures that all the eigenvalues
of A∗ has geometric multiplicity 1, thanks to Proposition 3.1-Part (iv). However, this is not a
necessary condition for achieving null-controllability of the systems (1.4), (1.5) and (1.6). To
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be more precise, characterization of all b > 0 such that the systems (1.4), (1.5) and (1.6) are
null-controllable at a large time is not obtained and it is a very difficult problem due to the
complicated cubic polynomial (4.7). Equivalently, one can say that finding all b > 0 such that all
the eigenvalues of A∗ are geometrically simple is unknown.

• A Dirichlet-Dirichlet system with control on velocity. Recall that, when we exerted a
Dirichlet boundary control on velocity, we have considered the condition ρ(t, 0) = ρ(t, 1) for the
density part. It would be really interesting to deal with the full Dirichlet case when a control q
acts on the velocity, that is the following system

ρt + ρx + bux = 0 in (0, T )× (0, 1),

ut − uxx + ux + bρx = 0 in (0, T )× (0, 1),

ρ(t, 0) = 0 for t ∈ (0, T ),

u(t, 0) = 0, u(t, 1) = q(t) for t ∈ (0, T ),

ρ(0, x) = ρ0(x), u(0, x) = u0(x) for x ∈ (0, 1).

(9.3)

This is really a challenging open problem to handle because of the difficulty in analyzing the
spectral properties of the associated adjoint operator. This can be considered as a future work.

Appendix A. Proof of the well-posedness results

This section is devoted to prove the well-posedness of the solution to our control system (1.5). More
precisely, we shall prove Lemma 2.1 and Theorem 2.6.

A.1. Existence of semigroup: proof of Lemma 2.1. The proof is divided into several parts. Recall
the operator (A,D(A)) given by (1.7)–(1.8) and denote Z = L2(0, 1)× L2(0, 1) over the field C.

Part 1. The operator A is dissipative. We check that, all U = (ρ, u) ∈ D(A)

Re ⟨AU,U⟩Z = Re

〈(
−ρx − bux

−bρx + uxx − ux

)
,

(
ρ

u

)〉
Z

= Re

(
−
∫ 1

0

ρ̄ρxdx− b

∫ 1

0

ρ̄uxdx− b

∫ 1

0

ρxūdx+

∫ 1

0

ūuxxdx−
∫ 1

0

ūuxdx

)
= −1

2

∫ 1

0

d

dx
(|ρ|2)dx−

∫ 1

0

ūxuxdx− 1

2

∫ 1

0

d

dx
(|u|2)dx

= −
∫ 1

0

|ux|2 dx ≤ 0,

Part 2. The operator A is maximal. This is equivalent to the following. For any λ > 0 and any

(
f

g

)
∈ Z

we can find a

(
ρ

u

)
∈ D(A) such that

(A.1) (λI −A)

(
ρ

u

)
=

(
f

g

)
that is

λρ+ ρx + bux = f,

λu+ bρx − uxx + ux = g.

Let ε > 0. Instead of solving the above problem, we will solve the following regularized problem

(A.2)
λρ+ ρx + bux − ερxx = f,

λu+ bρx + ux − uxx = g,

with the following boundary conditions

ρ(0) = ρ(1), ρx(0) = ρx(1), u(0) = 0, u(1) = 0.

We now proceed through the following steps.
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Step 1. We consider the space V , given by

V =
{
(ρ, u) ∈ H1(0, 1)×H1(0, 1) : ρ(0) = ρ(1), u(0) = 0, u(1) = 0

}
.

Using Lax-Milgram theorem, we first prove that the system (A.2) has a unique solution in V . Define the
operator B : V × V → C by

B

((
ρ

u

)
,

(
σ

v

))
= ε

∫ 1

0

ρxσ̄xdx+ b

∫ 1

0

uxσ̄dx+

∫ 1

0

ρxσ̄dx+ λ

∫ 1

0

ρσ̄dx

+

∫ 1

0

uxv̄xdx+

∫ 1

0

uxv̄dx+ b

∫ 1

0

ρxv̄dx+ λ

∫ 1

0

uv̄dx,

for all

(
ρ

u

)
,

(
σ

v

)
∈ V . Then, one can show that B is continuous and coercive. Thus, by Lax-Milgram

theorem, for every ε > 0, there exists a unique solution (ρε, uε) ∈ V such that

B

((
ρε

uε

)
,

(
σ

v

))
= F

((
σ

v

))
, ∀

(
σ

v

)
∈ V,

where F : V → C is the linear functional given by

F

((
σ

v

))
:=

∫ 1

0

fσ̄dx+

∫ 1

0

gv̄dx.

Step 2. Now, observe that

Re

(
B

((
ρε

uε

)
,

(
ρε

uε

)))
≤
∫ 1

0

|fρε|+
∫ 1

0

|guε| ≤ 1

2

∫ 1

0

(
|f |2 + |ρε|2

)
+

1

2

∫ 1

0

(
|g|2 + |uε|2

)
,

which yields

ε

∫ 1

0

|ρεx|
2
+
λ

2

∫ 1

0

|ρε|2 +
∫ 1

0

|uεx|
2
+
λ

2

∫ 1

0

|uε|2 ≤ 1

2

∫ 1

0

|f |2 + 1

2

∫ 1

0

|g|2

This shows that (uε)ε≥0 is bounded in H1(0, 1), (ρε)ε≥0 is bounded in L2(0, 1) and (
√
ερεx)ε≥0 is bounded

in L2(0, 1). Since the spaces H1(0, 1) and L2(0, 1) are reflexive, there exist subsequences, still denoted
by (uε)ε≥0, (ρ

ε)ε≥0, and functions ρ ∈ L2(0, 1) and u ∈ H1(0, 1), such that

uε ⇀ u in H1(0, 1), and ρε ⇀ ρ in L2(0, 1).

Furthermore, we have ∫ 1

0

|ερεx|
2
= ε

∫ 1

0

∣∣√ερε∣∣2 → 0, as ε→ 0.

Now, since B

((
ρε

uε

)
,

(
σ

v

))
= F

((
σ

v

))
, for all

(
σ

v

)
∈ V , we may take

(
σ

0

)
∈ V , so that we obtain

(A.3) ε

∫ 1

0

ρεxσ̄x + b

∫ 1

0

uεxσ̄ +

∫ 1

0

ρεxσ̄ + λ

∫ 1

0

ρεσ̄ =

∫ 1

0

fσ̄.

Similarly, by taking

(
0

v

)
∈ V , we get

(A.4)

∫ 1

0

uεxv̄x +

∫ 1

0

uεxv̄ + b

∫ 1

0

ρεxv̄ + λ

∫ 1

0

uεv̄ =

∫ 1

0

gv̄.

Integrating by parts, we get from equation (A.3) that,

ε

∫ 1

0

ρεxσ̄x + b

∫ 1

0

uεxσ̄ −
∫ 1

0

ρεσ̄x + λ

∫ 1

0

ρεσ̄ =

∫ 1

0

fσ̄.

Then, passing to the limit ε→ 0, we obtain

b

∫ 1

0

uxσ̄ −
∫ 1

0

ρσ̄x + λ

∫ 1

0

ρσ̄ =

∫ 1

0

fσ̄,
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and the above relation is true ∀σ ∈ C∞
c (0, 1). As a consequence,

(A.5) bux + ρx + λρ = f,

in the sense of distribution and therefore ρx = f − bux − λρ ∈ L2(0, 1); in other words, ρ ∈ H1(0, 1).

Step 3. We now show u(0) = u(1) = 0. Since the inclusion map i : H1(0, 1) → C0([0, 1]) is compact
and uε ⇀ u in H1(0, 1), we obtain

uε → u in C0([0, 1]).

Thus, (uε(0), uε(1)) → (u(0), u(1)). Since uε(0) = uε(1) = 0 for all ε > 0, we have

u(0) = u(1) = 0.

Similarly from the identity (A.4), one can deduce that

(A.6) −uxx + ux + bρx + λu = g,

in the sense of distribution and therefore uxx ∈ L2(0, 1), that is u ∈ H2(0, 1).
We now show ρ(0) = ρ(1). Recall that, bux + ρx + λρ = f and therefore

b

∫ 1

0

uxσ̄ +

∫ 1

0

ρxσ̄ + λ

∫ 1

0

ρσ̄ =

∫ 1

0

fσ̄.

Integrating by parts, we get

(A.7) b

∫ 1

0

uxσ̄ −
∫ 1

0

ρσ̄x + ρσ̄|10 + λ

∫ 1

0

ρσ̄ =

∫ 1

0

fσ̄.

From (A.3), we deduce

(A.8) ε

∫ 1

0

ρεxσ̄x + b

∫ 1

0

uεxσ̄ −
∫ 1

0

ρεσ̄x + λ

∫ 1

0

ρεσ̄ =

∫ 1

0

fσ̄.

Taking ε→ 0, we get

(A.9) b

∫ 1

0

uxσ̄ −
∫ 1

0

ρσ̄x + λ

∫ 1

0

ρσ̄ =

∫ 1

0

fσ̄.

Comparing (A.7) and (A.9), one has ρ(0)σ̄(0) = ρ(1)σ̄(1). But σ(0) = σ(1), and thus

ρ(0) = ρ(1).

So, we get

(
ρ

u

)
∈ D(A). Hence, the operator A is maximal.

A.2. Solution by transposition: proof of Theorem 2.6. In this section, we are going to proof the
existence of solution to our control problem (1.5), more precisely Theorem 2.6. We omit the proof for
Theorem 2.5, when a control acts on the velocity part.

Step 1. We first consider system (1.5) with zero initial data and nonhomogeneous boundary conditions,
that is, 

ρt + ρx + bux = 0 in (0, T )× (0, 1),

ut − uxx + ux + bρx = 0 in (0, T )× (0, 1),

ρ(t, 0) = ρ(t, 1) + p(t) for t ∈ (0, T ),

u(t, 0) = 0, u(t, 1) = 0 for t ∈ (0, T ),

ρ(0, x) = u(0, x) = 0 for x ∈ (0, 1),

(A.10)

with p ∈ L2(0, T ).
We now prove the existence of solution to the new system (A.10).

Theorem A.1. For a given p ∈ L2(0, T ), the system (A.10) has a unique solution (ρ̃, ũ) belonging to the
space L2(0, T ;L2(0, 1))× L2(0, T ;L2(0, 1)) in the sense of transposition. Moreover, the operator:

p 7→ (ρ̃, ũ),

is linear and continuous from L2(0, T ) into L2(0, T ;L2(0, 1))× L2(0, T ;L2(0, 1)).
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Proof. Existence: Let us define a map Λ1 : L2(0, T ;L2(0, 1))× L2(0, T ;L2(0, 1)) → L2(0, T ),

(A.11) Λ1(f, g) = σ(t, 1),

where (σ, v) is the unique solution to the adjoint system (2.1) with given source term (f, g) and (σT , vT ) =
(0, 0). The map Λ1 is well-defined because of the hidden regularity as mentioned in Appendix B, Corollary
B.2.

Now, thanks to Proposition 2.3, the map

(f, g) 7→ (σ, v)

is linear and continuous from L2(0, T ;L2(0, 1))×L2(0, T ;L2(0, 1)) to L2(0, T ;L2(0, 1))×L2(0, T ;H1
0 (0, 1)),

which implies that the map Λ1 given by (A.11) is linear and continuous (Corollary B.2).
So, we can define the adjoint to Λ1 as follows

(A.12) Λ∗
1 : L2(0, T ) → L2(0, T ;L2(0, 1))× L2(0, T ;L2(0, 1)),

which is also linear and continuous.
Let us denote Λ∗

1(p) = (ρ̃, ũ). Then, for (ρ̃, ũ), we have∫ T

0

∫ 1

0

ρ̃(t, x)f(t, x)dxdt+

∫ T

0

∫ 1

0

ũ(t, x)g(t, x)dxdt = ⟨Λ∗
1p, (f, g)⟩

= ⟨p,Λ1(f, g)⟩

=

∫ T

0

p(t)σ(t, 1)dt,

for every (f, g) in L2(0, T ;L2(0, 1))×L2(0, T ;L2(0, 1)). Hence for any p ∈ L2(0, T ), (ρ̃, ũ) is the solution
to the system (A.10) in the sense of transposition and

(A.13)
∥(ρ̃, ũ)∥L2(L2)×L2(L2) = ∥Λ∗

1(p)∥L2(L2)×L2(L2)

≤ ∥Λ∗
1∥ ∥p∥L2(0,T ).

Uniqueness: If p = 0 on (0, T ), we have∫ T

0

∫ 1

0

ρ(t, x)f(t, x)dxdt+

∫ T

0

∫ 1

0

u(t, x)g(t, x)dxdt = 0,

for all (f, g) ∈ L2(0, T ;L2(0, 1))×L2(0, T ;L2(0, 1)), which gives (ρ, u) = (0, 0) and therefore the solution
to the system (A.10) is unique. □

Step 2. We now consider the system (1.5) with non-zero initial data and homogeneous boundary condi-
tions and check the existence, uniqueness of solution. The system reads as

ρt + ρx + bux = 0 in (0, T )× (0, 1),

ut − uxx + ux + bρx = 0 in (0, T )× (0, 1),

ρ(t, 0) = ρ(t, 1) for t ∈ (0, T ),

u(t, 0) = 0, u(t, 1) = 0 for t ∈ (0, T ),

ρ(0, x) = ρ0(x), u(0, x) = u0(x) for x ∈ (0, 1),

(A.14)

with (ρ0, u0) ∈ L2(0, 1)× L2(0, 1).

Theorem A.2. For any (ρ0, u0) ∈ L2(0, 1) × L2(0, 1), the system (A.14) has a unique solution (ρ̌, ǔ)
belonging to the space L2(0, T ;L2(0, 1)) × L2(0, T ;L2(0, 1)) in the sense of transposition. Moreover, the
operator:

(ρ0, u0) 7→ (ρ̌, ǔ),

is linear and continuous from L2(0, 1)× L2(0, 1) into L2(0, T ;L2(0, 1))× L2(0, T ;L2(0, 1)).

Proof. Existence: Let us define a map Λ2 : L2(0, T ;L2(0, 1))× L2(0, T ;L2(0, 1)) → L2(0, 1)× L2(0, 1),

(A.15) Λ2(f, g) = (σ(0, ·), v(0, ·)),
where (σ, v) is the unique solution to the adjoint system (2.1) with given source term (f, g) and (σT , vT ) =
(0, 0).

Now, thanks to Proposition 2.3, the map

(f, g) 7→ (σ, v)
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is linear and continuous from L2(0, T ;L2(0, 1)) × L2(0, T ;L2(0, 1)) to the space C([0, T ];L2(0, 1)) ×
[C([0, T ];L2(0, 1)) ∩ L2(0, T ;H1

0 (0, 1))], which implies that the map Λ2 given by (A.15) is linear and
continuous.

So, we can define the adjoint to Λ2 as follows

(A.16) Λ∗
2 : L2(0, 1)× L2(0, 1) → L2(0, T ;L2(0, 1))× L2(0, T ;L2(0, 1)),

which is also linear and continuous.
Let us denote Λ∗

2(ρ0, u0) = (ρ̌, ǔ). Then, for (ρ̌, ǔ), we have∫ T

0

∫ 1

0

ρ̌(t, x)f(t, x)dxdt+

∫ T

0

∫ 1

0

ǔ(t, x)g(t, x)dxdt = ⟨Λ∗
2(ρ0, u0), (f, g)⟩

= ⟨(ρ0, u0),Λ2(f, g)⟩
= ⟨(ρ0, u0), (σ(0, ·), v(0, ·))⟩ ,

for every (f, g) in L2(0, T ;L2(0, 1))×L2(0, T ;L2(0, 1)). Hence for any (ρ0, u0) ∈ L2(0, 1)×L2(0, 1), (ρ̌, ǔ)
is the solution to the system (A.10) and

(A.17)
∥(ρ̌, ǔ)∥L2(L2)×L2(L2) = ∥Λ∗

2(ρ0, u0)∥L2(L2)×L2(L2)

≤ ∥Λ∗
2∥ ∥(ρ0, u0)∥L2(0,1)×L2(0,1).

Uniqueness: Let the system (A.14) has two solutions (ρ1, u1) and (ρ2, u2). Introduce

(ρ, u) = (ρ1, u1)− (ρ2, u2).

Then one can show that the only possibility is (ρ, u) = (0, 0), using the initial and boundary conditions:
ρ(0, x) = u(0, x) = 0 for all x ∈ (0, 1) and ρ(t, 0) = ρ(t, 1), u(t, 0) = u(t, 1) = 0 for all t ∈ (0, T ). □

Proof of Theorem 2.6. We now recall the system (1.5) with given boundary data p ∈ L2(0, T ) and
initial data (ρ0, u0) ∈ L2(0, 1)× L2(0, 1). Then, thanks to Theorem A.1 & A.2,

(ρ, u) := (ρ̃, ũ) + (ρ̌, ǔ),

is the unique solution to (1.5).
It remains to prove the continuity estimate of the solution (ρ, u). LetH : L2(0, 1)×L2(0, 1)×L2(0, T ) →

L2(0, T ;L2(0, 1))× L2(0, T ;L2(0, 1)) be defined by

H(ρ0, u0, p) = (ρ, u).(A.18)

Then H is linear. Furthermore, using (A.13) and (A.17), we get

∥H(ρ0, u0, p)∥L2(0,T ;L2(0,1))×L2(0,T ;L2(0,1)) = ∥(ρ̃, ũ) + (ρ̌, ǔ)∥L2(0,T ;L2(0,1))×L2(0,T ;L2(0,1))

≤ ∥Λ∗
1∥ ∥p∥L2(0,T ) + ∥Λ∗

2∥ ∥(ρ0, u0)∥L2(0,1)×L2(0,1)

≤ C
(
∥p∥L2(0,T ) + ∥ρ0∥L2(0,1) + ∥u0∥L2(0,1)

)
.

Finally, the required regularity result (2.3)–(2.4) can be obtained by applying the usual regularity of
parabolic equation (with homogeneous boundary data) and then using that, the regularity of transport
part follows immediately.

The proof is complete. □

Appendix B. A hidden regularity result

Consider the following system

ρt + ρx + bux = 0 in (0, T )× (0, 1),

ut − uxx + ux + bρx = 0 in (0, T )× (0, 1),

ρ(t, 0) = ρ(t, 1) + p(t) for t ∈ (0, T ),

u(t, 0) = 0, u(t, 1) = 0 for t ∈ (0, T ),

ρ(0, x) = ρ0(x), u(0, x) = u0(x) for x ∈ (0, 1),

(B.1)

where (ρ0, u0) ∈ L2(0, 1)× L2(0, 1) and p ∈ L2(0, T ) are given data. Then, one has the following result.

Lemma B.1. For any (ρ0, u0) ∈ L2(0, 1) × L2(0, 1) and p ∈ L2(0, T ), the density component ρ to the
system (B.1) satisfies ρ(·, 1) ∈ L2(0, T ).
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Proof. The proof is split into two steps. First, recall Theorem 2.6 so that one has

(ρ, u) ∈ C0([0, T ];L2(0, 1))× [C0([0, T ];L2(0, 1)) ∩ L2(0, T ;H1
0 (0, 1))].

Step 1. Let us take the initial state ρ0 ∈ H1
♯ (0, 1) (i.e., ρ0 ∈ H1(0, 1) with ρ0(0) = ρ0(1)),

u0 ∈ H1
0 (0, 1) and the boundary data p ∈ H1

{0}(0, T ). Then one can prove that the solution (ρ, u)

to system (B.1) lies in the space [H1(0, T ;L2(0, 1))∩L2(0, T ;H1(0, 1))]× [L2(0, T ;H2(0, 1)∩H1
0 (0, 1))∩

H1(0, T ;L2(0, 1))], see for instance [19]. Therefore, ux ∈ L2(0, T ;H1(0, 1)) and so the integration by
parts are justified. Multiplying the first equation of (B.1) by xρ, we get∫ T

0

∫ 1

0

xρρtdxdt+

∫ T

0

∫ 1

0

xρρxdxdt+ b

∫ T

0

∫ 1

0

xρuxdxdt = 0.

Integrating by parts and using the boundary conditions, we obtain

(B.2)
1

2

∫ 1

0

x(ρ2(T, x)− ρ20(x))dx+
1

2

∫ T

0

ρ2(t, 1)dt− 1

2

∫ T

0

∫ 1

0

ρ2dxdt+ b

∫ T

0

∫ 1

0

xρuxdxdt = 0.

Therefore ∫ T

0

ρ2(t, 1)dt = −
∫ 1

0

x(ρ2(T, x)− ρ20(x))dx+

∫ T

0

∫ 1

0

ρ2dxdt− 2b

∫ T

0

∫ 1

0

xρuxdxdt

≤ (1 + b)

∫ T

0

∫ 1

0

ρ2dxdt+ b

∫ T

0

∫ 1

0

u2xdxdt+

∫ 1

0

ρ20(x)dx.

Using the continuity estimate (2.4), we obtain

(B.3)

∫ T

0

ρ2(t, 1)dt ≤ C

(∫ 1

0

ρ20(x)dx+

∫ 1

0

u20(x)dx+

∫ T

0

p2(t)dt

)
.

Step 2. Let (ρ0, u0) ∈ L2(0, 1) × L2(0, 1) and p ∈ L2(0, T ). By density, there exists sequences
ρn0 ∈ H1

♯ (0, 1), u
n
0 ∈ H1

0 (0, 1) and p
n ∈ H1

{0}(0, T ) such that ρn0 → ρ, un0 → u0 in L2(0, 1) and pn → p in

L2(0, T ). Let (ρn, un) be the solution to (B.1) corresponding to the initial state (ρn0 , u
n
0 ) and boundary

data pn. Using (B.3) from Step 1, we have∫ T

0

(ρn)2(t, 1)dt ≤ C

(∫ 1

0

(ρn0 )
2(x)dx+

∫ 1

0

(un0 )
2(x)dx+

∫ T

0

(pn)2(t)dt

)
.

We first observe that∫ 1

0

(ρn0 )
2(x)dx+

∫ 1

0

(un0 )
2(x)dx+

∫ T

0

(pn)2(t)dt→
∫ 1

0

ρ20(x)dx+

∫ 1

0

u20(x)dx+

∫ T

0

p2(t)dt,

as n→ +∞. Therefore, the sequence
(∫ T

0

(ρn)2(t, 1)dt
)
n
is indeed a Cauchy sequence and hence conver-

gent. Then, by the uniqueness of solution to (B.1), we can define

∫ T

0

ρ2(t, 1)dt := lim
n→+∞

∫ T

0

(ρn)2(t, 1)dt,

which yields ∫ T

0

ρ2(t, 1)dt ≤ C

(∫ 1

0

ρ20(x)dx+

∫ 1

0

u20(x)dx+

∫ T

0

p2(t)dt

)
.

This concludes the proof of the lemma. □

Let us now consider the following system

(B.4)



−σt − σx − bvx = f in (0, T )× (0, 1),

−vt − vxx − vx − bσx = g in (0, T )× (0, 1),

σ(t, 0) = σ(t, 1) for t ∈ (0, T ),

v(t, 0) = v(t, 1) = 0 for t ∈ (0, T ),

σ(T, x) = 0, v(T, x) = 0 for x ∈ (0, 1),

with f, g ∈ L2(0, T ;L2(0, 1)). We can similarly conclude the following result.
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Corollary B.2. For any f, g ∈ L2(0, T ;L2(0, 1)), the solution component σ to the adjoint system (B.4)
satisfies the following estimate.

(B.5) ∥σ(·, 1)∥L2(0,T ) ≤ C
(
∥f∥L2(0,T ;L2(0,1)) + ∥g∥L2(0,T ;L2(0,1))

)
.
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