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Abstract

In this thesis, we first study the controllability properties of the one dimensional linearized compressible
Navier-Stokes equations for both barotropic and non-barotropic fluids using only one boundary control.
In the barotropic case, the linearized system (around (𝑄0,𝑉0) with 𝑄0,𝑉0 > 0) consists of a transport
equation (satisfied by the density of the fluid) coupled with a parabolic equation (satisfied by the
velocity of the fluid) with first-order coupling. We consider three types of boundary conditions:

(i) Periodic, where the control acts on the density (resp. velocity) component and is given by the
difference of the values of the solution at both ends;

(ii) Dirichlet, where the control acts on the density part through Dirichlet condition at the left end;

(iii) A mixed-type, where we study two cases, one when the control acts on the density part through
the difference of the solution at both ends with homogeneous Dirichlet conditions on the velocity,
and the second when the control acts on the velocity part through Dirichlet condition at the left
end with homogeneous Dirichlet condition on density.

In all of the above cases, we have proved optimal null controllability results for the linearized system
with respect to the regularity of initial states for the velocity case and with respect to time in the
density case. More precisely, in the periodic setup, we prove null controllability of the linearized
system at time 𝑇 > 2𝜋

𝑉0
in ( ¤𝐿2(0, 2𝜋))2 (when the control is acting only on density) and in ¤𝐻1

per(0, 2𝜋) ×
¤𝐿2(0, 2𝜋) (when the control is acting only on velocity), under a necessary and sufficient condition on
the coefficients appearing in the system. Further, we prove that null controllability of the system fails
when 0 < 𝑇 < 2𝜋

𝑉0
in ( ¤𝐿2(0, 2𝜋))2 in the density case and at any 𝑇 > 0 in ¤𝐻𝑠

per(0, 2𝜋) × ¤𝐿2(0, 2𝜋) with
0 ≤ 𝑠 < 1 in the velocity case. The proofs of these controllability results are included in Chapter 3.

Whereas, in the mixed case, we prove null controllability of the linearized system at time 𝑇 > 1 in
¤𝐿2(0, 1) × 𝐿2(0, 1) (when the control is acting only on density) and in ¤𝐻1/2(0, 1) × 𝐿2(0, 1) (when the
control is acting only on velocity), under some sufficient condition on the coefficients. Moreover, null
controllability fails when 0 < 𝑇 < 1 in 𝐿2(0, 1) × 𝐿2(0, 1) in the density case and at any 𝑇 > 0 in
¤𝐻𝑠 (0, 1) × 𝐿2(0, 1) with 0 ≤ 𝑠 < 1

2 in the velocity case. As a consequence of these results, we prove
null controllability of the linearized system at time 𝑇 > 1 in ¤𝐿2(0, 1) ×𝐿2(0, 1) using a Dirichlet control
acting on density, under the same assumption on the coefficients mentioned above.

Moreover, in all of the above cases, we obtain approximate controllability of the above systems at
large time by using the null controllability and backward uniqueness property of the corresponding
systems. We have included all these controllability results in Chapter 4.

On the other hand, for non-barotropic fluids, the linearized system (around (𝑄0,𝑉0,𝜓0) with 𝑄0,𝑉0,
𝜓0 > 0) consists of a transport equation (satisfied by the density of the fluid) coupled with two
parabolic equations (satisfied by the velocity and temperature) with the first-order couplings. Here,
we consider only the periodic boundary conditions onto the system and study the null and approximate
controllability properties using only one control acting either on density, velocity or temperature. More
precisely, when the control acts only on the density part, we prove null controllability of the linearized
system at time 𝑇 > 2𝜋

𝑉0
in ( ¤𝐿2(0, 2𝜋))3 under two assumptions:
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Abstract

(i) Eigenvalues of the associated non-self-adjoint operator have geometric multiplicity 1

(ii) The (irrational) coefficients appearing in the system have a good approximation by rational
numbers (called the Diophantine approximation).

Further, in this case, we also prove that null controllability of this system fails when the time is small,
that is, when 0 < 𝑇 < 2𝜋

𝑉0
, in the space (𝐿2(0, 2𝜋))3. Also, when a boundary control acts either on

the velocity or temperature part, we prove null controllability of the linearized system at time 𝑇 > 2𝜋
𝑉0

in ¤𝐻1
per(0, 2𝜋) × ( ¤𝐿2(0, 2𝜋))2 under the same two hypotheses mentioned above. Moreover, we prove

that null controllability of these systems fails at any 𝑇 > 0 in the space ¤𝐻𝑠
per(0, 2𝜋) × ( ¤𝐿2(0, 2𝜋))2 with

0 ≤ 𝑠 < 1.

Similar to the barotropic case, we obtain approximate controllability of the above systems at large
time by using the null controllability and backward uniqueness property of the corresponding systems.
All these controllability results are included in Chapter 3.

Finally, in Chapter 5, we have considered a coupled system consisting of two nonlinear parabolic
equations with square, product and non-local nonlinearities. In the system, a Neumann boundary
control is applied to only one state while the other satisfies homogeneous Neumann boundary condition
at the left end. On the other hand, at the right end of the interval, the states are coupled in terms of
“equality condition of their normal derivatives” and a combined Robin-type condition. In this setup,
we prove small-time local null controllability of the system in the space (𝐿2(0, 1))2 by applying the so
called “source term method”.

Our proofs of null controllability results rely on the method of moments and an application of the
Ingham-type inequalities. The spectral analysis of the associated adjoint operator plays a crucial role in
this analysis and we will use this throughout the thesis. We also prove a new Ingham-type inequality
in Chapter 4, which generalizes the earlier related results available in the literature. We prove all
the controllability results presented in Chapter 3 using this newly obtained Ingham-type inequality,
whereas, in Chapters 4, we use both the method of moments and the Ingham-type inequality.

Furthermore, in Chapter 1, we give a brief overview of our main controllability results, and in
Chapter 2, we present a detailed study of the basic results on controllability including the transport,
heat and some nonlinear heat equations.
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An area of mathematics and engineering known as the control theory of partial differential equa-
tions (PDEs) focuses on the dynamical systems that are governed by PDEs. It is one of the most
interdisciplinary research area where several areas play a major role, in particular, functional analysis,
spectral theory, complex analysis, non-harmonic Fourier analysis, number theory and geometry. The
purpose of control theory is to identify control inputs that can impact the evolution of a system’s state
variables, directing them toward a desired target or trajectory. The control problem gets more difficult
when the system dynamics are characterized by PDEs due to the infinite-dimensional structure of the
underlying state space. The transport equation, the heat equation, the wave equation, the Korteweg-
de Vries (KdV) equation, and the system of thermoelasticity (wave-heat coupled system) are some
examples of such partial differential equations. We refer to [Cor07, Ros97, LZ98] for a detail study on
controllability of these equations. In this thesis, we study controllability of the linearized compressible
Navier-Stokes equations (which is a transport-heat coupled system) and a nonlinear system coupling
two parabolic equations in one dimension.

Controllability of PDEs has many applications in various fields, including aerospace engineering,
chemical processes, structural mechanics, heat transfer, medical imaging, fluid dynamics, and elec-
tromagnetics, among others. The features of the PDE system’s controllability and observability (two
important concepts in control theory) come under scrutiny in this investigation. The ability to steer
the system from any initial state to any desired final state within a finite time using a control input is
referred to as controllability and we say the system is controllable. On the other hand, observability
refers to the ability to infer the whole state of the system based on the measurements that are currently
available. In other words, we say the system is observable if the entire state can be determined by ob-
serving only the (partial) information of the output(s). These characteristics are extremely important
in evaluating whether or not a control strategy can be implemented and how successful it will be.

Controllability of systems described by PDEs involve applying control inputs either at the bound-
aries of the system or distributed throughout the spatial domain. The control input(s) applied at the
boundaries of the system is referred as “boundary control”, whereas the control input(s) acting in the
whole domain or some part of it is called “distributed/ internal control” (see the figure below). For
example, we can control the temperature of a rod by controlling only the endpoint of it, giving the
boundary controllability of the system. On the other hand, applications of distributed controllability
includes controlling the temperature of a room by applying heat sources in one/multiple places in the
room. In practical situations, both boundary and distributed control strategies have their advantages
and limitations, and the choice between them depends on factors such as the nature of the system,
the control objectives, practical considerations, and the available control resources. In many cases,
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1. Introduction

a combination of both boundary and distributed control may be used to achieve the desired control
performance effectively.

Figure 1.1: Distributed control (left) vs boundary control (right).

There are three types of controllability notions appear in a system such as exact, null and approx-
imate controllability. Exact controllability refers to the ability to steer the state of a system from any
given initial state to any given final state in finite time using control input(s). If the system can be
steered from any given initial state to the origin, then we say the system is null controllable. On the
other hand, approximate controllability means we can steer the state of a system from any given initial
state to arbitrarily close to a desired final state using control input(s), rather than reaching the exact
final state. It is easy to see that exact controllability always imply null and approximate controllability
and in the case of finite dimensional linear (time invariant) systems, all these controllability notions
are equivalent; see Section 2.2.1 for more details in this matter. However, for linear systems posed
in infinite dimension, there are equations which are null controllable but not exactly/ approximately
controllable; for example, the heat equation in bounded interval is null and approximately controllable
at any time but not exactly controllable at that time (see Section 2.4 for instance). In contrast to
this, we refer to the article [CRR12] where it has been shown that the one dimensional compressible
Navier-Stokes system linearized around (𝑄0, 0) (with 𝑄0 > 0) is approximately controllable at any time
but not null controllable by using a localized distributed control or a boundary control. Furthermore,
for the finite dimensional linear systems, controllability at some time will imply controllability at any
time, thanks to the famous Kalman rank condition. This phenomena might not necessarily true in
the infinite dimensional linear systems or even finite dimensional nonlinear systems. For example, the
transport equation posed in a bounded interval is null and approximately controllable at large time
but not in small time by using any control (boundary or distributed), see Section 2.3 for details.

In this thesis, we mainly concentrate on controllability of systems involving transport and heat
equation(s) or in some cases only heat equations, by using one boundary control. In the next chap-
ter, we will give some highlights on the controllability properties of ODEs, the transport and heat
equations, together with some important concepts (related to this thesis) such as the Riesz basis,
biorthogonal families, the method of moments and the Ingham’s inequalities. In Chapters 3 and 4,
we will focus on the linearized Navier-Stokes equations for compressible fluids (barotropic and non-
barotropic) and prove null controllability at large time in optimal spaces by using a boundary control.
In chapter 5, we deal with some nonlinear heat equations and prove small time local null controllability
using a Neumann control. Finally, we conclude the thesis with some future directions in Chapter 6
and with proofs of some well-posedness results in Appendix A.

1.1 Compressible Navier-Stokes system

The compressible Navier-Stokes system is a set of partial differential equations that models the motion
of viscous compressible fluid substances such as liquids and gases. The basic rules of mass (continuity
equation) and linear momentum conservation (Newton’s second law of motion) are utilized to derive
the Navier-Stokes equations. They convey both the balance of linear momentum and the conservation
of mass for a fluid element. Sometimes they consist of a state equation coupling pressure, temperature,
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1.1. Compressible Navier-Stokes system

and density. The compressible Navier-Stokes system is very important because they have a wide range
of practical uses, for example, they are used in modeling weather, ocean currents, water flow in a pipe
and airflow, in particular, in the design of aircraft and cars. The compressible Navier-Stokes equations
are also of great interest in a purely mathematical sense. These equations can be represented in R𝑛

as follows:

Let 𝐼 = (0, +∞) be the time interval and Ω ⊂ R𝑛 be a spatial domain. For a viscous compress-
ible, isentropic (barotropic) fluid, that is, when the pressure depends only on the density and the
temperature is constant, the Navier-Stokes system in 𝐼 × Ω consists of an equation of continuity

𝜌𝑡 (𝑡, 𝑥) + div(𝜌 (𝑡, 𝑥)𝒖 (𝑡, 𝑥)) = 0,

and the momentum equation

𝜌 (𝑡, 𝑥) [𝒖𝑡 (𝑡, 𝑥) + (𝒖 (𝑡, 𝑥) · ∇)𝒖 (𝑡, 𝑥)] + ∇𝑝 (𝑡, 𝑥) − 𝜇Δ𝒖 (𝑡, 𝑥) − (𝜆 + 𝜇)∇[div𝒖 (𝑡, 𝑥)] = 0.

Here 𝜌 := 𝜌 (𝑡, 𝑥) denotes the density of the fluid and 𝒖 := 𝒖 (𝑡, 𝑥) = (𝑢1(𝑡, 𝑥), 𝑢2(𝑡, 𝑥), . . . , 𝑢𝑛 (𝑡, 𝑥)) is
the velocity vector in R𝑛. The constants 𝜆, 𝜇 are called the viscosity coefficients that satisfy the
thermodynamic restrictions 𝜇 > 0, 𝜆 + 𝜇 ≥ 0 and the pressure 𝑝 := 𝑝 (𝑡, 𝑥) satisfies the following
constitutive equation in 𝐼 × Ω

𝑝 (𝜌) = 𝑎𝜌𝛾 , for 𝑎 > 0, 𝛾 ≥ 1.

In the case of non-barotropic fluids, that is, when the pressure is a function of both density and
temperature of the fluid, the Navier-Stokes system consists of an equation of continuity, the momentum
equation, and an additional thermal energy equation

𝑐𝜈𝜌 (𝑡, 𝑥) [𝜃𝑡 (𝑡, 𝑥) + 𝒖 (𝑡, 𝑥) · ∇𝜃 (𝑡, 𝑥)] + 𝜃 (𝑡, 𝑥)𝑝𝜃 (𝑡, 𝑥)div𝒖 (𝑡, 𝑥)

− 𝜅Δ𝜃 (𝑡, 𝑥) − 𝜆(div𝒖 (𝑡, 𝑥))2 − 2𝜇
𝑛∑︁

𝑖, 𝑗=1

1

4

[
(𝑢𝑖)𝑥 𝑗

+ (𝑢 𝑗 )𝑥𝑖
]2

= 0,

where 𝜃 is the temperature of the fluid, 𝑐𝜈 is the specific heat constant, and 𝜅 is the heat conductivity
constant. For an ideal gas, Boyles law gives the pressure 𝑝 (𝑡, 𝑥) = 𝑅𝜌 (𝑡, 𝑥)𝜃 (𝑡, 𝑥) in 𝐼 × Ω with 𝑅 as the
universal gas constant. We refer to the book by Feireisl [Fei04] for more insights on the compressible
flows; see also the books [Lio98] by Lions, [NS04] by Novotný and Straškraba, and the survey paper
[Fei18] by Feireisl.

In the first part of this thesis, we consider the linearized versions of the above systems in one
dimension. Here, we will state the associated results (both existing and the results obtained by us)
and the details will be given in subsequent chapters.

1.1.1 The barotropic case

Let 𝑇, 𝐿 > 0. The Navier-Stokes equations for compressible barotropic fluids in the interval (0, 𝐿) reads
as {

𝜌𝑡 + (𝜌𝑢)𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝜌 (𝑢𝑡 + 𝑢𝑢𝑥 ) + 𝑎𝛾𝜌𝛾−1𝜌𝑥 − (𝜆 + 2𝜇)𝑢𝑥𝑥 = 0, in (0,𝑇 ) × (0, 𝐿) .

(1.1)

This is a model for a fluid flowing in a thin tube or a narrow channel and it can be viewed as one
dimensional approximations of two or three dimensional models (see the figure below). In this thesis,
we want to study the linearized system associated to (1.1) around some steady states, but before that,
we first define the concept of steady states.

Definition 1.1.1 (Steady states). We say a function (𝜉, 𝜂) ∈ C2( [0, 𝐿] × [0, 𝐿]) is a steady state of the
system (1.1) if it satisfies the following stationary problem:{

(𝜉𝜂)𝑥 = 0, in [0, 𝐿],
𝜉𝜂𝜂𝑥 + 𝑎𝛾𝜉𝛾−1𝜉𝑥 − (𝜆 + 2𝜇)𝜂𝑥𝑥 = 0, in [0, 𝐿] .
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Figure 1.2: Water flow in a narrow channel

We refer to the article [MZ19] for the existence of a steady state of the nonlinear system (1.1).
With this definition, we note here that any constants of the form (𝑄0,𝑉0) with 𝑄0 > 0 and 𝑉0 ≥ 0 are
steady states of the system (1.1). We linearize the nonlinear system (1.1) around this constant steady
state (𝑄0,𝑉0) as follows:

The linearization of the term (𝜌𝑢)𝑥 = 𝜌𝑥𝑢+𝜌𝑢𝑥 around (𝑄0,𝑉0) is𝑉0𝜌𝑥+𝑄0𝑢𝑥 . Similarly, linearization
of the terms 𝜌 (𝑢𝑡 +𝑢𝑢𝑥 ) = 𝜌𝑢𝑡 + 𝜌𝑢𝑢𝑥 and 𝑎𝛾𝜌𝛾−1𝜌𝑥 around (𝑄0,𝑉0) are respectively 𝑄0𝑢𝑡 +𝑄0𝑉0𝑢𝑥 and
𝑎𝛾𝑄

𝛾−1
0 𝜌𝑥 . Thus, we arrive at the system

𝜌𝑡 (𝑡, 𝑥) +𝑉0𝜌𝑥 (𝑡, 𝑥) +𝑄0𝑢𝑥 (𝑡, 𝑥) = 0, in (0,𝑇 ) × (0, 𝐿),

𝑢𝑡 (𝑡, 𝑥) −
𝜆 + 2𝜇

𝑄0
𝑢𝑥𝑥 (𝑡, 𝑥) +𝑉0𝑢𝑥 (𝑡, 𝑥) + 𝑎𝛾𝑄𝛾−2

0 𝜌𝑥 (𝑡, 𝑥) = 0, in (0,𝑇 ) × (0, 𝐿).
(1.2)

To prove the existence of a unique solution (well-posedness) of the system (1.2), we need to impose
the initial and boundary conditions into the system. Let us take the initial condition as

𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), for 𝑥 ∈ (0, 𝐿) . (1.3)

Note that, the second equation of (1.2) is of parabolic types, so we can consider any one of the following
boundary conditions on 𝑢:

𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑢𝑥 (𝑡, 0) = 0, 𝑢𝑥 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝐿), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 𝐿), for 𝑡 ∈ (0,𝑇 ).

On the other hand, if 𝑉0 = 0, then the first equation is only a ODE in 𝜌 and therefore we don’t need
to consider any boundary conditions on 𝜌 in this case. However, if 𝑉0 > 0, we get a transport equation
in 𝜌 and therefore one can consider the following boundary conditions on 𝜌:{

𝜌 (𝑡, 0) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜌 (𝑡, 0) = 𝜌 (𝑡, 𝐿), for 𝑡 ∈ (0,𝑇 ) .

Together, we write the boundary conditions on 𝜌 and 𝑢 as follows:

• Control on density:

⋄ 𝜌 (𝑡, 0) = 𝜌 (𝑡, 𝐿) + 𝑝1(𝑡), 𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝐿), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 𝐿), (1.4)

⋄ 𝜌 (𝑡, 0) = 𝑝2(𝑡), 𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 0, (1.5)

⋄ 𝜌 (𝑡, 0) = 𝜌 (𝑡, 𝐿) + 𝑝3(𝑡), 𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 0, (1.6)

for 𝑡 ∈ (0,𝑇 ).

• Control on velocity:

⋄ 𝜌 (𝑡, 0) = 𝜌 (𝑡, 𝐿), 𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝐿) + 𝑞1(𝑡), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 𝐿), (1.7)

⋄ 𝜌 (𝑡, 0) = 𝜌 (𝑡, 𝐿), 𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 𝑞2(𝑡), (1.8)

for 𝑡 ∈ (0,𝑇 ).

Here 𝑝𝑖 , 𝑖 = 1, 2, 3 and 𝑞𝑖 for 𝑖 = 1, 2 are the control inputs (unknowns) belonging to some Hilbert space.

4



1.1. Compressible Navier-Stokes system

Remark 1.1.1. We note here that proving controllability of the linearized system (1.2) using a Dirich-
let boundary control 𝑞3 ∈ 𝐿2(0,𝑇 ) acting on velocity and with homogeneous Dirichlet condition on 𝜌 is
very challenging and still an open problem.

In this thesis, our first aim is to study the null and approximate controllability properties of the
linearized system (1.2) (around (𝑄0,𝑉0) with 𝑄0,𝑉0 > 0) with the initial states (1.3) and any one of
the boundary conditions (1.4)–(1.8). Before going into the details, let us first define the notions of
controllability for the system (1.2).

Definition 1.1.2. Let 𝐻 be a Hilbert space. We say the system (1.2) with initial state (1.3) and one
of the boundary conditions (1.4)–(1.8) is

• null controllable at time 𝑇 > 0 in the space 𝐻 if, for any given (𝜌0, 𝑢0) ∈ 𝐻 there exists a control
𝑝1 ∈ 𝐿2(0,𝑇 ) (resp. 𝑝2, 𝑝3, 𝑞1, 𝑞2 ∈ 𝐿2(0,𝑇 )) such that the associated solution (𝜌,𝑢) satisfies

(𝜌 (𝑇 ), 𝑢 (𝑇 )) = (0, 0) .

• approximately controllable at time 𝑇 > 0 in the space 𝐻 if, for any given (𝜌0, 𝑢0), (𝜌𝑇 , 𝑢𝑇 )
∈ 𝐻 and given 𝜖 > 0 there exists a control 𝑝1,𝜖 ∈ 𝐿2(0,𝑇 ) (resp. 𝑝2,𝜖 , 𝑝3,𝜖 , 𝑞1,𝜖 , 𝑞2,𝜖 ∈ 𝐿2(0,𝑇 )) such
that the associated solution (𝜌𝜖 , 𝑢𝜖 ) satisfies

∥(𝜌𝜖 (𝑇, ·), 𝑢𝜖 (𝑇, ·)) − (𝜌𝑇 , 𝑢𝑇 )∥𝐻 ≤ 𝜖.

Remark 1.1.2. We mention here that approximate controllability of (1.2) (around (𝑄0,𝑉0) with
𝑄0,𝑉0 > 0) with the initial states (1.3) and any one of the boundary conditions (1.4)–(1.8) follows
from null controllability due to the backward uniqueness property of the corresponding systems; see
Proposition 2.2.1. For this reason, we will concentrate only on the null controllability of these sys-
tems.

Control on density: We first consider the case when only one boundary control is acting on the
density component through the condition (1.4). More precisely, for given 𝑇 > 0, we consider the
following control problem:

𝜌𝑡 +𝑉0𝜌𝑥 +𝑄0𝑢𝑥 = 0, in (0,𝑇 ) × (0, 2𝜋),
𝑢𝑡 − 𝜇0𝑢𝑥𝑥 +𝑉0𝑢𝑥 + 𝑏𝜌𝑥 = 0, in (0,𝑇 ) × (0, 2𝜋),
𝜌 (𝑡, 0) = 𝜌 (𝑡, 2𝜋) + 𝑝1(𝑡), for 𝑡 ∈ (0,𝑇 ),
𝑢 (𝑡, 0) = 𝑢 (𝑡, 2𝜋), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 2𝜋), for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 2𝜋),

(1.9)

with 𝜇0 :=
𝜆+2𝜇
𝑄0

and 𝑏 := 𝑎𝛾𝑄
𝛾−2
0 . Here 𝑝1 is a control input (unknown) and we take 𝐿 = 2𝜋 for

simplicity. In this setup, we wish to study the null controllability properties of this system (1.9) at
given time 𝑇 > 0 in the space (𝐿2(0, 2𝜋))2. Suppose that this is true, that means for any given initial
state (𝜌0, 𝑢0) ∈ (𝐿2(0, 2𝜋))2, we can find a control 𝑝1 ∈ 𝐿2(0,𝑇 ) such that the solution (𝜌,𝑢) of (1.9)
satisfies (𝜌 (𝑇 ), 𝑢 (𝑇 )) = (0, 0). Then, integrating both equations of (1.9) in the interval (0,𝑇 ) × (0, 2𝜋),
we get a compatibility condition on the initial states∫ 2𝜋

0
𝜌0(𝑥)𝑑𝑥 = −𝑉0

∫ 𝑇

0
𝑝1(𝑡)𝑑𝑡,

∫ 2𝜋

0
𝑢0(𝑥)𝑑𝑥 = −𝑏

∫ 𝑇

0
𝑝1(𝑡)𝑑𝑡 .

Since every initial state (𝜌0, 𝑢0) in (𝐿2(0, 2𝜋))2 will not satisfy this compatibility condition, we will
work on the Hilbert space ( ¤𝐿2(0, 2𝜋))2 to avoid this difficulty, where

¤𝐿2(0, 2𝜋) :=
{
𝑓 ∈ 𝐿2(0, 2𝜋) :

∫ 2𝜋

0
𝑓 𝑑𝑥 = 0

}
.
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In this setup, there is no controllability results known in the literature. The only known results
available in the case when an interior control is acting in the density equation. More precisely, in
[BKLB20], the authors proved (distributed) null controllability of the linearized system in the space
𝐿2(0, 2𝜋) × ¤𝐿2(0, 2𝜋) at large time 𝑇 . Moreover, they also proved that null controllability fails in the
space 𝐿2(0, 2𝜋) × ¤𝐿2(0, 2𝜋) when the time is small. In the first part of this thesis, we prove similar
null controllability results of the system (1.9) using a boundary control. In addition, we derive the
necessary and sufficient conditions on the coefficients such that the system (1.9) is null controllable at
time 𝑇 , large enough.

Before writing the main results, we first define the operator (𝐴,D(𝐴)) associated to the system
(1.9) as

𝐴 :=

(
−𝑉0𝜕𝑥 −𝑄0𝜕𝑥

−𝑏𝜕𝑥 𝜇0𝜕𝑥𝑥 −𝑉0𝜕𝑥

)
(1.10)

with the domain D(𝐴) := 𝐻1
per(0, 2𝜋) × 𝐻2

per(0, 2𝜋), where we denote the Sobolev space

𝐻𝑠
per(0, 2𝜋) :=

{
𝜑 : 𝜑 (𝑥) =

∑︁
𝑛∈Z

𝑐𝑛𝑒
𝑖𝑛𝑥 , 𝑥 ∈ (0, 2𝜋), and

∑︁
𝑛∈Z

|𝑛 |2𝑠 |𝑐𝑛 |2 < ∞
}
,

endowed with the norm

∥𝜑 ∥𝐻𝑠
per (0,2𝜋 ) :=

(∑︁
𝑛∈Z

(
1 + |𝑛 |2

)𝑠
|𝑐𝑛 |2

) 1
2

for any 𝑠 > 0. Then, we write our first main result concerning the null controllability of the system
(1.9) as follows:

Theorem 1.1.1. The following statements hold:

(i) The system (1.9) is null controllable at any time 𝑇 > 2𝜋
𝑉0

in ( ¤𝐿2(0, 2𝜋))2 if and only if

2
√︃
𝑏𝑄0 −𝑉 2

0

𝜇0
∉ N.

(ii) If 0 < 𝑇 < 2𝜋
𝑉0
, the system (1.9) cannot be null controllable at any time 𝑇 in the space ( ¤𝐿2(0, 2𝜋))2.

We note here that null controllability at the optimal time 𝑇 = 2𝜋
𝑉0

is inconclusive and there is no
controllability results at this optimal time are available in the literature for this system. Also, we

must mention here that, if the coefficients 𝑄0,𝑉0, 𝜇0 and 𝑏 satisfy
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∈ N, then the associated

adjoint operator of 𝐴 (defined by (1.10)) admits an eigenvalue with algebraic multiplicity and geometric
multiplicity both are equal to 2, failing the unique continuation property (see Chapter 3 for details).

However, if
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∉ N, then all the eigenvalues of 𝐴∗ have geometric multiplicity 1 and in this case,

we can achieve null controllability of the system (1.9) by using one boundary control acting only on
density component.

Before proceeding to the next results, we first consider the change of variables:

𝜌 (𝑡, 𝑥) → 𝛼𝜌 (𝛽𝑡, 𝛿𝑥), 𝑢 (𝑡, 𝑥) → 𝑢 (𝛽𝑡, 𝛿𝑥), for (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 𝐿),

with the choices of 𝛼, 𝛽, 𝛿 > 0 as

𝛼 :=
(
𝑎𝛾𝑄

𝛾−3
0

)−1/2
, 𝛽 :=

𝑄0𝑉
2
0

𝜆 + 2𝜇
, 𝛿 :=

𝑄0𝑉0

𝜆 + 2𝜇
.

Then, the system of equations (1.2) reduces to{
𝜌𝑡 + 𝜌𝑥 + 𝑐𝑢𝑥 = 0, in (0,𝑇 ) × (0, 𝛿𝐿),
𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢𝑥 + 𝑐𝜌𝑥 = 0, in (0,𝑇 ) × (0, 𝛿𝐿),

(1.11)
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1.1. Compressible Navier-Stokes system

with 𝑐 =
𝑄0

𝑉0

(
𝑎𝛾𝑄

𝛾−3
0

)1/2
. Here, we mention that the whole analysis in this case will be performed in

the space domain (0, 1), which is mainly for the simplicity of computations. The same can be done in
the interval (0, 𝛿𝐿). The system is given below:

𝜌𝑡 + 𝜌𝑥 + 𝑐𝑢𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢𝑥 + 𝑐𝜌𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝜌 (𝑡, 0) = 𝑝2(𝑡), for 𝑡 ∈ (0,𝑇 ),
𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 1) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 1),

(1.12)

where 𝑝2 ∈ 𝐿2(0,𝑇 ) is the control input (unknown). Similar to the above, there is no controllability
result known for this system (1.12). Further, when a distributed control is acting in the density
equation, then also no controllability results are known in the literature. In the next part of this
thesis, we prove null controllability of this system (1.12) at large time 𝑇 in the space ¤𝐿2(0, 1) ×𝐿2(0, 1)
by using a boundary control 𝑝2 ∈ 𝐿2(0,𝑇 ), which is stated below.

Theorem 1.1.2. The following statements hold:

(i) Let us assume that 𝑐4 + 8𝑐2 + 5 < 4𝜋2. Then, the system (1.13) is null controllable at any time
𝑇 > 1 in the space ¤𝐿2(0, 1) × 𝐿2(0, 1).

(ii) Let 𝑐 > 0 be given. Then, the system (1.13) cannot be null controllable at small time 0 < 𝑇 < 1
in the space ¤𝐿2(0, 1) × 𝐿2(0, 1).

We must mention here that finding a complete set of eigenfunctions of the associated adjoint
operator is very difficult due to the Dirichlet boundary conditions. This difficulty arises because of
the fact that the operator 𝑑

𝑑𝑥
on 𝐻1

{0} (0, 1) do not have any non-trivial spectrum, where

𝐻1
{0} (0, 1) :=

{
𝜑 ∈ 𝐻1(0, 1) : 𝜑 (0) = 0

}
.

Thus, we cannot deal with the system (1.12) directly to prove the controllability results. However, to
prove Theorem 1.1.2, we will consider the following control problem:

𝜌𝑡 + 𝜌𝑥 + 𝑐𝑢𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢𝑥 + 𝑐𝜌𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝜌 (𝑡, 0) = 𝜌 (𝑡, 1) + 𝑝3(𝑡), for 𝑡 ∈ (0,𝑇 ),
𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 1) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 1) .

(1.13)

Here 𝑝3 ∈ 𝐿2(0,𝑇 ) is the boundary control acting as the difference between the values at 𝑥 = 0 and 𝑥 = 1.
If we prove null controllability of the system (1.13) using a control 𝑝3 ∈ 𝐿2(0,𝑇 ), then we can define
the control 𝑝 (𝑡) := 𝜌 (𝑡, 1) + 𝑝3(𝑡) for 𝑡 ∈ (0,𝑇 ), which will be a null control for the system (1.12) once
we prove 𝜌 (·, 1) ∈ 𝐿2(0,𝑇 ). Similarly, we can prove null controllability of (1.12) by assuming the same
for the system (1.13). Thus, null controllability of (1.12) is equivalent to that for the system (1.13).
So, our next goal is to study the null controllability of the system (1.13). In this context, we mention
here that the condition on 𝑐 mentioned in Theorem 1.1.2 arises while proving the controllability results
related to the system (1.13), as explained below.

Theorem 1.1.3. The following statements hold:

(i) Let us assume that 𝑐4 + 8𝑐2 + 5 < 4𝜋2. Then, the system (1.13) is null controllable at any time
𝑇 > 1 in the space ¤𝐿2(0, 1) × 𝐿2(0, 1).

(ii) Let 𝑐 > 0 be given. Then, the system (1.13) cannot be null controllable at small time 0 < 𝑇 < 1
in the space ¤𝐿2(0, 1) × 𝐿2(0, 1).
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1. Introduction

As mentioned before, if the system (1.13) is null controllable at time 𝑇 , then we get a similar
compatibility condition on 𝜌0 (obtained by integrating the first equation in (1.12)) as∫ 1

0
𝜌0(𝑥)𝑑𝑥 =

∫ 𝑇

0
𝑝2(𝑡)𝑑𝑡,

which is the main reason for obtaining the null controllability space as ¤𝐿2(0, 1) × 𝐿2(0, 1).

Remark 1.1.3. The condition on 𝑐 is required to prove that all the eigenvalues of the associated adjoint
operator are geometrically simple. However, characterization of all such 𝑐 for which the system (1.13)
satisfy the null controllability criterion is still unknown.

As a consequence of this result, together with the fact 𝜌 (·, 1) ∈ 𝐿2(0,𝑇 ), we can conclude null
controllability of the system (1.12) at time 𝑇 > 1 in ¤𝐿2(0, 1)×𝐿2(0, 1) under the assumption 𝑐4+8𝑐2+5 <

4𝜋2, that is, Theorem 1.1.2. This kind of techniques has been applied in many places, for instance in
[CC09a, CHO16].

Control on velocity: We next consider the case when there is a boundary control acting in the
velocity component through the condition (1.7). The system is given below:

𝜌𝑡 +𝑉0𝜌𝑥 +𝑄0𝑢𝑥 = 0, in (0,𝑇 ) × (0, 2𝜋),
𝑢𝑡 − 𝜇0𝑢𝑥𝑥 +𝑉0𝑢𝑥 + 𝑏𝜌𝑥 = 0, in (0,𝑇 ) × (0, 2𝜋),
𝜌 (𝑡, 0) = 𝜌 (𝑡, 2𝜋), for 𝑡 ∈ (0,𝑇 ),
𝑢 (𝑡, 0) = 𝑢 (𝑡, 2𝜋) + 𝑞1(𝑡), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 2𝜋), for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 2𝜋) .

(1.14)

Here 𝑞1 ∈ 𝐿2(0,𝑇 ) is a control input (unknown). In this case also, we want to study the controllability
properties of this system (1.14) at a given time 𝑇 > 0 in the space 𝐿2(0, 2𝜋) × 𝐿2(0, 2𝜋). Similar to the
density case, if the system (1.14) is null controllable at time 𝑇 , then we get a compatibility condition
on the initial states∫ 2𝜋

0
𝜌0(𝑥)𝑑𝑥 = −𝑄0

∫ 𝑇

0
𝑞1(𝑡)𝑑𝑡,

∫ 2𝜋

0
𝑢0(𝑥)𝑑𝑥 = −𝑉0

∫ 𝑇

0
𝑞1(𝑡)𝑑𝑡 .

For this reason, we will work on the Hilbert space ¤𝐿2(0, 2𝜋)× ¤𝐿2(0, 2𝜋). Before stating our controllability
results, let us first mention some known results for the system (1.14). In [CM15, Theorem 1.6], it is
known that the system (1.14) is null controllable at any time𝑇 > 2𝜋

𝑉0
in the space ¤𝐻𝑠+1

per (0, 2𝜋)× ¤𝐻𝑠
per(0, 2𝜋)

with 𝑠 > 9
2 using a boundary control 𝑞1 ∈ 𝐿2(0,𝑇 ) acting in the velocity part. The proof of this result

was inspired by the work of Martin, Rosier and Rouchon [MRR13]. On the other hand, when an
interior control is acting only in the velocity equation, it is known in [CMRR14] that the system
is (distributed) null controllable at time 𝑇 > 2𝜋

𝑉0
in the space ¤𝐻1

per(0, 2𝜋) × 𝐿2(0, 2𝜋). Moreover, the

space ¤𝐻1
per(0, 2𝜋) × 𝐿2(0, 2𝜋) is optimal in the sense that if we take initial states from the space

¤𝐻𝑠
per(0, 2𝜋) × 𝐿2(0, 2𝜋) with 0 ≤ 𝑠 < 1, then the system cannot be null controllable at any time 𝑇 > 0

by using a localized distributed control. Further, lack of null controllability at small time 0 < 𝑇 < 2𝜋
𝑉0

is shown for the system (1.14) in [Mai15] by constructing some Gaussian beam solutions. However,
there are no controllability results for the system (1.14) at large time are available in the literature
when the initial states belong to the space ¤𝐻𝑠+1

per (0, 2𝜋) × ¤𝐻𝑠
per(0, 2𝜋) with 𝑠 ≤ 9

2 . The next result gives
a complete answer to this question in terms of the regularity of the initial states.

Theorem 1.1.4. The following statements hold:

(i) The system (1.14) is null controllable at any time 𝑇 > 2𝜋
𝑉0

in ¤𝐻1
per(0, 2𝜋) × ¤𝐿2(0, 2𝜋) if and only if

2
√︃
𝑏𝑄0 −𝑉 2

0

𝜇0
∉ N.
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1.1. Compressible Navier-Stokes system

(ii) If 0 ≤ 𝑠 < 1, the system (1.14) cannot be null controllable at any time 𝑇 > 0 in the space
¤𝐻𝑠
per(0, 2𝜋) × ¤𝐿2(0, 2𝜋).

As mentioned in the density case, we have necessary and sufficient condition on the coefficients for
null controllability in this case also. Moreover, we mention here that null controllability of the system
(1.14) is inconclusive at the optimal time 𝑇 = 2𝜋

𝑉0
.

In the barotropic case, we finally consider the following system (see system (1.13)):
𝜌𝑡 + 𝜌𝑥 + 𝑐𝑢𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢𝑥 + 𝑐𝜌𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝜌 (𝑡, 0) = 𝜌 (𝑡, 1), 𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 1) = 𝑞2(𝑡), for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 1),

(1.15)

with 𝑞2 ∈ 𝐿2(0,𝑇 ) as the boundary control. We will work on the Hilbert space ¤𝐿2(0, 1) × 𝐿2(0, 1) due
to the compatibility condition on 𝜌0:∫ 1

0
𝜌0(𝑥)𝑑𝑥 = 𝑐

∫ 1

0
𝑞2(𝑡)𝑑𝑡 .

Like the system (1.12), our aim is to study controllability properties under homogeneous Dirichlet
condition on 𝜌 and with a boundary control acting on velocity through Dirichlet condition. However,
this is a very challenging problem and still no result is available in the literature (even in the distributed
case). For this reason, we will work on the above system (1.15) and study the controllability properties.
More precisely, we have the following result:

Theorem 1.1.5. The following statements hold:

(i) Let us assume that 𝑐4 + 8𝑐2 + 5 < 4𝜋2. Then there exists a countable set N such that for chosen

𝑐 ∉ N , the system (1.15) is null controllable at any time 𝑇 > 1 in ¤𝐻 1
2 (0, 1) × 𝐿2(0, 1).

(ii) If 0 ≤ 𝑠 < 1
2 , the system (1.15) cannot be null controllable at any time 𝑇 > 0 in the space

¤𝐻𝑠 (0, 1) × 𝐿2(0, 1).

Remark 1.1.4. Like the previous case, we cannot obtain any controllability results when the time is
small, that is when 0 < 𝑇 ≤ 2𝜋

𝑉0
, by following the proof in the density case. Also, the condition on

𝑐 is required to prove eigenvalues of the associated linear operator have geometric multiplicity 1, as
mentioned before in the density case. Moreover, the set N appears in the above result while proving
the Fattorini-Hautus criterion. However, the complete characterization of this (possible) critical set
N is still not known.

1.1.2 The non-barotropic case

Let 𝐿 > 0. We next consider the Navier-Stokes system for compressible non-barotropic fluids in (0, 𝐿):
𝜌𝑡 + (𝜌𝑢)𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝜌 (𝑢𝑡 + 𝑢𝑢𝑥 ) + 𝑅(𝜌𝜃 )𝑥 − (𝜆 + 2𝜇)𝑢𝑥𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝑐𝜈𝜌 [𝜃𝑡 + 𝑢𝜃𝑥 ] + 𝑅𝜌𝜃𝑢𝑥 − 𝜅𝜃𝑥𝑥 − (𝜆 + 2𝜇)𝑢2𝑥 = 0, in (0,𝑇 ) × (0, 𝐿) .

(1.16)

Similar to the barotropic case, we want to study controllability properties of the linearized system
around some constant steady state (𝑄0,𝑉0,𝜓0) with 𝑄0,𝑉0,𝜓0 > 0. Note that (𝑄0,𝑉0,𝜓0) are solutions
of the following stationary problem:

(𝜉𝜂)𝑥 = 0, in [0, 𝐿],
𝜉𝜂𝜂𝑥 + 𝑅(𝜉𝜁 )𝑥 − (𝜆 + 2𝜇)𝜂𝑥𝑥 = 0, in [0, 𝐿],
𝑐𝜈𝜉𝜂𝜁𝑥 + 𝑅𝜉𝜂𝑥𝜁 − 𝜅𝜁𝑥𝑥 − (𝜆 + 2𝜇)𝜂2𝑥 = 0, in [0, 𝐿],
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1. Introduction

where (𝜉, 𝜂, 𝜁 ) ∈ C2( [0, 𝐿] × [0, 𝐿] × [0, 𝐿]). Note that, linearization of the terms (𝜌𝑢)𝑥 , 𝜌 (𝑢𝑡 +𝑢𝑢𝑥 ), (𝜌𝜃 )𝑥 ,
𝜌 (𝜃𝑡 + 𝑢𝜃𝑥 ), 𝜌𝜃𝑢𝑥 and 𝑢2𝑥 around (𝑄0,𝑉0,𝜓0) are respectively 𝑉0𝜌𝑥 + 𝑄0𝑢𝑥 , 𝑄0(𝑢𝑡 + 𝑉0𝑢𝑥 ),𝜓0𝜌𝑥 + 𝑄0𝜃𝑥 ,
𝑄0(𝜃𝑡 +𝑉0𝜃𝑥 ), 𝑄0𝜓0𝑢𝑥 and 0. Thus, the system linearized around (𝑄0,𝑉0,𝜓0) with 𝑄0,𝑉0,𝜓0 > 0 is given
by 

𝜌𝑡 +𝑉0𝜌𝑥 +𝑄0𝑢𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),

𝑢𝑡 −
𝜆 + 2𝜇

𝑄0
𝑢𝑥𝑥 +

𝑅𝜓0

𝑄0
𝜌𝑥 +𝑉0𝑢𝑥 + 𝑅𝜃𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),

𝜃𝑡 −
𝜅

𝑄0𝑐𝜈
𝜃𝑥𝑥 +

𝑅𝜓0

𝑐𝜈
𝑢𝑥 +𝑉0𝜃𝑥 = 0, in (0,𝑇 ) × (0, 𝐿) .

(1.17)

We take the initial condition as

𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), 𝜃 (0, 𝑥) = 𝜃0(𝑥), 𝑥 ∈ (0, 𝐿) . (1.18)

In this case, we will consider any one of the following boundary conditions on the system (1.17).

•Control on density

⋄ 𝜌 (𝑡, 0) = 𝜌 (𝑡, 𝐿) + 𝑝 (𝑡), 𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝐿), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 𝐿), 𝜃 (𝑡, 0) = 𝜃 (𝑡, 𝐿), 𝜃𝑥 (𝑡, 0) = 𝜃𝑥 (𝑡, 𝐿), (1.19)

•Control on velocity

⋄ 𝜌 (𝑡, 0) = 𝜌 (𝑡, 𝐿), 𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝐿) + 𝑞(𝑡), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 𝐿), 𝜃 (𝑡, 0) = 𝜃 (𝑡, 𝐿), 𝜃𝑥 (𝑡, 0) = 𝜃𝑥 (𝑡, 𝐿), (1.20)

•Control on temperature

⋄ 𝜌 (𝑡, 0) = 𝜌 (𝑡, 𝐿), 𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝐿), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 𝐿), 𝜃 (𝑡, 0) = 𝜃 (𝑡, 𝐿) + 𝑟 (𝑡), 𝜃𝑥 (𝑡, 0) = 𝜃𝑥 (𝑡, 𝐿), (1.21)

for 𝑡 ∈ (0,𝑇 ), where 𝑝, 𝑞, 𝑟 are boundary controls. In this setup, we first define the controllability
notions:

Definition 1.1.3. Let 𝐻 be a Hilbert space. We say the system (1.17) with initial state (1.18) and
boundary condition (1.19) (resp. (1.20), (1.21)) is

• null controllable at time 𝑇 > 0 in the space 𝐻 if, for any given (𝜌0, 𝑢0, 𝜃0) ∈ 𝐻 , there exists
a control 𝑝 ∈ 𝐿2(0,𝑇 ) (resp. 𝑞, 𝑟 ∈ 𝐿2(0,𝑇 )) such that the associated solution (𝜌,𝑢, 𝜃 ) of (1.17)
satisfies

(𝜌 (𝑇 ), 𝑢 (𝑇 ), 𝜃 (𝑇 )) = (0, 0, 0).

• approximately controllable at time 𝑇 > 0 in the space 𝐻 if, for given (𝜌0, 𝑢0, 𝜃0),(𝜌𝑇 , 𝑢𝑇 , 𝜃𝑇 )
∈ 𝐻 and any 𝜖 > 0, there exists a control 𝑝𝜖 ∈ 𝐿2(0,𝑇 ) (resp. 𝑞𝜖 , 𝑟𝜖 ∈ 𝐿2(0,𝑇 )) such that the
associated solution (𝜌𝜖 , 𝑢𝜖 , 𝜃𝜖 ) of (1.17) satisfies

∥(𝜌𝜖 (𝑇 ), 𝑢𝜖 (𝑇 ), 𝜃𝜖 (𝑇 )) − (𝜌𝑇 , 𝑢𝑇 , 𝜃𝑇 )∥𝐻 ≤ 𝜖.

We study mainly the null controllability of the system (1.17) at a given time 𝑇 > 0 starting from
the initial condition (1.18) and with one of the boundary conditions (1.19), (1.20) and (1.21). There
is no controllability results known in the literature for the system (1.17) at large time in the boundary
control case. However, in [Mai15], a lack of null controllability result is known at small time (under
Dirichlet boundary conditions) by using three localized interior controls acting in density, velocity
and temperature, or using a boundary control acting only on the velocity part. In this thesis, we
prove null controllability of the system (1.17) at large time in optimal spaces by using one boundary
control mentioned above. Further, we also prove a lack of null controllability result at small time in
the density case (like the barotropic case). Before stating our results, we first denote the (positive)
coefficients appearing in the non-barotropic system (1.17) as

𝜆0 :=
𝜆 + 2𝜇

𝑄0
, 𝜅0 :=

𝜅

𝑄0𝑐𝜈
, (1.22)

and define the set

S :=

(𝜆0, 𝜅0) :

√︄
𝜆0

𝜅0
∉ Q

 . (1.23)
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1.1. Compressible Navier-Stokes system

Note that, we have introduce a new notation 𝜆0 to denote the constant
𝜆+2𝜇
𝑄0

instead of 𝜇0 to separate

it from the barotropic case. We also define the operator (𝐴,D(𝐴)) associated to the system (1.17) as

𝐴 :=
©­­­«
−𝑉0𝜕𝑥 −𝑄0𝜕𝑥 0

−𝑅𝜓0

𝑄0
𝜕𝑥 𝜆0𝜕𝑥𝑥 −𝑉0𝜕𝑥 −𝑅𝜕𝑥

0 −𝑅𝜓0

𝑐𝜈
𝜕𝑥 𝜅0𝜕𝑥𝑥 −𝑉0𝜕𝑥

ª®®®¬ (1.24)

with the domain D(𝐴) := 𝐻1
per(0, 2𝜋)×(𝐻2

per(0, 2𝜋))2. In this setup, we will state our main results which
concerns null controllability of the system (1.17). We take 𝐿 = 2𝜋 for simplicity of the computations.

Theorem 1.1.6. Let us assume that (𝜆0, 𝜅0) ∈ S be such that there exists a 𝑀 > 0 with the property
that ������

√︄
𝜆0

𝜅0
− 𝑎

𝑏

������ > 1

𝑏𝑀
(1.25)

holds for all rational numbers 𝑎
𝑏
. We further assume that all the eigenvalues of the adjoint operator

of 𝐴 (defined by (1.24)) have geometric multiplicity equal to 1. Then,

(i) the system (1.17)-(1.18)-(1.19) is null controllable at any time 𝑇 > 2𝜋
𝑉0

in the space ( ¤𝐿2(0, 2𝜋))3.

(ii) the systems (1.17)-(1.18)-(1.20) and (1.17)-(1.18)-(1.21) are null controllable at any time 𝑇 > 2𝜋
𝑉0

in the space ¤𝐻1
per(0, 2𝜋) × ( ¤𝐿2(0, 2𝜋))2.

Proving the property that eigenvalues have geometric multiplicity 1 is not straightforward like the
system (1.9), due to the complicated cubic characteristics polynomial associated to the operator 𝐴.
Also, like the system (1.13) or (1.15), we do not have any characterization of the coefficients 𝜆0 and
𝜅0 for which the system will necessarily be null controllable. We refer to Chapter 3 for more insights
in this matter.

The next results shows that in the density case, the system (1.17) fails to satisfy null controllability
when the time is small. Moreover, we can achieve optimal space for null controllability in the velocity
and temperature control case. These results are similar to those obtained in the barotropic case.

Proposition 1.1.1. The following statements hold:

(i) The system (1.17)-(1.18)-(1.19) is not null controllable at small time 0 < 𝑇 < 2𝜋
𝑉0

in ( ¤𝐿2(0, 2𝜋))3.

(ii) The systems (1.17)-(1.18)-(1.20) and (1.17)-(1.18)-(1.21) are not null controllable at any time
𝑇 > 0 in the space ¤𝐻𝑠

per(0, 2𝜋) × ( ¤𝐿2(0, 2𝜋))2 for any 0 ≤ 𝑠 < 1.

Similar to the barotropic case, lack of null controllability of the system (1.17)-(1.18)-(1.20) or (1.17)-
(1.18)-(1.21) is open when the time is small, in particular, when 0 < 𝑇 < 2𝜋

𝑉0
. Moreover, null

controllability of the system (1.17) at time 𝑇 = 2𝜋
𝑉0

is inconclusive in all cases, whether there is a
control act in density, velocity or temperature.

In the non-barotropic case, we finally write the following result, which shows that the restriction
(𝜆0, 𝜅0) ∈ S is not sufficient to conclude null controllability of (1.17).

Proposition 1.1.2. There exist constants (𝜆0, 𝜅0) ∈ S and 𝑄0,𝑉0,𝜓0, 𝑅, 𝑐𝜈 > 0 for which the systems
(1.17)-(1.18)-(1.19), (1.17)-(1.18)-(1.20) and (1.17)-(1.18)-(1.21) are not null controllable at any time
𝑇 > 0 in the space (𝐿2(0, 2𝜋))3.

To prove all the aforementioned controllability results, we will use mainly two techniques; the
method of moments and an application of parabolic-hyperbolic Ingham-type inequalities. In the next
chapter, we will briefly introduce these notions and show some applications in the case of 1d heat
equation. Here, we will write the new Ingham-type inequality that will be very crucial to prove the
some of the above null controllability results.

11



1. Introduction

Proposition 1.1.3 (A combined Ingham-type inequality). Let (𝜆𝑛)𝑛∈N and (𝛾𝑛)𝑛∈Z be sequences of
complex numbers satisfying the following properties: there is 𝑁 ∈ N such that

(i) 𝜆𝑛 ≠ 𝜆𝑚 for all 𝑚,𝑛 ∈ N with 𝑚 ≠ 𝑛, and 𝛾𝑘 ≠ 𝛾𝑙 for all 𝑘, 𝑙 ∈ Z with 𝑘 ≠ 𝑙,

(ii) −Re(𝜆𝑛 )
|Im(𝜆𝑛 ) | ≥ 𝑐 for some 𝑐 > 0 and all 𝑛 ≥ 𝑁 ,

(iii) there exist 𝑟 > 1 and 𝛿 > 0 such that |𝜆𝑛 − 𝜆𝑚 | ≥ 𝛿 |𝑛𝑟 −𝑚𝑟 | for all 𝑚,𝑛 ≥ 𝑁 with 𝑚 ≠ 𝑛 and

(iv) there exist 𝐴0 ≥ 0, 𝐵0 ≥ 𝛿 and 𝜖 > 0 such that 𝜖 (𝐴0 + 𝐵0𝑛𝑟 ) ≤ |𝜆𝑛 | ≤ 𝐴0 + 𝐵0𝑛𝑟 for all 𝑛 ≥ 𝑁 ,

(v) 𝛾𝑛 = 𝛽 + 𝜏𝑖𝑛 + 𝑒𝑛 for all |𝑛 | ≥ 𝑁 , where 𝛽 ∈ C, 𝜏 > 0 and (𝑒𝑛) |𝑛 | ≥𝑁 ∈ ℓ2.

(vi) {𝜆𝑛 : 𝑛 ∈ N} ∩ {𝛾𝑛 : 𝑛 ∈ Z} = ∅.

Then, for any time 𝑇 > 2𝜋
𝜏
, there exists a positive constant 𝐶 such that∫ 𝑇

0

�����∑︁
𝑛∈N

𝑎𝑛𝑒
𝜆𝑛𝑡 +

∑︁
𝑛∈Z

𝑏𝑛𝑒
𝛾𝑛𝑡

�����2 𝑑𝑡 ≥ 𝐶
(∑︁
𝑛∈N

|𝑎𝑛 |2 𝑒2Re(𝜆𝑛 )𝑇 +
∑︁
𝑛∈Z

|𝑏𝑛 |2
)

(1.26)

holds for all sequences (𝑎𝑛)𝑛∈N and (𝑏𝑛)𝑛∈Z in ℓ2.

This result is a generalization of the previously obtained Ingham-type inequalities, including
[ZZ03a, ZZ03b, ZZ04, KT15]. Our proof is based on a decoupling technique as mentioned in [Zua16]
and [CMRR14]. In fact, our proof works with more general assumptions on the sequences (𝜆𝑛)𝑛∈N
and (𝛾𝑛)𝑛∈Z for which each of the individual parabolic and hyperbolic Ingham inequalities hold; see
the works [You01, LZ02, KL05, MZ04] for a variations of these individual inequalities. We refer to
Chapter 4 for more details in this regard.

We conclude this section with some known results for the compressible Navier-Stokes system.
Ervedoza, Glass, Guerrero and Puel in [EGGP12] proved a local exact controllability result for the 1D
compressible (linear and nonlinear) Navier-Stokes system for barotropic fluids in a bounded domain
(0, 𝐿) for regular initial data in 𝐻3(0, 𝐿) × 𝐻3(0, 𝐿) with two boundary controls, when time is large
enough. This result has been improved by Ervedoza and Savel in [ES18] by choosing the initial data
from 𝐻1(0, 𝐿) × 𝐻1(0, 𝐿); see also a generalized result [EGG16] by Ervedoza, Glass and Guerrero for
dimensions 2 and 3. In this thesis, we have proved null and approximate controllability of the linear
system using only one boundary control and our method of proving the controllability results are
independent of the works mentioned above. On the other hand, for non-barotropic fluids, we mention
the work of [Mol19], where the author proved local null controllability of the nonlinear system, in
dimensions 1, 2 and 3, at large time in the space 𝐻2(Ω) ×𝐻2(Ω) ×𝐻2(Ω) using three controls acting on
velocity and temperature on the whole boundary and density on the inflow boundary. Moreover, in one
dimension, this result has been improved by choosing the initial state from 𝐻1(0, 𝐿)×𝐻1(0, 𝐿)×𝐻1(0, 𝐿).

1.2 A nonlinear two-parabolic system

Recall that, the linearized Navier-Stokes system for a compressible barotropic fluid consists of a trans-
port equation coupled with a parabolic equation. In the case of non-barotropic fluids, the linearized
compressible Navier-Stokes system consists of a transport equation coupled with two parabolic equa-
tions. To study the controllability properties of these systems with Dirichlet or Neumann boundary
conditions, the “vanishing viscosity method” might be useful, where we add a small viscosity term
to view it as a parabolic equation. More precisely, for 𝜀 > 0 small enough, we consider the following
parabolic equation corresponding to the first equation of (1.2) (or (1.17)):

𝜌𝑡 − 𝜀𝜌𝑥𝑥 +𝑉0𝜌𝑥 +𝑄0𝑢𝑥 = 0, in (0,𝑇 ) × (0, 𝐿). (1.27)

This method was first studied by Coron and Guerrero in [CG05], where they proved boundary null
controllability of the transport equation (𝑄0 = 0 in (1.27)) by studying a one parameter family of

12



1.2. A nonlinear two-parabolic system

parabolic equations (1.27) and then taking the parameter 𝜀 tend to 0. Since then, this method has
been widely applied to prove controllability of many systems, see for instance the works [GL16, CnG15,
CnG16, GG08, GL07, Gla10, CW24] and the references therein.

With this new equation (1.27), our system (1.2) (resp. (1.17)) now consists of two (resp. three)
coupled parabolic equations. Thus, studying controllability results for these new systems with an
estimate on the control (depending on 𝜖) will be very useful to conclude some controllability results
for the systems (1.2) and (1.17). On the other hand, to prove some local controllability results for
the nonlinear systems (1.1) and (1.16) using only one boundary control, this method might be useful.
However, due to the presence of complicated nonlinearity in each systems (1.1) and (1.16), proving local
controllability of these systems is very challenging. For this reason, we consider a simplified system
consisting of two parabolic equations coupled with square, product and non-local nonlinearities, and
study the boundary null-controllability result by means of one Neumann boundary control. More
precisely, for given finite time 𝑇 > 0, we consider the following system:

𝑦𝑡 − 𝑦𝑥𝑥 = 𝑓
(
𝑦, 𝑧,

∫ 1

0
𝑦,

∫ 1

0
𝑧
)
, in (0,𝑇 ) × (0, 1),

𝑧𝑡 − 𝑧𝑥𝑥 = 𝑔
(
𝑦, 𝑧,

∫ 1

0
𝑦,

∫ 1

0
𝑧
)
, in (0,𝑇 ) × (0, 1),

𝑦𝑥 (𝑡, 0) = 𝑞(𝑡), 𝑧𝑥 (𝑡, 0) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑦𝑥 (𝑡, 1) = 𝑧𝑥 (𝑡, 1), for 𝑡 ∈ (0,𝑇 ),
𝑦 (𝑡, 1) + 𝑧 (𝑡, 1) + 𝛼𝑦𝑥 (𝑡, 1) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑦 (0, 𝑥) = 𝑦0(𝑥), 𝑧 (0, 𝑥) = 𝑧0(𝑥), in (0, 1) .

(1.28)

Here, 𝛼 ≥ 0 is some real parameter and (𝑦0, 𝑧0) is the given initial data which we choose from the
space [𝐿2(0, 1)]2. The function 𝑞 ∈ 𝐿2(0,𝑇 ) is the control input acting at 𝑥 = 0 through the Neumann
condition. At the point 𝑥 = 1, the states 𝑦 and 𝑧 are coupled in terms of the “equality condition of their
normal derivatives” and a “combined Robin-type condition”. In the literature, this kind of combined
conditions is typically called the 𝛿 ′-type condition, see for instance [BK13, p. 26, Chapter 1.4.4] or
[Exn96]. In fact, it has been addressed in [Exn96] that the wavefunction of a quantum mechanical
particle living on a graph often satisfies the 𝛿 ′-type boundary conditions at the junction points.

The nonlinear functions 𝑓 and 𝑔 in (1.28) are given by
𝑓
(
𝑦, 𝑧,

∫ 1

0
𝑦,

∫ 1

0
𝑧
)
= −𝑦𝑧 + 𝑎𝑦2 + 𝑏𝑧2 + 𝑟1(𝑡)𝑦,

𝑔
(
𝑦, 𝑧,

∫ 1

0
𝑦,

∫ 1

0
𝑧
)
= 𝑦𝑧 + 𝑐𝑦2 + 𝑑𝑧2 + 𝑟2(𝑡)𝑧,

(1.29)

where 𝑎, 𝑏, 𝑐, 𝑑 are 𝐿∞((0,𝑇 ) × (0, 1)) functions and
𝑟1(𝑡) = 𝛼1

∫ 1

0

(
𝜓1,1(𝑥)𝑦 (𝑡, 𝑥) +𝜓2,1(𝑥)𝑧 (𝑡, 𝑥)

)
𝑑𝑥,

𝑟2(𝑡) = 𝛼2
∫ 1

0

(
𝜓1,2(𝑥)𝑦 (𝑡, 𝑥) +𝜓2,2(𝑥)𝑧 (𝑡, 𝑥)

)
𝑑𝑥,

(1.30)

with 𝛼1, 𝛼2 are real constants and 𝜓1, 𝑗 ,𝜓2, 𝑗 ∈ 𝐿∞(0, 1) for 𝑗 = 1, 2. In this setup, we want to study the
small time local null controllability of the system (1.28) in the space (𝐿2(0, 1))2. First, we define this
notion:

Definition 1.2.1. We say the system (1.28) is small-time locally null controllable around the
equilibrium (0, 0) in (𝐿2(0, 1))2 if, for any given 𝑇 > 0 there is a 𝛿 > 0 such that for chosen initial state
(𝑦0, 𝑧0) ∈ (𝐿2(0, 1))2 with ∥(𝑦0, 𝑧0)∥ (𝐿2 (0,1) )2 ≤ 𝛿, there exists a control 𝑞 ∈ 𝐿2(0,𝑇 ) satisfying

(𝑦 (𝑇 ), 𝑧 (𝑇 )) = (0, 0) .

We want to mention here that the nonlinear model (1.28) is a reaction-diffusion system which often
describes several biological phenomenon or chemical reactions, commonly known as “Lotka-Volterra”

13
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model with diffusion (without any boundary conditions and control for the moment, let say), that
sometimes characterize the dynamics of a biological system where two species prey and predator
interact between each other; see for instance [Per15, Jos14, Mur02]. In this regard, we refer the
very detailed work [RBZ22], where several results concerning the controllability of reaction-diffusion
systems in biology and social sciences have been addressed. In our model, we consider that the two
species are interacting in the reference domain (through the nonlinear functions 𝑓 , 𝑔) as well as at one
boundary end (through the coupled conditions at 𝑥 = 1). Then, our goal is to put an external control
force only on one species from the other boundary end to locally control both the species at a given
time 𝑇 . More precisely, we prove the following result:

Theorem 1.2.1. Let 𝑓 and 𝑔 be given by (1.29) and 𝛼 ≥ 0. Then, the nonlinear system (1.28) is
small-time locally null-controllable around the equilibrium (0, 0) in the space (𝐿2(0, 1))2.

The proof of this result involves several steps, which we listed below; the detailed proof is given in
Chapter 5.

Step 1. First, we prove the null controllability result of the associated linear model to (1.28) around
the equilibrium (0, 0) using the method of moments with an estimation of the control cost, precisely
𝑀𝑒𝑀/𝑇 , where 𝑀 is independent in 𝑇 .

Step 2. Next, by applying the source term method introduced in [LTT13], we prove a null con-
trollability result of the linearized model with additional source terms in 𝐿2(0,𝑇 ; (𝐿2(0, 1))2) which
are exponentially decreasing as 𝑡 → 𝑇 −, and in this step, we notably use the precise control cost as
prescribed earlier.

Step 3. Finally, we use the Banach fixed-point theorem to obtain the local null-controllability for our
nonlinear system (5.1).

14
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The goal of this chapter is to present an overview of the basic controllability results and tools that
are closely related to this thesis. We first describe the basic functional tools including the concepts of
biorthogonal sequence, the method of moments and some variations of Ingham’s inequalities. Next,
we will explain how these notions are used to derive controllability of finite and infinite dimensional
linear systems, in particular, for transport and heat equations in one dimension. Finally, we make
some remarks about nonlinear systems.

2.1 Functional Tools

In this section, we describe the tools that will be used throughout the thesis. We mostly state the
results without proof as these are well-known and proofs of these results can be found in any functional
analysis and PDE books, see for instance [Bre11, Kes89, Kes09, Eva10]. However, we give proofs of
some of the important results (related to this thesis) and refer to the articles/books in others.

Let F be a field, which is either R or C depending on the situations. A topological vector space
is a vector space 𝑉 , over the field F, with a Hausdorff topology and with the property that the following
maps are continuous:

(𝑢, 𝑣) ↦→ 𝑢 + 𝑣, (𝛼,𝑢) ↦→ 𝛼𝑢

for all 𝑢, 𝑣 ∈ 𝑉 and 𝛼 ∈ F. A normed linear space is a topological vector space 𝑉 that is endowed
with a norm ∥·∥𝑉 . If 𝑉 is complete with respect to this norm, we say 𝑉 is a Banach space. Further,
if this norm on 𝑉 is induced from an inner product, that is ∥𝑢∥𝑉 =

√︁
⟨𝑢,𝑢⟩𝑉 , we say 𝑉 is a Hilbert

space.
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Let 𝑋 and 𝑌 be Banach spaces. A linear operator from 𝑋 into 𝑌 is an ordered pair (𝐴,D(𝐴))
such that D(𝐴) is a subspace of 𝑋 and the map 𝐴 : D(𝐴) ⊂ 𝑋 → 𝑌 is linear. We say 𝐴 is bounded
if there exists a positive constant 𝐶 such that ∥𝐴𝑢∥𝑌 ≤ 𝐶 ∥𝑢∥𝑋 for all 𝑢 ∈ D(𝐴). The operator 𝐴 is
unbounded if it is not bounded. Moreover, 𝐴 is densely defined if D(𝐴) is dense in 𝑋 and 𝐴 is
closed if the graph of 𝐴, defined as G(𝐴) := {(𝑢,𝐴𝑢) : 𝑢 ∈ D(𝐴)} is closed in 𝑋 ×𝑌 . We now provide
some examples of unbounded linear operators which are relevant to this thesis.

Example 2.1.1.

(a) Let us consider 𝑋 = (C0 [0, 1], ∥·∥∞), D(𝐴) = C1 [0, 1] and 𝐴 : D(𝐴) ⊂ 𝑋 → 𝑋 is defined by 𝐴𝑢 = 𝑢′.
Then 𝐴 is an unbounded operator. In fact, for the sequence 𝑢𝑛 (𝑡) = 𝑡𝑛 ∈ D(𝐴), we have ∥𝑢𝑛 ∥𝑋 = 1
for all 𝑛 ∈ N but ∥𝐴𝑢𝑛 ∥𝑋 → ∞ as 𝑛 → ∞.

(b) Let 𝐿 > 0. The operator 𝐴 : D(𝐴) ⊂ 𝐿2(0, 𝐿) → 𝐿2(0, 𝐿) defined by 𝐴𝑢 = 𝑢′ is unbounded on 𝐿2(0, 𝐿)
in each of the following domains:

(𝑖) D(𝐴) = 𝐻1(0, 𝐿), (𝑖𝑖) D(𝐴) = 𝐻1
0 (0, 𝐿), (𝑖𝑖𝑖) D(𝐴) = 𝐻1

{0} (0, 𝐿), (𝑖𝑣) D(𝐴) = 𝐻1
per(0, 𝐿) .

In fact, we have for 𝑢𝑛 (𝑥) = sin(𝑛𝑥
𝐿
) ∈ D(𝐴), ∥𝐴𝑢𝑛 ∥𝐿2 (0,𝐿) → ∞ but (𝑢𝑛)𝑛∈N is bounded in 𝐿2(0, 𝐿).

(c) Let 𝐿 > 0. Then, it is easy to see that the operator 𝐴 : D(𝐴) ⊂ 𝐿2(0, 𝐿) → 𝐿2(0, 𝐿) defined by
𝐴𝑢 = 𝑢′′ is unbounded on 𝐿2(0, 𝐿) in each of the following domains:

(𝑖) D(𝐴) = 𝐻2(0, 𝐿) ∩ 𝐻1
0 (0, 𝐿), (𝑖𝑖) D(𝐴) = 𝐻2

per(0, 𝐿) .

Let 𝑋 be a Banach space. The dual of 𝑋 is denoted by 𝑋 ′ and defined as the space of all bounded
linear functionals on 𝑋 , that is

𝑋 ′ := {𝑓 : 𝑋 → R : 𝑓 is a bounded linear operator} .

For the Hilbert space, we have a characterization of its dual in terms of the following famous result:

Theorem 2.1.1 (Riesz Representation Theorem). Let 𝐻 be a Hilbert space and 𝑓 ∈ 𝐻 ′. Then there
exists a unique 𝑣 ∈ 𝐻 such that

𝑓 (𝑢) = ⟨𝑢, 𝑣⟩𝐻
for all 𝑢 ∈ 𝐻 . Moreover, we have ∥ 𝑓 ∥𝐻 = ∥𝑣 ∥𝐻 .

As a consequence of this result, the map 𝑣 ↦→ 𝑓𝑣 is a linear isometry of 𝐻 onto 𝐻 ′. Thus, we can
identify a Hilbert space 𝐻 with its own dual via this Riesz isometry map. However, this characterization
might not be possible to every space under consideration at a time; as explained below:

Remark 2.1.1. Let 𝑉 be a dense subspace of a Hilbert space 𝐻 which is continuously embedded in 𝐻 ,
that is, there exists a 𝐶 > 0 such that ∥𝑢∥𝐻 ≤ 𝐶 ∥𝑢∥𝑉 for all 𝑢 ∈ 𝑉 . Then one can prove the following
relation:

𝑉 ⊂ 𝐻 � 𝐻 ′ ⊂ 𝑉 ′.

Here the later inclusion (from 𝐻 ′ into 𝑉 ′) is also dense. This relation shows that we cannot simul-
taneously identify 𝑉 with 𝑉 ′ and 𝐻 with 𝐻 ′. In this situation, we say 𝐻 is the pivot space (identified
with its dual via Riesz isometry) and 𝑉 ′ is the dual of 𝑉 with respect to the pivot space 𝐻 . We give
some examples below which shows that this situation can arise in the case of Sobolev spaces.

Example 2.1.2. We present here some of the examples of Hilbert spaces and their duals with respect
to some pivot spaces. These examples can be found, for instance, in the books [Bre11, Kes89, Kes09].

(i) We take 𝑉 = 𝐻1
0 (0, 𝐿) and 𝐻 = 𝐿2(0, 𝐿). We identify the space 𝐿2(0, 𝐿) with its dual and denote

the dual of 𝐻1
0 (0, 𝐿) by 𝐻−1(0, 𝐿). Moreover, we have the following inclusion:

𝐻1
0 (0, 𝐿) ⊂ 𝐿2(0, 𝐿) � (𝐿2(0, 𝐿))′ ⊂ 𝐻−1(0, 𝐿) .
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(ii) We take 𝑉 = 𝐻1
per(0, 𝐿) and 𝐻 = 𝐿2(0, 𝐿). Then, as before, we identify the space 𝐿2(0, 𝐿) with its

dual and we have the following inclusion:

𝐻1
per(0, 𝐿) ⊂ 𝐿2(0, 𝐿) � (𝐿2(0, 𝐿))′ ⊂ (𝐻1

per(0, 𝐿))′.

(iii) Let us take 𝐻 = ℓ2(R) and 𝑉 ⊂ 𝐻 be defined by

𝑉 :=

{
𝑥 = (𝑥𝑛)𝑛∈N :

∑︁
𝑛∈N

𝑛2 |𝑥𝑛 |2 < ∞
}
.

Then 𝑉 is a Hilbert space endowed with the inner product ⟨𝑥,𝑦⟩𝑉 :=
∑︁
𝑛∈N

𝑛2𝑥𝑛𝑦𝑛 for 𝑥 = (𝑥𝑛)𝑛∈N

and 𝑦 = (𝑦𝑛)𝑛∈N ∈ 𝑉 . We identify 𝐻 with its dual and the dual of 𝑉 is identified as

𝑉 ′ :=

{
𝑢 = (𝑢𝑛)𝑛∈N :

∑︁
𝑛∈N

1

|𝑛 |2
|𝑢𝑛 |2 < ∞

}
.

Moreover, we have the following relation:

𝑉 ⊂ 𝐻 � 𝐻 ′ ⊂ 𝑉 ′.

We now define the adjoint of a linear operator. Let 𝑋,𝑌 be Banach spaces and 𝐴 : D(𝐴) ⊂ 𝑋 → 𝑌

be a densely defined linear operator. The adjoint of 𝐴 is an operator (𝐴∗,D(𝐴∗)) on 𝑋 ′ defined as
follows: Define

D(𝐴∗) :=
{
𝑓 ∈ 𝑋 ′ : ∃ 𝐶 > 0 such that |𝑓 (𝐴𝑢) | ≤ 𝐶 ∥𝑢∥𝑋 , ∀𝑢 ∈ D(𝐴)

}
.

Take 𝑓 ∈ D(𝐴∗). Let us define 𝑔𝑓 : D(𝐴) → R by 𝑔𝑓 (𝑢) = 𝑓 (𝐴𝑢) for all 𝑢 ∈ D(𝐴). Then 𝑔𝑓 is a

bounded linear functional on D(𝐴). Thus, there exists a unique extension 𝑔𝑓 of 𝑔𝑓 on D(𝐴) = 𝑋 . This
implies 𝑔𝑓 ∈ 𝑋 ′. We define 𝐴∗ 𝑓 = 𝑔𝑓 . Note that for all 𝑢 ∈ D(𝐴), 𝐴∗ 𝑓 (𝑢) = 𝑔𝑓 (𝑢) = 𝑔𝑓 (𝑢) = 𝑓 (𝐴𝑢).
For a Hilbert space 𝐻 , we define the adjoint operator 𝐴∗ as the unique vector 𝑓 ∈ D(𝐴∗) such that
⟨𝐴∗ 𝑓 ,𝑢⟩𝐻 = ⟨𝑓 , 𝐴𝑢⟩𝐻 for all 𝑢 ∈ D(𝐴) and we say 𝐴 is self-adjoint if (𝐴,D(𝐴)) = (𝐴∗,D(𝐴∗)).

We now define a family of bounded linear operators which will be very crucial for infinite dimen-
sional linear control systems.

Definition 2.1.1 (Semigroup). Let 𝑋 be a Banach space and {𝑆 (𝑡)}𝑡≥0 be a family of bounded linear
operators on 𝑉 . We say {𝑆 (𝑡)}𝑡≥0 is a C0-Semigroup if

(i) 𝑆 (0) = 𝐼 , where 𝐼 is the identity map on 𝑉 .

(ii) 𝑆 (𝑡 + 𝑠) = 𝑆 (𝑡)𝑆 (𝑠) for all 𝑡, 𝑠 ≥ 0. (Semigroup property)

(iii) For every 𝑢 ∈ 𝑋 , 𝑆 (𝑡)𝑢 → 𝑢 as 𝑡 → 0+. (Continuity property)

Further, if ∥𝑆 (𝑡)∥ ≤ 1 for all 𝑡 ≥ 0, we say that {𝑆 (𝑡)}𝑡≥0 is a contraction semigroup.

Example 2.1.3. We write the following examples of semigroups which will be used throughout this
thesis.

(a) If 𝐴 is a bounded linear operator on a Banach space 𝑋 , then the family {𝑆 (𝑡)}𝑡≥0 defined by
𝑆 (𝑡) = 𝑒𝑡𝐴 for 𝑡 ≥ 0 is a C0-semigroup on 𝑋 .

(b) Let 𝑋 :=
{
𝑓 : [0,∞) → R : 𝑓 is bounded and uniformly continuous on [0,∞)

}
. It is easy to verify

that 𝑋 is a Banach space with respect to the sup norm ∥·∥∞. Let us define 𝑆 (𝑡) : 𝑋 → 𝑋 by

(𝑆 (𝑡) 𝑓 ) (𝑠) = 𝑓 (𝑡 + 𝑠) for all 𝑡, 𝑠 ≥ 0.

Then {𝑆 (𝑡)}𝑡≥0 is a C0-semigroup on 𝑋 .
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(c) Let 𝑋 := ℓ2(C) =
{
𝑥 = (𝑥𝑛)𝑛∈N :

∑
𝑛∈N |𝑥𝑛 |2 < ∞

}
and let (𝜆𝑛)𝑛∈N be a sequence of non-negative

real numbers. Let us define 𝑆 (𝑡) : 𝑋 → 𝑋 by

𝑆 (𝑡)𝑥 :=
(
𝑒−𝜆𝑛𝑡𝑥𝑛

)
𝑛∈N

for 𝑥 = (𝑥𝑛)𝑛∈N ∈ 𝑋, and 𝑡 ≥ 0.

Then {𝑆 (𝑡)}𝑡≥0 defines a C0-semigroup on 𝑋 .

(d) Let 𝐻 be a separable Hilbert space and (𝜑𝑛)𝑛∈N be an orthonormal basis of 𝐻 . Also, let (𝜆𝑛)𝑛∈N be
a sequence of non-negative real numbers. Then the family {𝑆 (𝑡)}𝑡≥0, where 𝑆 (𝑡) : 𝐻 → 𝐻 is defined
by

𝑆 (𝑡)𝑢 =
∑︁
𝑛∈N

𝑒−𝜆𝑛𝑡 ⟨𝑢, 𝜑𝑛⟩𝐻 𝜑𝑛, for 𝑢 ∈ 𝐻,

is a C0-semigroup on 𝐻 .

Definition 2.1.2 (Infinitesimal Generator). Let 𝑋 be a Banach space and {𝑆 (𝑡)}𝑡≥0 be a C0-semigroup
on 𝑋 . Then the operator (𝐴,D(𝐴)) defined by

D(𝐴) =
{
𝑢 ∈ 𝑋 : lim𝑡→0+

𝑆 (𝑡 )𝑢−𝑢
𝑡

exists
}
,

𝐴𝑢 = lim𝑡→0+
𝑆 (𝑡 )𝑢−𝑢

𝑡
for all 𝑢 ∈ D(𝐴)

is called an infinitesimal generator of the semigroup {𝑆 (𝑡)}𝑡≥0.

Example 2.1.4. We will consider only the examples of semigroups considered above (Example 2.1.3)
and write the corresponding infinitesimal generators.

(a) The bounded operator 𝐴 considered in Example 2.1.3-(a) is the infinitesimal generator of the
semigroup {𝑒𝑡𝐴}𝑡≥0 on 𝑋 .

(b) In Example 2.1.3-(b), the generator is given by (𝐴,D(𝐴)) where{
D(𝐴) :=

{
𝑓 ∈ 𝑋 : 𝑓 ′ ∈ 𝑋

}
,

𝐴𝑓 := 𝑓 ′, 𝑓 ∈ D(𝐴).

(c) The semigroup defined in 2.1.3-(c) has the generator (𝐴,D(𝐴)) where{
D(𝐴) :=

{
𝑥 = (𝑥𝑛)𝑛∈N ∈ 𝑋 : (𝜆𝑛𝑥𝑛)𝑛∈N ∈ 𝑋

}
,

𝐴𝑥 := (𝜆𝑛𝑥𝑛)𝑛∈N, 𝑥 ∈ D(𝐴) .

(d) Finally, in Example 2.1.3-(d), the generator is given by (𝐴,D(𝐴)) where
D(𝐴) :=

{
𝑢 ∈ 𝑋 :

∑︁
𝑛∈N

��𝜆𝑛 ⟨𝑢, 𝜑𝑛⟩𝐻 ��2 < ∞
}
,

𝐴𝑢 :=
∑︁
𝑛∈N

𝜆𝑛 ⟨𝑢, 𝜑𝑛⟩𝐻 𝜑𝑛, 𝑢 ∈ D(𝐴).

We leave the details here and refer to the book [Vra03], which contains several examples of semigroups
and its generators including the above.

We now write some important properties of a C0-semigroup on a Banach space.

Theorem 2.1.2 (Properties of a C0-Semigroup). Let 𝑋 be a Banach space and let {𝑆 (𝑡)}𝑡≥0 be a
C0-semigroup on 𝑋 . Then the following statements hold:

(i) There exist 𝑀 ≥ 1 and 𝜔 ∈ R such that ∥𝑆 (𝑡)∥ ≤ 𝑀𝑒𝜔𝑡 , for all 𝑡 ≥ 0.
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(ii) For all 𝑢 ∈ 𝑋 and 𝑡 > 0,
∫ 𝑡

0
𝑆 (𝜏)𝑢𝑑𝜏 ∈ D(𝐴) and 𝐴

(∫ 𝑡

0
𝑆 (𝜏)𝑢𝑑𝜏

)
= 𝑆 (𝑡)𝑢 − 𝑢.

(iii) For all 𝑢 ∈ D(𝐴) and 𝑡 ≥ 0, 𝑆 (𝑡)𝑢 ∈ D(𝐴), 𝑑
𝑑𝑡
𝑆 (𝑡)𝑢 = 𝐴𝑆 (𝑡)𝑢 = 𝑆 (𝑡)𝐴𝑢, and the mapping

𝑡 ∈ [0,∞) ↦→ 𝑆 (𝑡)𝑢 ∈ 𝑋 is C1.

Corollary 2.1.1. Let 𝜏 > 0 be given. If 𝐴 generates a C0-semigroup {𝑆 (𝑡)}𝑡≥0 in a Banach space 𝑋 ,
then for given 𝑢0 ∈ D(𝐴) and 𝑓 ∈ C1( [0, 𝜏];𝑋 ), the equation{

𝑢′(𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡), 𝑡 ∈ (0, 𝜏),
𝑢 (0) = 𝑢0

(2.1)

admits a unique solution 𝑢 in the space C1( [0, 𝜏];𝑋 ) ∩ C([0, 𝜏];D(𝐴)). Moreover, 𝑢 has the expression

𝑢 (𝑡) = 𝑆 (𝑡)𝑢0 +
∫ 𝑡

0
𝑆 (𝑡 − 𝑠) 𝑓 (𝑠)𝑑𝑠, for all 𝑡 ∈ [0, 𝜏] .

We refer to the book [CZ95, Theorem 3.1.3, page 103] for a proof of the above result; see also
the book [BDPDM07]. In view of this result, it is enough to find the corresponding semigroup to
guarantee the existence of a solution to linear systems. In this context, we write the following result
which gives necessary and sufficient condition on the operator 𝐴 for generating a C0-semigroup.

Theorem 2.1.3 (Hille-Yosida). A linear operator (𝐴,D(𝐴)) on a Banach space 𝑋 generates a C0-
semigroup of contractions {𝑆 (𝑡)}𝑡≥0 on 𝑋 if, and only if,

(i) (𝐴,D(𝐴)) is closed,

(ii) (𝐴,D(𝐴)) is densely defined,

(iii) for every 𝜆 > 0, (𝜆𝐼 −𝐴)−1 : 𝑋 → D(𝐴) is a bounded linear operator and


(𝜆𝐼 −𝐴)−1

 ≤ 1

𝜆
.

Property (iii) of the above Theorem might be difficult to prove for unbounded linear operators in
arbitrary Banach spaces. However, in Hilbert space, we can find equivalent results that are relatively
easy compared to the above result. To state these results, we need the following notions:

Definition 2.1.3 (Maximal Dissipative). Let 𝐻 be a Hilbert space. A linear operator (𝐴,D(𝐴)) on 𝐻
is said to be

(i) dissipative if ⟨𝐴𝑢,𝑢⟩𝐻 ≤ 0 for all 𝑢 ∈ D(𝐴).

(ii) maximal dissipative if 𝐴 is dissipative and Range(𝐼 −𝐴) = 𝐻 .

With the help of these two properties, we now write the following results which we will use through-
out this thesis to prove the existence of a unique solution to the linear systems. For a proof of these
results, we refer to the book [Paz83, Section 1.4, Page 13]; see also [Kes89, Section 4.5, Page 188].

Theorem 2.1.4 (Lumer-Philips). An operator (𝐴,D(𝐴)) on a Hilbert space 𝐻 generates a C0-semigroup
of contractions if, and only if, (𝐴,D(𝐴)) is maximal dissipative.

Corollary 2.1.2. Let (𝐴,D(𝐴)) be a closed and densely defined linear operator on a Hilbert space
𝐻 . Then, (𝐴,D(𝐴)) generates a C0-semigroup of contractions if both (𝐴,D(𝐴)) and (𝐴∗,D(𝐴∗)) are
dissipative.

From the Lumer-Philips theorem, the existence of a unique solution to the linear system (2.1) in a
Hilbert space is equivalent to proving 𝐴 is maximal dissipative and to prove an operator is maximal,
the following result plays an important role. This result is a generalization of the famous Riesz
representation theorem (Theorem 2.1.1); see the books [DL88, DL90] for a proof of this result.

Theorem 2.1.5 (Lax-Milgram Theorem). Let 𝐻 be a Hilbert space. Let 𝐵 : 𝐻 × 𝐻 → R be a bilinear
mapping such that
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(i) there exists a positive constant 𝛼 > 0 such that |𝐵(𝑢, 𝑣) | ≤ 𝛼 ∥𝑢∥𝐻 ∥𝑣 ∥𝐻 for all 𝑢, 𝑣 ∈ 𝐻 ,

(ii) there exists a positive constant 𝛽 > 0 such that 𝐵(𝑢,𝑢) ≥ 𝛽 ∥𝑢∥2𝐻 for all 𝑢 ∈ 𝐻 .

Then, for every bounded linear functional 𝑓 : 𝐻 → R there exists a unique 𝑢 ∈ 𝐻 such that 𝐵(𝑢, 𝑣) =
⟨𝑓 , 𝑣⟩𝐻 for all 𝑣 ∈ 𝐻 .

The next important part in this thesis involves the spectrum of a linear operator. Let 𝑋 be a
Banach space and 𝐴 : D(𝐴) ⊂ 𝑋 → 𝑋 be a linear operator. For given 𝜆 ∈ C, we define the operator
𝐴𝜆 : D(𝐴) ⊂ 𝑋 → 𝑋 by 𝐴𝜆 := (𝜆𝐼 − 𝐴) . The inverse of 𝐴𝜆, that is the operator (𝜆𝐼 − 𝐴)−1 (if exists)
is called the resolvent operator of 𝐴. Further, the resolvent set of 𝐴 is denoted by 𝜌 (𝐴) and is
defined as

𝜌 (𝐴) =
{
𝜆 ∈ C : (𝜆𝐼 −𝐴)−1 is a densely defined bounded linear operator on 𝑋

}
.

The complement of the resolvent set is called the spectrum of the operator 𝐴, that is, 𝜎 (𝐴) := C\𝜌 (𝐴).
Moreover, the spectrum of 𝐴 can be partitioned into the following disjoint sets:

(a) The point spectrum of discrete spectrum is denoted by 𝜎𝑝 (𝐴) and is defined as

𝜎𝑝 (𝐴) := {𝜆 ∈ C : (𝜆𝐼 −𝐴) is not invertible} .

The element 𝜆 ∈ 𝜎𝑝 (𝐴) is called an eigenvalue of the operator 𝐴 and the elements 𝑢 ∈ ker(𝐴𝜆)
are called eigenvectors/ eigenfunctions of 𝐴 corresponding to this eigenvalue 𝜆. Moreover, the
dimension of ker(𝐴𝜆) is called the geometric multiplicity of the eigenvalue 𝜆.

(b) The continuous spectrum is denoted by 𝜎𝑐 (𝐴) and is defined as

𝜎𝑐 (𝐴) :=
{
𝜆 ∈ C : (𝜆𝐼 −𝐴)−1 is a densely defined unbounded operator on 𝑋

}
.

(c) The residual spectrum is denoted by 𝜎𝑟 (𝐴) and is defined as

𝜎𝑟 (𝐴) :=
{
𝜆 ∈ C : (𝜆𝐼 −𝐴)−1 exists but not densely defined

}
.

Note that, if 𝜆 ∈ 𝜎𝑟 (𝐴), then the operator (𝜆𝐼 −𝐴)−1 may be bounded or unbounded.

We also mention here that, if 𝑋 is a Hilbert space and 𝜆 ∈ 𝜎 (𝐴) then 𝜆 ∈ 𝜎 (𝐴∗).

Let 𝑋,𝑌 be Banach spaces. We say a linear operator 𝐴 : 𝑋 → 𝑌 is compact if 𝐴(𝐵) is relatively
compact in 𝑌 for every bounded set 𝐵 in 𝑋 . In other words, 𝐴 is compact if and only if, for every
bounded sequence (𝑢𝑛)𝑛∈N in 𝑋 , the sequence (𝐴𝑢𝑛)𝑛∈N has a convergent subsequence in 𝑌 . Moreover,
the operator 𝐴 is compact if and only if 𝐴∗ is compact.

We now write two important results related to the spectrum and resolvent of a linear operator,
which we have used throughout this thesis. The proof can be found in [DS71, Lemma 2, Page 2292].

Theorem 2.1.6. Let 𝐻 be a Hilbert space and 𝐴 : D(𝐴) ⊂ 𝐻 → 𝐻 be a linear operator. Then:

(i) If the resolvent operator (𝜆𝐼 − 𝐴)−1 is compact in 𝐻 for some 𝜆 ∈ 𝜌 (𝐴), then the spectrum of 𝐴
is discrete and contains only the eigenvalues of 𝐴.

(ii) If the resolvent (𝜆𝐼 −𝐴)−1 of 𝐴 is compact in 𝐻 for some 𝜆 ∈ 𝜌 (𝐴), then it is compact for every
𝜆 ∉ 𝜎 (𝐴).

We conclude this section with an important result for a compact self-adjoint operator that guar-
antees the existence of a basis consisting only the eigenvectors of that operator. For the proof of this
result, we refer to the book [Bre11, Theorem 6.11, Page Page 167].

Theorem 2.1.7. Let 𝐻 be a separable Hilbert space and let 𝐴 : D(𝐴) ⊂ 𝐻 → 𝐻 be a compact self-
adjoint operator. Then there exists an orthonormal basis of 𝐻 consisting of the eigenvectors of 𝐴.
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2.1.1 Riesz basis

The concept of Riesz basis comes from functional analysis and operator theory, in particular, in the
context of Hilbert spaces. It is a special type of basis that possesses properties related to the standard
orthonormal basis but doesn’t necessarily consist of orthogonal vectors. We first define the notion of
a Riesz basis (see [CZ20, Section 3.2, Page 79] for instance).

Definition 2.1.4. Let 𝐻 be a Hilbert space. We say a family {𝜑𝑛 : 𝑛 ∈ N} ⊂ 𝐻 is a Riesz basis of
𝐻 if the following conditions hold:

(i) The set {𝜑𝑛 : 𝑛 ∈ N} is complete in 𝐻 , that is, span{𝜑𝑛 : 𝑛 ∈ N} = 𝐻 .

(ii) There exist constants 𝐶1,𝐶2 > 0 such that the inequality

𝐶1

𝑁∑︁
𝑛=1

|𝑎𝑛 |2 ≤





 𝑁∑︁
𝑛=1

𝑎𝑛𝜑𝑛






2
𝐻

≤ 𝐶2

𝑁∑︁
𝑛=1

|𝑎𝑛 |2 (2.2)

holds for any given finite sequence (𝑎𝑛)1≤𝑛≤𝑁 ⊂ C.

We first write the following result which gives a relation between Riesz and orthonormal basis.
The proof of this result can be found in many books, for instance in [CZ20, Lemma 3.2.2]; see also
the book by Young [You01, Chapter 1].

Theorem 2.1.8. Let 𝐻 be a Hilbert space and {𝑒𝑛 : 𝑛 ∈ N} be an orthonormal basis of 𝐻 . Then,
a family {𝜑𝑛 : 𝑛 ∈ N} ⊂ 𝐻 is a Riesz basis of 𝐻 if, and only if, there exists an invertible linear
transformation 𝑇 : 𝐻 → 𝐻 such that 𝑇𝑒𝑛 = 𝜑𝑛 holds for all 𝑛 ∈ N.

Using the above result, we can prove that a Riesz basis has similar properties to an orthonormal
basis. More precisely, we have the following result, the proof of which can be found, for instance, in
[CZ20, Lemma 3.2.4, Page 82].

Theorem 2.1.9. Let 𝐻 be a Hilbert space and let {𝜑𝑛 : 𝑛 ∈ N} ⊂ 𝐻 be a Riesz basis of 𝐻 . Then
there exists a unique family {𝜓𝑛 : 𝑛 ∈ N} in 𝐻 such that every 𝑢 ∈ 𝐻 can be expressed uniquely as

𝑢 =
∑︁
𝑛∈N

⟨𝑢,𝜓𝑛⟩𝐻 𝜑𝑛

with

𝐶1

∑︁
𝑛∈N

��⟨𝑢,𝜓𝑛⟩𝐻 ��2 ≤ ∥𝑢∥2𝐻 ≤ 𝐶2

∑︁
𝑛∈N

��⟨𝑢,𝜓𝑛⟩𝐻 ��2
for some constants 𝐶1,𝐶2 > 0.

We can further characterize the Riesz basis even when we do not have any orthonormal basis. In
fact, the following result shows that any independent family that is close to a Riesz basis (in a sense
given below) is also a Riesz basis. We refer to the book [You01, Theorem 15, Page 38] and the article
of Gohberg and Krein [GK69] for a proof of this result.

Theorem 2.1.10 (Bari). Let 𝐻 be a Hilbert space and {𝜑𝑛 : 𝑛 ∈ N} be a Riesz basis of 𝐻 . Let
{𝜓𝑛 : 𝑛 ∈ N} be a subset of 𝐻 with the following properties:

(i) The set {𝜓𝑛 : 𝑛 ∈ N} is 𝜔-linearly independent in 𝐻 , that is, if there exists (𝑎𝑛)𝑛∈N ⊂ C such

that
∑︁
𝑛∈N

𝑎𝑛𝜓𝑛 = 0, then 𝑎𝑛 = 0 for all 𝑛 ∈ N.

(ii) The set {𝜓𝑛 : 𝑛 ∈ N} is quadratically close to {𝜑𝑛 : 𝑛 ∈ N} in 𝐻 , that is,
∑︁
𝑛∈N

∥𝜑𝑛 −𝜓𝑛 ∥2𝐻 < ∞.

Then, {𝜓𝑛 : 𝑛 ∈ N} is also a Riesz basis of 𝐻 .
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In control theoretic perspective, one requires to find a Riesz basis that consists only the (general-
ized) eigenvectors of certain linear operators. To do so, one can apply the above result and therefore
we need to estimate “high frequencies of eigen-elements” by asymptotic analysis technique. Also,
we need to find a sequence of (generalized) eigenvectors {𝜓𝑛}𝑛≥𝑁+1 (for some large 𝑁 ∈ N) that is
quadratically close to a given Riesz basis {𝜙𝑛}𝑛≥𝑁+1. Finally, the most difficult part is to show that
the number of linearly independent “lower frequencies” of eigenvectors is exactly 𝑁 . To simplify the
last step, we write the following result which includes these lower frequencies of eigenvectors and for
the proof of this result, we refer to the book by Singer [Sin70, Corollary 11.4]; see also the article
[Guo01].

Proposition 2.1.1. Let 𝐻 be a Hilbert space and {𝜑𝑛 : 𝑛 ∈ N} be a Riesz basis of 𝐻 . Let {𝜓𝑛 : 𝑛 ≥
𝑁 + 1} (for some 𝑁 ≥ 0) be a subset of 𝐻 such that

∑
𝑛≥𝑁+1 ∥𝜑𝑛 −𝜓𝑛 ∥2𝐻 < ∞. Then there exists an

𝑀 ≥ 𝑁 such that the set {𝜑𝑛 : 1 ≤ 𝑛 ≤ 𝑀} ∪ {𝜓𝑛 : 𝑛 ≥ 𝑀 + 1} forms a Riesz basis of 𝐻 .

The above result includes only higher frequencies of the elements {𝜓𝑛} and lower frequencies of the
known basis {𝜙𝑛}. If {𝜓𝑛 : 𝑛 ∈ N} is the set of (generalized) eigenvectors of a linear operator 𝐴, then
from this result we cannot conclude Riesz basis property of the whole set of eigenvectors {𝜓𝑛 : 𝑛 ∈ N},
as the set {𝜑𝑛 : 1 ≤ 𝑛 ≤ 𝑀} might not necessarily be the (generalized) eigenvector of 𝐴. To ease this
difficulty, we will state the following result of B. Z. Guo (see [Guo01, Theorem 6.3]) which shows that
we can obtain a Riesz basis with elements from only the (generalized) eigenvectors of the operator 𝐴.

Theorem 2.1.11. Let 𝐻 be a Hilbert space and 𝐴 : D(𝐴) ⊂ 𝐻 → 𝐻 be a densely defined linear
operator such that the resolvent of 𝐴 is compact in 𝐻 . Let {𝜑𝑛 : 𝑛 ∈ N} be a Riesz basis of 𝐻 . If
there exists a family of generalized eigenvectors {𝜓𝑛 : 𝑛 ≥ 𝑁 } ⊂ 𝐻 of 𝐴 (for some 𝑁 ≥ 0) such that∑

𝑛≥𝑁+1 ∥𝜑𝑛 −𝜓𝑛 ∥2𝐻 < ∞, then:

(i) There exist constant 𝑀 > 𝑁 and a finite sequence of generalized eigenvectors {𝜓𝑛 : 1 ≤ 𝑛 ≤ 𝑀}
of 𝐴 such that the family {𝜓𝑛 : 1 ≤ 𝑛 ≤ 𝑀} ∪ {𝜓𝑛 : 𝑛 ≥ 𝑀 + 1} forms a Riesz basis of 𝐻 .

(ii) The spectrum of 𝐴 is 𝜎 (𝐴) = {𝜆𝑛 : 𝑛 ∈ N}, where 𝜆𝑛 is the corresponding eigenvalues of 𝐴
(counted with algebraic multiplicity).

(iii) If there exists an 𝑀0 > 0 such that 𝜆𝑛 ≠ 𝜆𝑚 for all 𝑚,𝑛 > 𝑀0, then there exists an 𝑁0 > 𝑀0 such
that all the eigenvalues (𝜆𝑛)𝑛>𝑁0 of 𝐴 are algebraically simple.

Example 2.1.5. We now give some examples of Riesz bases in respective Hilbert spaces and refer to
the books [You01] and [CZ20], which contains several interesting examples of Riesz bases.

(a) Every orthonormal basis in a Hilbert space 𝐻 is a Riesz basis of 𝐻 .

(b) The families

{√︃
2
𝐿
sin

(
𝑛𝜋𝑥
𝐿

)
: 𝑛 ∈ N

}
and

{
1√
𝐿
𝑒

2𝑖𝑛𝜋𝑥
𝐿 : 𝑛 ∈ N

}
are orthonormal bases of 𝐿2(0, 𝐿)

and hence form Riesz bases of 𝐿2(0, 𝐿).

(c) Let 𝑠 > 0. The families
{
𝑛𝑠 sin

(
𝑛𝜋𝑥
𝐿

)
: 𝑛 ∈ N

}
and

{
𝑛𝑠𝑒

2𝑖𝑛𝜋𝑥
𝐿 : 𝑛 ∈ N

}
are Riesz bases of (𝐻𝑠 (0, 𝐿))′.

This can be proved easily by applying Theorem 2.1.8.

2.1.2 Biorthogonal sequences

Biorthogonal sequences are an important part in various areas of mathematics and in particular,
they are used to prove controllability of several dynamical systems. In this section, we define the
biorthogonal sequence and state some important results of existence of such sequences. These results
play crucial roles throughout this thesis.

Definition 2.1.5. Let 𝐻 be a Hilbert space and (𝑥𝑛)𝑛∈N be a sequence of elements in 𝐻 . We say a
family (𝑦𝑘 )𝑘∈N ⊂ 𝐻 is biorthogonal to (𝑥𝑛)𝑛∈N in 𝐻 if

⟨𝑥𝑛, 𝑦𝑘⟩𝐻 = 𝛿𝑘𝑛 for all 𝑛, 𝑘 ∈ N.
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We first consider the simplest case which guarantees the existence of a biorthogonal sequence of
the family (𝑒−𝑛2𝜋2𝑡 )𝑛∈N. Moreover, we obtain some bounds on the biorthogonal sequence, which is
very crucial to prove controllability results of the linear systems.

Theorem 2.1.12. Let (𝜆𝑛)𝑛∈N be a sequence of distinct positive reals. Let us further assume that
there exist 𝑁 ∈ N large enough and a constant 𝛿 > 0 such that

∑︁
𝑛≥𝑁

1

𝜆𝑛
≤ 𝜖, for all 𝜖 > 0,

|𝜆𝑛+1 − 𝜆𝑛 | ≥ 𝛿, for all 𝑛 ∈ N.

Then, for given 𝑇 > 0, there exists a biorthogonal sequence (𝑞𝑘 )𝑘∈N ⊂ 𝐿2(0,𝑇 ) to the family (𝑒−𝜆𝑛𝑡 )𝑛∈N
in the space 𝐿2(0,𝑇 ) with the estimate

∥𝑞𝑘 ∥𝐿2 (0,𝑇 ) ≤ 𝐶𝑒𝜖𝜆𝑘 for all 𝑘 ∈ N, (2.3)

for some constant 𝐶 > 0.

We refer to the work of Fernández-Cara, González-Burgos and Teresa for a proof of this result
in a more general setting (see Theorem 2.1.14 below); see also the lecture notes by Boyer [Boy23,
Theorem IV.1.10, Page 52] and of Micu and Zuazua [Zua06, Theorem 2.6.2, Page 142]. In fact, the
above result is a consequence of the well-known Müntz Theorem, which says that the family (𝑒𝜆𝑛𝑡 )𝑛∈N
is complete in 𝐿2(0,𝑇 ) if and only if

∑︁
𝑛∈N

1

𝜆𝑛
= ∞. Moreover, the gap condition is required to obtain

the 𝐿2-estimate on the biorthogonal sequence (𝑞𝑘 )𝑘∈N. In this context, we mention that the Müntz
Theorem is a generalization of the famous Weierstrass approximation theorem, see [Rud87, Section
15.25, Page 312] for more details in this regard.

There are many generalizations of this result available in the literature. We present here some of
the results that are relevant to this thesis.

Theorem 2.1.13. Let (𝜆𝑛)𝑛∈N be a sequence of complex numbers with the following properties: There
exists 𝑁 ∈ N large enough and constants 𝜖, 𝛿, 𝑐, 𝐴0 > 0, 𝑟 > 1 and 𝐵0 ≥ 𝛿 such that

(P1) 𝜆𝑘 ≠ 𝜆𝑛 for all 𝑘, 𝑛 ∈ N with 𝑘 ≠ 𝑛,

(P2) Re(𝜆𝑛 )
|Im(𝜆𝑛 ) | ≥ 𝑐 for all 𝑛 ≥ 𝑁 ,

(P3) |𝜆𝑘 − 𝜆𝑛 | ≥ 𝛿 |𝑘𝑟 − 𝑛𝑟 | for all 𝑘, 𝑛 ≥ 𝑁 with 𝑘 ≠ 𝑛,

(P4) 𝜖 (𝐴0 + 𝐵0𝑛𝑟 ) ≤ |𝜆𝑛 | ≤ 𝐴0 + 𝐵0𝑛𝑟 for all 𝑛 ≥ 𝑁 .

Then there exists a sequence (𝑞𝑘 )𝑘∈N biorthogonal to (𝑒−𝜆𝑛𝑡 )𝑛∈N in 𝐿2(0,𝑇 ). Moreover, for given 𝜖 > 0
there exists a constant 𝐶𝜖 > 0 such that

∥𝑞𝑘 ∥𝐿2 (0,𝑇 ) ≤ 𝐶𝜖𝑒
𝜖Re(𝜆𝑘 ) for all 𝑘 ∈ N. (2.4)

This result has been proved by Hansen in [Han91]. We note here that, the above result is also
valid in the case 𝑟 = 1. This is written in the following result:

Theorem 2.1.14. Let (𝜆𝑛)𝑛∈N be a sequence of complex numbers with the properties
Re(𝜆𝑛) ≥ 𝛿 |𝜆𝑛 | , |𝜆𝑛 − 𝜆𝑘 | ≥ 𝑐 |𝑛 − 𝑘 | , for all 𝑛, 𝑘 ∈ N,∑︁
𝑛∈N

1

|𝜆𝑛 |
< ∞ (2.5)

for some 𝛿, 𝑐 > 0. Then there exists a biorthogonal sequence (𝑞𝑘 )𝑘∈N to (𝑒−𝜆𝑛𝑡 )𝑛∈N in 𝐿2(0,𝑇 ). Moreover,
for given 𝜖 > 0, we have the following estimate

∥𝑞𝑘 ∥𝐿2 (0,𝑇 ) ≤ 𝐶𝑒𝜖Re(𝜆𝑘 ) for all 𝑘 ∈ N, (2.6)

where 𝐶 > 0 is a constant.
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For the proof of this result, we refer to the work [FCGBdT10, Lemma 3.1]. We must mention here

that the condition
∑︁
𝑛∈N

1

|𝜆𝑛 |
< ∞ and Re(𝜆𝑛) ≥ 𝛿 |𝜆𝑛 | is enough to find the existence of a biorthogonal

family. However, to obtain the required bound on the biorthogonal sequence, the gap condition
becomes the necessary part.

In all of the above cases, the constant 𝐶 appearing in the biorthogonal estimates do not have
precise dependence on 𝑇 . In the context of controllability of nonlinear systems, this dependence plays
a crucial role (see Chapter 5 for more details). The following result gives an optimal estimates on this
constant and in fact this is the more general result currently available in the literature. For the proof
of this result, we refer to the lecture note by Boyer [Boy23, Theorem V.4.26 & Corollary V.4.27], see
also [ABM21].

Theorem 2.1.15. Let Λ be a subset of complex numbers satisfying the following properties:

(i) There exists 𝜂 > 0 such that Λ ⊂ 𝑆𝜂, where

𝑆𝜂 := {𝑧 ∈ C : Re(𝑧) > 0, and |Im(𝑧) | < sinh(𝜂) |Re(𝑧) |} .

(ii) There exists 𝜅 > 0 and 𝛽 ∈ (0, 1) such that

𝑁Λ(𝑟 ) ≤ 𝜅𝑟 𝛽 , for all 𝑟 > 0 (2.7)

and
|𝑁Λ(𝑟 ) − 𝑁Λ(𝑠) | ≤ 𝜅

(
1 + |𝑟 − 𝑠 |𝛽

)
, for all 𝑟, 𝑠 > 0, (2.8)

where 𝑁𝜆 : [0,∞) → N is the counting function defined by

𝑁Λ(𝑟 ) := # {𝜆 ∈ Λ : |𝜆 | < 𝑟 } .

(iii) There exists 𝛾 > 0 such that

|𝜆 − 𝜇 | ≥ 𝛾, for all 𝜆, 𝜇 ∈ Λ, 𝜆 ≠ 𝜇. (2.9)

Then, for any given 𝑇 > 0, there exists a family (𝑞𝜆,𝑇 )𝜆∈Λ in 𝐿2(0,𝑇 ) biorthogonal to (𝑒−𝜆𝑡 )𝜆∈Λ, that is,∫ 𝑇

0
𝑒−𝜆𝑡𝑞𝜇,𝑇𝑑𝑡 = 𝛿𝜆,𝜇, for all 𝜆, 𝜇 ∈ Λ.

Moreover, we have the following estimate

𝑞𝜇,𝑇 


𝐿2 (0,𝑇 ) ≤ 𝑀𝑒

𝑇
2Re(𝜇 )+𝑀 (Re(𝜇 ) )𝛽+𝑀𝑇

− 𝛽
1−𝛽

, for all 𝜇 ∈ Λ, (2.10)

for some constant 𝑀 > 0 depending only on 𝜅, 𝛽 and 𝛾 .

2.1.3 The method of moments

One of the important topic of discussion in this thesis is the method of moments, which is very
useful for the study of controllability of linear systems (both finite and infinite dimensional). This
method can be used, in particular, to prove controllability of ordinary differential equations, the heat
equation, wave equation and other partial differential equations whose solutions can be computed
using separation of variables, see for instance [FR71, FR75, Rus78]. In Section 2.4, we have explained
one application of this method in the case of 1d heat equation and in Chapters 4 and 5, this method
is also applied for some coupled linear systems. In the present section, we give a brief description of
this method, which can be found, for instance, in the book [DZ06, Section 3.3, Page 36].

Let 𝐻 be a Hilbert space and let (𝑥𝑛)𝑛∈N be a sequence in 𝐻 . For a given sequence (𝑎𝑛)𝑛∈N ∈ ℓ2,
the problem of moments is to find a 𝑞 ∈ 𝐻 such that

⟨𝑞, 𝑥𝑛⟩𝐻 = 𝑎𝑛, for all 𝑛 ∈ N. (2.11)
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To solve the above problem, it is enough to find a biorthogonal family of (𝑥𝑛)𝑛∈N in 𝐻 . In fact, if 𝑞𝑘 ∈ 𝐻
satisfy ⟨𝑞𝑘 , 𝑥𝑛⟩𝐻 = 𝛿𝑘𝑛 for all 𝑛, 𝑘 ∈ N, then the element 𝑞 =

∑︁
𝑘∈N

𝑎𝑘𝑞𝑘 verifies ⟨𝑞, 𝑥𝑛⟩𝐻 =
∑︁
𝑘∈N

𝑎𝑘 ⟨𝑞𝑘 , 𝑥𝑛⟩𝐻 =∑︁
𝑘∈N

𝑎𝑘𝛿
𝑘
𝑛 = 𝑎𝑛 for all 𝑛 ∈ N. Thus we get a solution for the general problem provided 𝑞 ∈ 𝐻 , i.e.,

∥𝑞∥𝐻 < ∞. More precisely, we have the following statement:

Lemma 2.1.1. Let 𝐻 be a Hilbert space and let 𝑥𝑛 ∈ 𝐻 for all 𝑛 ∈ N. If (𝑞𝑘 )𝑘∈N is a biorthogonal
sequence to (𝑥𝑛)𝑛∈N in 𝐻 , then for any given sequence (𝑎𝑛)𝑛∈N ∈ ℓ2 such that∑︁

𝑘∈N
|𝑎𝑘 | ∥𝑞𝑘 ∥𝐻 < ∞,

there exists a solution 𝑞 =
∑︁
𝑘∈N

𝑎𝑘𝑞𝑘 ∈ 𝐻 of the moment problem (2.11).

The above result shows that solving a moments problem consists of determining a biorthogonal
sequence with appropriate norms. We now give an example which we will describe in detail in the
later sections in this thesis.

Example 2.1.6. Let us consider the Hilbert space 𝐻 = 𝐿2(0,𝑇 ). For a sequence of positive real numbers
(𝜆𝑛)𝑛∈N, we define 𝑥𝑛 (𝑡) = 𝑒−𝜆𝑛𝑡 for 𝑡 ∈ [0,𝑇 ]. Then, for given (𝑎𝑛)𝑛∈N ∈ ℓ2, the problem of moments
is to find a 𝑞 ∈ 𝐿2(0,𝑇 ) such that ∫ 𝑇

0
𝑞(𝑡)𝑒−𝜆𝑛𝑡𝑑𝑡 = 𝑎𝑛, ∀𝑛 ∈ N. (2.12)

If (𝑞𝑘 )𝑘∈N is biorthogonal to (𝑒−𝜆𝑛𝑡 )𝑛∈N in 𝐿2(0,𝑇 ), then the solution of the moment problem (2.12) is
given by

𝑞(𝑡) =
∑︁
𝑛≥1

𝑎𝑛𝑞𝑛 (𝑡), 𝑡 ∈ (0,𝑇 ),

provided this series is convergent in 𝐿2(0,𝑇 ), that is∑︁
𝑛≥1

|𝑎𝑛 | ∥𝑞𝑛 ∥𝐿2 (0,𝑇 ) < ∞.

2.1.4 Ingham’s inequalities

Apart from the method of moments, we will use the well-known Ingham’s inequality and some vari-
ations of it to deduce our main controllability results of this thesis. This type of inequality is a
fundamental result in harmonic analysis, particularly in the study of Fourier series and Fourier trans-
forms. More precisely, it is a key tool in proving results related to the convergence of Fourier series
and the decay properties of Fourier transforms. Further, it is also very useful in proving certain
observability inequalities, giving some controllability results for the linear control systems.

We first write the following result known as the original Ingham’s inequality, the proof of which
was given by Ingham in [Ing36]; see also the lecture note [MZ04, Theorem 2.4.1] by Micu and Zuazua
and the book [KL05, Theorem 4.3] by Komornik and Loretti.

Theorem 2.1.16. Let (𝜆𝑛)𝑛∈N be a sequence of real numbers satisfying

𝛾 := inf
𝑚≠𝑛

|𝜆𝑚 − 𝜆𝑛 | > 0. (2.13)

Then, for every bounded interval [𝑎, 𝑏] with 𝑏 − 𝑎 > 2𝜋
𝛾
, there exist constants 𝐶1,𝐶2 > 0 such that

𝐶1

∑︁
𝑛∈N

|𝑎𝑛 |2 ≤
∫ 𝑏

𝑎

�����∑︁
𝑛∈N

𝑎𝑛𝑒
𝑖𝜆𝑛𝑡

�����2 𝑑𝑡 ≤ 𝐶2

∑︁
𝑛∈N

|𝑎𝑛 |2 (2.14)

holds for every (𝑎𝑛)𝑛∈N ∈ ℓ2.
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Remark 2.1.2. We note here that the above inequality (2.14) generalizes the well-known Parseval’s
identity.

Here, the gap condition (2.13) is necessary to prove this inequality. Indeed, if the inequality (2.14)
is true then we have for 𝑎𝑘 = 1 if 𝑘 = 𝑛,𝑚 and 𝑎𝑘 = 0 for all 𝑘 ≠𝑚,𝑛 that

2𝐶1 ≤
∫ 𝑏

𝑎

���𝑒𝑖𝜆𝑛𝑡 − 𝑒𝑖𝜆𝑚𝑡
���2 𝑑𝑡 ≤ ∫ 𝑏

𝑎

|cos(𝜆𝑛𝑡) − cos(𝜆𝑚𝑡) + 𝑖 (sin(𝜆𝑛𝑡) − sin(𝜆𝑚𝑡)) |2 𝑑𝑡

=

∫ 𝑏

𝑎

[2 − 2 cos(𝜆𝑛 − 𝜆𝑚)𝑡]𝑑𝑡

≤
∫ 𝑏

𝑎

|𝜆𝑛 − 𝜆𝑚 |2 𝑡2𝑑𝑡 = |𝜆𝑛 − 𝜆𝑚 |2 𝑏
3 − 𝑎3
3

and therefore we get

|𝜆𝑛 − 𝜆𝑚 | ≥
√︂

6𝐶1

𝑏3 − 𝑎3 > 0.

Remark 2.1.3. The positive constants 𝐶1,𝐶2 appearing in the Ingham inequality depends on 𝑎, 𝑏 and
𝛾 , but the explicit expressions of these (optimal) constants are still unknown. However, some estimates
of these constants 𝐶1 and 𝐶2 are known. More precisely, for [𝑎, 𝑏] = [0,𝑇 ], it is known in [Ing36] that

𝐶1 ≥ 2

𝜋

(
𝑇 − 4𝜋2

𝛾2𝑇

)
, and 𝐶2 ≤ 20𝑇

min(2𝜋,𝛾𝑇 ) .

Moreover, if we take 𝜆𝑛 = 𝑛 for 𝑛 ∈ N, then we can explicitly compute these constants and is given by

𝐶1 =

[
𝑇

2𝜋

]
𝜋, and 𝐶2 = 𝐶1 + 1,

see for instance [HLP16]. We also mention here that, the Ingham inequality (2.14) is inconclusive in
the optimal case, that is when 𝑏 − 𝑎 = 2𝜋

𝑉0
.

Note that, the Ingham inequality (2.14) implies that the family
{
𝑒𝑖𝜆𝑛𝑡 : 𝑛 ∈ N

}
forms a Riesz basis

in the space span
{
𝑒𝑖𝜆𝑛𝑡 : 𝑛 ∈ N

}𝐿2 (0,𝑇 )
, see the Definition 2.1.4 of Riesz basis. Following the same idea

of proving Theorem 2.1.16, we can allow small perturbations on the sequence (𝜆𝑛)𝑛∈N and still obtain
the similar inequality, see [CMRR14] for instance. This result is very useful in the case of coupled
hyperbolic PDEs or in particular when a perturbation term is present in the equations.

Theorem 2.1.17. Let (𝜆𝑛)𝑛∈N be a sequence of real numbers satisfying

𝛾 := inf
𝑚≠𝑛

|𝜆𝑚 − 𝜆𝑛 | > 0. (2.15)

Let (𝜖𝑛)𝑛∈N be a sequence of complex numbers converging to 0. Then, for every bounded interval [𝑎, 𝑏]
with 𝑏 − 𝑎 > 2𝜋

𝛾
, there exist constants 𝐶1,𝐶2 > 0 such that

𝐶1

∑︁
𝑛∈N

|𝑎𝑛 |2 ≤
∫ 𝑏

𝑎

�����∑︁
𝑛∈N

𝑎𝑛𝑒
(𝑖𝜆𝑛+𝜖𝑛 )𝑡

�����2 𝑑𝑡 ≤ 𝐶2

∑︁
𝑛∈N

|𝑎𝑛 |2 (2.16)

holds for every sequence (𝑎𝑛)𝑛∈N ∈ ℓ2.

Corollary 2.1.3. Let (𝜆𝑛)𝑛∈Z be a sequence of real numbers satisfying

𝛾 := inf
𝑚,𝑛∈Z
𝑚≠𝑛

|𝜆𝑚 − 𝜆𝑛 | > 0. (2.17)

Let (𝜖𝑛)𝑛∈Z be a sequence of complex numbers converging to 0. Then, for every bounded interval [𝑎, 𝑏]
with 𝑏 − 𝑎 > 2𝜋

𝛾
, there exist constants 𝐶1,𝐶2 > 0 such that

𝐶1

∑︁
𝑛∈Z

|𝑎𝑛 |2 ≤
∫ 𝑏

𝑎

�����∑︁
𝑛∈Z

𝑎𝑛𝑒
(𝑖𝜆𝑛+𝜖𝑛 )𝑡

�����2 𝑑𝑡 ≤ 𝐶2

∑︁
𝑛∈Z

|𝑎𝑛 |2 (2.18)

holds for every sequence (𝑎𝑛)𝑛∈Z ∈ ℓ2.
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Proof. Let (𝑎𝑛)𝑛∈Z ∈ ℓ2 be given. We denote

𝑏𝑛 :=

{
𝑎 𝑛

2
, if 𝑛 is even,

𝑎− 𝑛−1
2
, if 𝑛 is odd,

, 𝜇𝑛 :=

{
𝜆𝑛

2
, if 𝑛 is even,

𝜆− 𝑛−1
2
, if 𝑛 is odd,

, and 𝛿𝑛 :=

{
𝜖 𝑛

2
, if 𝑛 is even,

𝜖− 𝑛−1
2
, if 𝑛 is odd,

for 𝑛 ∈ N. Then we obtain∫ 𝑏

𝑎

�����∑︁
𝑛∈Z

𝑎𝑛𝑒
(𝑖𝜆𝑛+𝜖𝑛 )𝑡

�����2 𝑑𝑡 = ∫ 𝑏

𝑎

�����∑︁
𝑛∈N

𝑏𝑛𝑒
(𝑖𝜇𝑛+𝛿𝑛 )𝑡

�����2 𝑑𝑡 .
Applying Theorem 2.1.17, there exist 𝐶1,𝐶2 > 0 such that

𝐶1

∑︁
𝑛∈N

|𝑏𝑛 |2 ≤
∫ 𝑏

𝑎

�����∑︁
𝑛∈Z

𝑎𝑛𝑒
(𝑖𝜆𝑛+𝜖𝑛 )𝑡

�����2 𝑑𝑡 ≤ 𝐶2

∑︁
𝑛∈N

|𝑏𝑛 |2 .

Since
∑︁
𝑛∈N

|𝑏𝑛 |2 =
∑︁
𝑛∈Z

|𝑎𝑛 |2, the proof follows.

We now write the following result which is relevant to our work. In fact, this inequality helps us
deal with the hyperbolic (transport) equation. We give a proof of this inequality by assuming the
previous result. In this context, we refer to the article [CMRR14, Proposition 3.1] where this version
is used to prove observability inequality of the linearized compressible Navier-Stokes system.

Theorem 2.1.18. Let (𝜆𝑛)𝑛∈Z be a sequence of complex numbers with the following properties:

(H1) 𝜆𝑘 ≠ 𝜆𝑛 for all 𝑘, 𝑛 ∈ Z with 𝑘 ≠ 𝑛.

(H2) There exists 𝑁 ∈ N large enough such that 𝜆𝑛 = 𝛽 + 𝛾𝑛𝑖 + 𝑒𝑛 for all |𝑛 | ≥ 𝑁 , where 𝛽 ∈ C and
(𝑒𝑛) |𝑛 | ≥𝑁 ∈ ℓ2.

Then, for any 𝑇 > 2𝜋
𝛾
, there exist constants 𝐶1,𝐶2 > 0 such that

𝐶1

∑︁
𝑛∈Z

|𝑎𝑛 |2 ≤
∫ 𝑇

0

�����∑︁
𝑛∈Z

𝑎𝑛𝑒
𝜆𝑛𝑡

�����2 𝑑𝑡 ≤ 𝐶2

∑︁
𝑛∈Z

|𝑎𝑛 |2 (2.19)

holds for any sequence (𝑎𝑛)𝑛∈Z ∈ ℓ2.

Proof. Note that ∫ 𝑇

0

�����∑︁
𝑛∈Z

𝑎𝑛𝑒
𝜆𝑛𝑡

�����2 𝑑𝑡 = ∫ 𝑇

0
𝑒2Re(𝛽 )𝑡

�����∑︁
𝑛∈Z

𝑎𝑛𝑒
(𝑖𝛾𝑛+𝑒𝑛 )𝑡

�����2 𝑑𝑡 .
Therefore, applying Theorem 2.1.17-Corollary 2.1.3 together with the fact that 𝑒2Re(𝛽 )𝑡 is bounded
and has positive lower bound, the proof follows.

We conclude this section with another version of Ingham-type inequality, often referred as the
Müntz-Szász theorem of the parabolic Ingham’s inequality. We give a proof of this inequality under
some general assumptions on the sequence (𝜆𝑛)𝑛∈N. The proof is given by Lopez and Zuazua in [LZ02,
Proposition 3.2] for the case when the sequence (𝜆𝑛)𝑛∈N consists of real numbers.

Theorem 2.1.19. Let (𝜆𝑛)𝑛∈N be a sequence of complex numbers such that
∑︁
𝑛∈N

1

|𝜆𝑛 |
< ∞ and let

(𝑞𝑘 )𝑘∈N be biorthogonal to (𝑒−𝜆𝑛𝑡 )𝑛∈N in 𝐿2(0,𝑇 ) with the following estimate: for given 𝜖 > 0 there
exists a constant 𝐶𝜖 > 0 such that

∥𝑞𝑘 ∥𝐿2 (0,𝑇 ) ≤ 𝐶𝜖𝑒
𝜖Re(𝜆𝑛 ) for all 𝑛 ∈ N.

Then, for any given 𝑇 > 0, there exists 𝐶 > 0 depending only on 𝑇 such that∫ 𝑇

0

�����∑︁
𝑛∈N

𝑎𝑛𝑒
−𝜆𝑛𝑡

�����2 𝑑𝑡 ≥ 𝐶 ∑︁
𝑛∈N

|𝑎𝑛 |2 𝑒−2Re(𝜆𝑛 )𝑇 (2.20)

for any sequence (𝑎𝑛)𝑛∈N ∈ ℓ2.
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Proof. Let 𝑇 > 0 be given. We have

𝑎𝑘 =
∑︁
𝑛∈N

𝑎𝑛

∫ 𝑇

0
𝑒−𝜆𝑛𝑡𝑞𝑘 (𝑡)𝑑𝑡 =

∫ 𝑇

0

∑︁
𝑛∈N

𝑎𝑛𝑒
−𝜆𝑛𝑡𝑞𝑘 (𝑡)𝑑𝑡 .

Applying Cauchy-Schwarz inequality, we get

|𝑎𝑘 |2 ≤ ∥𝑞𝑘 ∥2𝐿2 (0,𝑇 )

∫ 𝑇

0

�����∑︁
𝑛∈N

𝑎𝑛𝑒
−𝜆𝑛𝑡

�����2 𝑑𝑡 .
Multiplying both sides by 1

|𝜆𝑘 | and summing over 𝑘, we get

∑︁
𝑘∈N

1

|𝜆𝑘 |
|𝑎𝑘 |2

∥𝑞𝑘 ∥2𝐿2 (0,𝑇 )
≤

∑︁
𝑘∈N

1

|𝜆𝑘 |

∫ 𝑇

0

�����∑︁
𝑛∈N

𝑎𝑛𝑒
−𝜆𝑛𝑡

�����2 𝑑𝑡 .
Using the biorthogonal estimate for 𝜖 = 𝑇 , we can write

1

|𝜆𝑘 | ∥𝑞𝑘 ∥2𝐿2 (0,𝑇 )
≥ 𝐶𝑒−𝑇Re(𝜆𝑘 )

|𝜆𝑘 |
≥ 𝐶𝑒−2Re(𝜆𝑘 )𝑇 𝑒

𝑇Re(𝜆𝑘 )

|𝜆𝑘 |
≥ 𝐶𝑒−2Re(𝜆𝑘 )𝑇

for some 𝐶 > 0 depending only on 𝑇 . With this estimate and the fact that
∑︁
𝑛∈N

1

|𝜆𝑛 |
< ∞, the proof

follows.

Remark 2.1.4. The above result shows that the existence of a biorthogonal family for the sequence
of exponentials (𝑒−𝜆𝑛𝑡 )𝑛∈N with suitable bounds is enough to deduce the parabolic Ingham’s inequality
(2.20). Thus, we can obtain this result by assuming conditions on the sequence (𝜆𝑛)𝑛∈N mentioned in
each of the Theorems 2.1.12–2.1.15.

In a similar fashion, we can obtain the inequality (2.20) when the indices runs over Z, under the
same hypothesis of Theorem 2.1.19 but with 𝑛 ∈ Z, as explained in Corollary 2.1.3, see [CMRR14] for
instance.

Corollary 2.1.4. Let (𝜆𝑛)𝑛∈Z be a sequence of complex numbers such that
∑︁
𝑛∈Z

1

|𝜆𝑛 |
< ∞ and let (𝑞𝑘 )𝑘∈Z

be biorthogonal to (𝑒−𝜆𝑛𝑡 )𝑛∈Z in 𝐿2(0,𝑇 ) with the following estimate: For given 𝜖 > 0 there exists a
constant 𝐶𝜖 > 0 such that

∥𝑞𝑘 ∥𝐿2 (0,𝑇 ) ≤ 𝐶𝜖𝑒
𝜖Re(𝜆𝑛 ) for all 𝑛 ∈ Z.

Then, for any given 𝑇 > 0, there exists 𝐶 > 0 depending only on 𝑇 such that∫ 𝑇

0

�����∑︁
𝑛∈Z

𝑎𝑛𝑒
−𝜆𝑛𝑡

�����2 𝑑𝑡 ≥ 𝐶∑︁
𝑛∈Z

|𝑎𝑛 |2 𝑒−2Re(𝜆𝑛 )𝑇 (2.21)

for any sequence (𝑎𝑛)𝑛∈Z ∈ ℓ2.

Remark 2.1.5. Apart from this technique (finding biorthogonal sequences), there are many different
methods available in the literature for proving the parabolic Ingham’s inequality (2.20). We refer to
the works [AI95, JTZ97, You01, FCGBdT10, Edw06, LZ02, Lóp99, KL05, MZ04] for variations of
proofs of the parabolic Ingham’s inequality (2.20).

Remark 2.1.6. Like the hyperbolic Ingham inequality, we do not have the reverse inequality, that is
there is no constant 𝐷 > 0 such that the inequality∫ 𝑇

0

�����∑︁
𝑛∈N

𝑎𝑛𝑒
−𝜆𝑛𝑡

�����2 𝑑𝑡 ≤ 𝐷
∑︁
𝑛∈N

|𝑎𝑛 |2 𝑒−2Re(𝜆𝑛 )𝑇 (2.22)
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holds for any (𝑎𝑛)𝑛∈N ∈ ℓ2. Indeed, for fixed 𝑁 ∈ N, we take 𝜆𝑛 = 𝑛2 for 𝑛 ∈ N and a sequence
(𝑎𝑛)𝑛∈N ∈ ℓ2 as

𝑎𝑛 :=


1
𝑁
, if 𝑛 = 𝑁,

0, if 𝑛 ≠ 𝑁 .

If the inequality (2.22) is true, we obtain

1

𝑁 2

∫ 𝑇

0
𝑒−2𝑁

2𝑡𝑑𝑡 ≤ 𝐷

𝑁 2
𝑒−2𝑁

2𝑇 =⇒ 𝑒2𝑁
2𝑇 − 1

2𝑁 2
≤ 𝐷, for all 𝑁 ∈ N,

which is a contradiction. Consequently, the inequality (2.22) cannot hold.

However, using Cauchy-Schwarz inequality, we see that there exists a constant 𝐷 > 0 such that∫ 𝑇

0

�����∑︁
𝑛∈N

𝑎𝑛𝑒
−𝜆𝑛𝑡

�����2 𝑑𝑡 ≤ 𝐷
∑︁
𝑛∈N

|𝑎𝑛 |2

holds for all sequence (𝑎𝑛)𝑛∈N ∈ ℓ2.

2.2 Controllability and Observability

The aim of this section is to present an overview of the controllability and observability notions for both
finite and infinite dimensional linear systems. We recall some of the important results that are relevant
to this thesis and give proofs for the sake of completeness. All of these contents presented in this section
can be found in any control theory book, for instance in [Cor07, Liu10, Zab20, TW09, CZ95]; see also
[MZ04, Zua07, Ros07, Erv14, Boy23, Tré23]. Moreover, we give some comments about nonlinear
systems at the end of this section.

Before proceeding, we first mention that there are essentially two types of methods to study the
controllability of a linear system, namely the direct methods and the duality methods. The direct
method refers to proving controllability by explicitly constructing the control(s), whereas the duality
method is based on proving certain observability inequalities of the associated adjoint systems which
then gives controllability of the linear system. We mention below some of the direct and duality
methods to prove the controllability of linear control systems in both finite and infinite dimensions.

• Direct methods.

(i) The extension method: see for instance [Rus74, Rus78, Lit78, Cor07],

(ii) The method of moments: see for instance [FR71, AI95, KL05, Cor07],

(iii) The flatness approach: see for instance [FLMR95, MRFR98, LMR00, PR01, MRR18],

• Duality methods.

(i) Ingham’s inequalities and harmonic analysis: see for instance [Rus67, You01, KL05],

(ii) Multipliers method: see for instance [Lio88, Kom94, Zua07],

(iii) Carleman’s inequalities: See for instance [DE22, FI96, Yam09].

In this thesis, we will see some applications of both the direct and duality methods to prove
controllability of the linear systems, in particular, the method of moments, Ingham-type inequalities
and some multiplier approach.
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2.2.1 Finite dimensional linear systems

Let 𝑇 > 0. We consider the following control system posed in finite dimensional space:{
𝑢′(𝑡) = 𝐴𝑢 (𝑡) + 𝐵𝑓 (𝑡), 𝑡 ∈ (0,𝑇 ),
𝑢 (0) = 𝑢0,

(2.23)

where 𝐴 ∈ 𝑀𝑛 (R), 𝐵 ∈ 𝑀𝑛,𝑚 (R). The function 𝑢 : [0,𝑇 ] → R𝑛 represents the state vector, 𝑓 : [0,𝑇 ] →
R𝑚 the control vector and 𝑢0 ∈ R𝑛 is the initial state. In practical situations, we always want the
number of control components to be less than the state, that is, 𝑚 ≤ 𝑛.

In this setup, we first write the following result which guarantees the existence of a unique weak
solution of the system (2.23).

Lemma 2.2.1. Let 𝑢0 ∈ R𝑛 be given. If 𝑓 ∈ 𝐿2(0,𝑇 ;R𝑚), then the system (2.23) admits a unique weak
solution 𝑢 ∈ C0( [0,𝑇 ];R𝑛) and is given by

𝑢 (𝑡) = 𝑒𝑡𝐴𝑢0 +
∫ 𝑡

0
𝑒 (𝑡−𝑠 )𝐴𝐵𝑓 (𝑠)𝑑𝑠, for 𝑡 ∈ [0,𝑇 ] . (2.24)

If 𝑓 ∈ C0( [0,𝑇 ];R𝑚), this result is a consequence of the Picard-Lindeloff’s theorem of existence
and uniqueness. The proof will be similar for the case when 𝑓 ∈ 𝐿2(0,𝑇 ;R𝑚), see for instance [Per01,
Chapter 1, Section 1.10] and [Zab20, Chapter 1, Theorem 1.1]. To find the expression of the solution,
we will apply the Duhamel’s formula as follows:

We first consider the system {
𝑢′1(𝑡) = 𝐴𝑢1(𝑡), 𝑡 ∈ (0,𝑇 ),
𝑢1(0) = 𝑢0.

(2.25)

The solution of (2.25) is given by 𝑢1(𝑡) = 𝑒𝑡𝐴𝑢0 for 𝑡 ∈ [0,𝑇 ]. We next consider the system{
𝑢′2(𝑡) = 𝐴𝑢2(𝑡), 𝑡 ∈ (𝑠,𝑇 ),
𝑢2(𝑠) = 𝐵𝑓 (𝑠),

(2.26)

where 𝑠 ∈ [0,𝑇 ]. Then, the solution of (2.26) is 𝑢2(𝑡, 𝑠) = 𝑒 (𝑡−𝑠 )𝐴𝐵𝑓 (𝑠) for 𝑡 ∈ [𝑠,𝑇 ]. Finally, we consider
the system {

𝑢′3(𝑡) = 𝐴𝑢3(𝑡) + 𝐵𝑓 (𝑡), 𝑡 ∈ (0,𝑇 ),
𝑢3(0) = 0.

(2.27)

By Duhamel’s principle, the solution of this system (2.27) is given by

𝑢3(𝑡) =
∫ 𝑡

0
𝑢2(𝑡, 𝑠)𝑑𝑠, 𝑡 ∈ [0,𝑇 ] .

Therefore, the solution of the system (2.23) is

𝑢 (𝑡) = 𝑢1(𝑡) + 𝑢3(𝑡) = 𝑒𝑡𝐴𝑢0 +
∫ 𝑡

0
𝑒 (𝑡−𝑠 )𝐴𝐵𝑓 (𝑠)𝑑𝑠, 𝑡 ∈ [0,𝑇 ] .

Once we have the existence of a unique solution 𝑢 in the space C0( [0,𝑇 ];R𝑛), we can define the
controllability notions for the system (2.23) (see the figures below).

Definition 2.2.1. We say the system (2.23) (or the pair (𝐴, 𝐵)) is

(i) exactly controllable at time 𝑇 > 0 if, for any given initial state 𝑢0 ∈ R𝑛 and final state 𝑢𝑇 ∈ R𝑛
there exists a control 𝑓 ∈ 𝐿2(0,𝑇 ;R𝑚) such that the associated solution of (2.23) satisfies

𝑢 (𝑇 ) = 𝑢𝑇 in R𝑛 .
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2.2. Controllability and Observability

(ii) null controllable at time 𝑇 > 0 if, for any given initial state 𝑢0 ∈ R𝑛 there exists 𝑓 ∈ 𝐿2(0,𝑇 ;R𝑚)
such that the associated solution of (2.23) satisfies

𝑢 (𝑇 ) = 0.

(iii) approximately controllable at time 𝑇 > 0 if, for any given initial state 𝑢0 ∈ R𝑛, final state
𝑢𝑇 ∈ R𝑛 and given 𝜖 > 0, there exists 𝑓𝜖 ∈ 𝐿2(0,𝑇 ;R𝑚) such that the associated solution of (2.23)
satisfies

∥𝑢𝜖 (𝑇 ) − 𝑢𝑇 ∥R𝑛 ≤ 𝜖.

Free Trajectory

Controlled Trajectory

Exact Controllability

Free Trajectory

Controlled Trajectory

Null Controllability

Free Trajectory

Controlled Trajectory

Approximate Controllability

Figure 2.1: The dotted trajectory represents the solution of (2.23) with 𝑓 = 0.

From the definition, it is clear that exact controllability of the system (2.23) always imply null
and approximate controllability. Moreover, we explained below that for the finite dimensional linear
system (2.23) all these controllability notions are equivalent.

• (Null =⇒ Exact): Let the system (2.23) be null controllable at time 𝑇 > 0. Let 𝑢0, 𝑢𝑇 ∈ R𝑛
be given. Then, we can find a control 𝑓 ∈ 𝐿2(0,𝑇 ;R𝑚) such that the solution of{

𝑤 ′(𝑡) = 𝐴𝑤 (𝑡) + 𝐵𝑓 (𝑡), 𝑡 ∈ (0,𝑇 ),
𝑤 (0) = 𝑢0 − 𝑣 (0)

(2.28)

satisfies 𝑤 (𝑇 ) = 0, where 𝑣 is a solution of the following homogeneous system:{
𝑣 ′(𝑡) = 𝐴𝑣 (𝑡), 𝑡 ∈ (0,𝑇 ),
𝑣 (𝑇 ) = 𝑢𝑇 .

(2.29)

Thus, the function 𝑢 = 𝑣+𝑤 satisfies the equation 𝑢′(𝑡) = 𝐴𝑢 (𝑡)+𝐵𝑓 (𝑡) for 𝑡 ∈ (0,𝑇 ) with 𝑢 (0) = 𝑢0
and 𝑢 (𝑇 ) = 𝑢𝑇 . This proves that the system (2.23) is exactly controllable at time 𝑇 .

• (Approximate =⇒ Exact): We now assume that the system (2.23) is approximately control-
lable at time 𝑇 > 0. Let 𝑢0 ∈ R𝑛 be given. Then, the set defined by

R(𝑇,𝑢0) :=
{
𝑢 (𝑇 ) : 𝑢 solves (2.23) with 𝑓 ∈ 𝐿2(0,𝑇 ;R𝑚)

}
(2.30)

is a dense subspace of R𝑛. Since any subspace of R𝑛 which is dense is the R𝑛 itself, we obtain
R(𝑇,𝑢0) = R𝑛. This proves that the system (2.23) is exactly controllable at time 𝑇 .

Before going any further, we first give the following examples of finite dimensional linear systems and
study the controllability properties at time 𝑇 > 0.

Example 2.2.1. Let us consider the case

𝐴 =

(
0 1
−1 0

)
, 𝐵 =

(
0

1

)
.
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Then the system (2.23) can be written as
𝑢′1(𝑡) = 𝑢2(𝑡), 𝑡 ∈ (0,𝑇 ),
𝑢′2(𝑡) = −𝑢1(𝑡) + 𝑓 (𝑡), 𝑡 ∈ (0,𝑇 ),
𝑢1(0) = 𝑢0,1, 𝑢2(0) = 𝑢0,2,

(2.31)

where 𝑢 = (𝑢1, 𝑢2) and 𝑢0 = (𝑢0,1, 𝑢0,2). We now prove that this system is exactly controllable at any
time 𝑇 > 0. Let (𝑢0,1, 𝑢0,2), (𝑢𝑇,1, 𝑢𝑇,2) ∈ R2 be the initial and final states respectively. Our goal is to
find a control 𝑓 ∈ 𝐿2(0,𝑇 ;R2) such that the following identities hold:

𝑢1(0) = 𝑢0,1, 𝑢2(0) = 𝑢0,2, 𝑢1(𝑇 ) = 𝑢𝑇,1, 𝑢2(𝑇 ) = 𝑢𝑇,2. (2.32)

Since 𝑢2 = 𝑢
′
1, we can rewrite the system (2.31) as

𝑢′′1 (𝑡) + 𝑢1(𝑡) = 𝑓 (𝑡), 𝑡 ∈ (0,𝑇 ), 𝑢1(0) = 𝑢0,1, 𝑢′1(0) = 𝑢0,2. (2.33)

and therefore the conditions (2.32) reduces to

𝑢1(0) = 𝑢0,1, 𝑢′1(0) = 𝑢0,2, 𝑢1(𝑇 ) = 𝑢𝑇,1, 𝑢′1(𝑇 ) = 𝑢𝑇,2. (2.34)

There are many ways to constructing such function 𝑢1, for instance, we consider the function 𝑢1 of
the form

𝑢1(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3, 𝑡 ∈ [0,𝑇 ] . (2.35)

Then we get the a system of linear equations:
𝑎0 = 𝑢0,1, 𝑎1 = 𝑢0,2,

𝑎0 + 𝑎1𝑇 + 𝑎2𝑇 2 + 𝑎3𝑇 3 = 𝑢𝑇,1,

𝑎1 + 2𝑎2𝑇 + 3𝑎3𝑇
2 = 𝑢𝑇,2.

The solution to this system of equations is given by
𝑎0 = 𝑢0,1, 𝑎1 = 𝑢0,2,

𝑎2 = −3𝑢0,1 − 2𝑇𝑢0,2 + 3𝑢𝑇,1 −𝑇𝑢𝑇,2
𝑎3 = 2𝑢0,1 +𝑇𝑢0,2 − 2𝑢𝑇,1 +𝑇𝑢𝑇,2.

(2.36)

With these values of 𝑎 𝑗 for 𝑗 = 0, 1, 2, 3, we now define the control 𝑓 as

𝑓 (𝑡) = 𝑢′′1 (𝑡) + 𝑢1(𝑡), 𝑡 ∈ (0,𝑇 ),

where 𝑢1 is given by (2.35)–(2.36). Clearly, (𝑢1, 𝑢2) with 𝑢2 = 𝑢′1 solves the system (2.31) and the
identities (2.32). This proves that the system (2.31) is exactly controllable at any time 𝑇 > 0.

Example 2.2.2. We now consider the case

𝐴 =

(
1 0
0 1

)
, 𝐵 =

(
0

1

)
.

Then the system (2.23) can be written as
𝑢′1(𝑡) = 𝑢1(𝑡), 𝑡 ∈ (0,𝑇 ),
𝑢′2(𝑡) = 𝑢2(𝑡) + 𝑓 (𝑡), 𝑡 ∈ (0,𝑇 ),
𝑢1(0) = 𝑢0,1, 𝑢2(0) = 𝑢0,2.

(2.37)

Here 𝑢 = (𝑢1, 𝑢2) and 𝑢0 = (𝑢0,1, 𝑢0,2). We now prove that this system cannot be exactly controllable at
any time 𝑇 > 0 whatever we choose the control 𝑓 . In fact, for 𝑢0,1 ≠ 0, the solution component 𝑢1 is
given by

𝑢1(𝑡) = 𝑒𝑡𝑢0,1, 𝑡 ∈ [0,𝑇 ],
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which is independent of the control function 𝑓 and also 𝑢1(𝑡) ≠ 0 for all 𝑡 ∈ [0,𝑇 ]. Therefore, given
the final state of the form (0, 𝑎) with 𝑎 ∈ R, we cannot find any 𝑓 such that the solution satisfies
(𝑢1(𝑇 ), 𝑢2(𝑇 )) = (0, 𝑎) . However, it is easy to see that the system is exactly controllable at any time
𝑇 by using two controls acting in each equations. So, the number of controls matters to achieve
controllability of the linear systems.

Since exact, null and approximate controllability notions are equivalent for the system (2.23), we
will concentrate only on the null controllability. To prove null controllability of the system (2.23) at
time 𝑇 > 0, we need to find a control 𝑓 ∈ 𝐿2(0,𝑇 ;R𝑚) such that the identity

𝑒𝑇𝐴𝑢0 +
∫ 𝑇

0
𝑒 (𝑇−𝑠 )𝐴𝐵𝑓 (𝑠)𝑑𝑠 = 0

holds for every initial state 𝑢0 ∈ R𝑛. However, in general, it might be difficult to construct a control
𝑓 that satisfies the above identity. For this reason, we will study the adjoint of the system (2.23) and
derive some equivalent criterion for null controllability in terms of the adjoint state. More precisely,
we consider the adjoint system corresponding to (2.23) as{

−𝜑 ′(𝑡) = 𝐴∗𝜑 (𝑡), 𝑡 ∈ (0,𝑇 ),
𝜑 (𝑇 ) = 𝜑𝑇 ,

(2.38)

where 𝜑𝑇 ∈ R𝑛. Note that, we can write explicitly the solution to this system as

𝜑 (𝑡) = 𝑒 (𝑇−𝑡 )𝐴∗
𝜑𝑇 , for 𝑡 ∈ [0,𝑇 ] . (2.39)

With the help of this adjoint equation, we now state the following result which gives an equivalent
criterion for null controllability of the system (2.23).

Lemma 2.2.2. The system (2.23) is null controllable at time 𝑇 > 0 if, and only if, for given 𝑢0 ∈ R𝑛
there exists a 𝑓 ∈ 𝐿2(0,𝑇 ;R𝑚) such that the following identity∫ 𝑇

0
⟨𝑓 (𝑡), 𝐵∗𝜑 (𝑡)⟩R𝑚 𝑑𝑡 + ⟨𝑢0, 𝜑 (0)⟩R𝑛 = 0 (2.40)

holds for every 𝜑𝑇 ∈ R𝑛, where 𝜑 is the solution of the adjoint system (2.38).

Proof. Let 𝜑𝑇 ∈ R𝑛 and let 𝜑 be the solution of (2.38). Taking inner product in (2.23) with 𝜑 and
integrating over (0,𝑇 ), we get∫ 𝑇

0
⟨𝑢′(𝑡), 𝜑 (𝑡)⟩R𝑛 𝑑𝑡 =

∫ 𝑇

0
⟨𝐴𝑢 (𝑡), 𝜑 (𝑡)⟩R𝑛 𝑑𝑡 +

∫ 𝑇

0
⟨𝐵𝑓 (𝑡), 𝜑 (𝑡)⟩R𝑛 𝑑𝑡 .

Integrating by parts, we obtain

−
∫ 𝑇

0
⟨𝑢 (𝑡), 𝜑 ′(𝑡)⟩R𝑛 𝑑𝑡 + ⟨𝑢 (𝑇 ), 𝜑 (𝑇 )⟩R𝑛 − ⟨𝑢0, 𝜑 (0)⟩R𝑛

=

∫ 𝑇

0
⟨𝑢 (𝑡), 𝐴∗𝜑 (𝑡)⟩R𝑛 𝑑𝑡 +

∫ 𝑇

0
⟨𝑓 (𝑡), 𝐵∗𝜑 (𝑡)⟩R𝑚 𝑑𝑡 .

Since 𝜑 solves (2.38), we deduce the identity

⟨𝑢 (𝑇 ), 𝜑𝑇 ⟩R𝑛 = ⟨𝑢0, 𝜑 (0)⟩R𝑛 +
∫ 𝑇

0
⟨𝑓 (𝑡), 𝐵∗𝜑 (𝑡)⟩R𝑚 𝑑𝑡, (2.41)

with 𝜑𝑇 ∈ R𝑛. Thus, if the system (2.23) is null controllable at time 𝑇 > 0, we have 𝑢 (𝑇 ) = 0 and
therefore

⟨𝑢0, 𝜑 (0)⟩R𝑛 +
∫ 𝑇

0
⟨𝑓 (𝑡), 𝐵∗𝜑 (𝑡)⟩R𝑛 𝑑𝑡 = 0,

for all 𝜑𝑇 ∈ R𝑛, giving the identity (2.40). Conversely, if for given 𝑢0 ∈ R𝑛 there exists a 𝑓 ∈ 𝐿2(0,𝑇 ;R𝑚)
such that the identity (2.40) holds for every 𝜑𝑇 ∈ R𝑛, then from (2.41), we deduce that ⟨𝑢 (𝑇 ), 𝜑𝑇 ⟩R𝑛 = 0
for all 𝜑𝑇 ∈ R𝑛 and hence 𝑢 (𝑇 ) = 0. This completes the proof.
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We note here that the identity (2.40) gives an optimality condition for the critical points of certain
quadratic (cost) functional. More precisely, we have the following result:

Lemma 2.2.3. For given 𝑢0 ∈ R𝑛, let us define a quadratic functional 𝐽 : R𝑛 → R by

𝐽 (𝜑𝑇 ) :=
1

2

∫ 𝑇

0
∥𝐵∗𝜑 (𝑡)∥2R𝑚 𝑑𝑡 + ⟨𝑢0, 𝜑 (0)⟩R𝑛 , 𝜑𝑇 ∈ R𝑛, (2.42)

where 𝜑 is the solution of (2.38). If 𝐽 admits a minimizer 𝜑𝑇 ∈ R𝑛, then the function 𝑓 (𝑡) = 𝐵∗𝜑 (𝑡)
for 𝑡 ∈ (0,𝑇 ), where 𝜑 is the solution of (2.38) with 𝜑 (𝑇 ) = 𝜑𝑇 , is a (null) control of the system (2.23).

Proof. Let 𝜑𝑇 ∈ R𝑛 be a minimizer of 𝐽 and 𝜑 be the solution of (2.38) corresponding to this terminal
state 𝜑𝑇 . Then, we have

lim
ℎ→0

𝐽 (𝜑𝑇 + ℎ𝜑𝑇 ) − 𝐽 (𝜑𝑇 )
ℎ

= 0 (2.43)

for all 𝜑𝑇 ∈ R𝑛. Let 𝜑 denotes the solution of (2.38) with the final state 𝜑𝑇 . Then, by linearity of the
equation, we can say that 𝜑 +ℎ𝜑 is the solution of (2.38) corresponding to the final state 𝜑𝑇 +ℎ𝜑𝑇 . We
now compute

𝐽 (𝜑𝑇 + ℎ𝜑𝑇 ) − 𝐽 (𝜑𝑇 ) =
1

2

∫ 𝑇

0
∥𝐵∗(𝜑 (𝑡) + ℎ𝜑 (𝑡))∥2R𝑚 𝑑𝑡 + ⟨𝑢0, 𝜑 (0) + ℎ𝜑 (0)⟩R𝑛

− 1

2

∫ 𝑇

0
∥𝐵∗𝜑 (𝑡)∥2R𝑚 𝑑𝑡 − ⟨𝑢0, 𝜑 (0)⟩R𝑛

= ℎ

∫ 𝑇

0
⟨𝐵∗𝜑 (𝑡), 𝐵∗𝜑 (𝑡)⟩R𝑚 𝑑𝑡 +

ℎ2

2

∫ 𝑇

0
∥𝐵∗𝜑 (𝑡)∥2R𝑚 𝑑𝑡 + ℎ ⟨𝑢0, 𝜑 (0)⟩R𝑛 .

Therefore, the relation (2.43) yields the identity∫ 𝑇

0
⟨𝐵∗𝜑 (𝑡), 𝐵∗𝜑 (𝑡)⟩R𝑚 𝑑𝑡 + ⟨𝑢0, 𝜑 (0)⟩R𝑛 = 0

for all 𝜑𝑇 ∈ R𝑛. Applying Lemma 2.2.2, it follows that the system (2.23) is null controllable at time 𝑇
by using the control 𝑓 (𝑡) = 𝐵∗𝜑 (𝑡) for 𝑡 ∈ (0,𝑇 ). This completes the proof.

The above result shows that it is enough to find a minimizer of the functional 𝐽 for proving the
null controllability of the system (2.23). To prove the quadratic functional 𝐽 admits a minimizer, we
use the following well-known result of the calculus of variations:

Theorem 2.2.1. Let 𝐹 : R𝑛 → R be a continuous function satisfying lim
|𝑥 |→∞

𝐹 (𝑥) = ∞. Then 𝐹 admits

a minimizer 𝑥 ∈ R𝑛.

This result can be generalized in reflexive Banach spaces, see for instance the book [Kes09, Proposition
5.6.1]. With the help of this result, we now find equivalent conditions for exact, null and approximate
controllability in terms of the adjoint state.

Theorem 2.2.2. The following statements hold:

(i) The system (2.23) is null controllable at time 𝑇 > 0 if, and only if, there exists 𝐶 > 0 such that
the inequality ∫ 𝑇

0
∥𝐵∗𝜑 (𝑡)∥2R𝑚 𝑑𝑡 ≥ 𝐶 ∥𝜑 (0)∥2R𝑛 (2.44)

holds for all 𝜑𝑇 ∈ R𝑛, where 𝜑 is the solution of the adjoint system (2.38).

(ii) The system (2.23) is exactly controllable at time 𝑇 > 0 if, and only if, there exists 𝐶 > 0 such
that the inequality ∫ 𝑇

0
∥𝐵∗𝜑 (𝑡)∥2R𝑚 𝑑𝑡 ≥ 𝐶 ∥𝜑𝑇 ∥2R𝑛 (2.45)

holds for all 𝜑𝑇 ∈ R𝑛, where 𝜑 is the solution of the adjoint system (2.38).
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(iii) The system (2.23) is approximately controllable at time 𝑇 > 0 if, and only if, the following
property holds:

If 𝜑 solves (2.38) and 𝐵∗𝜑 (𝑡) = 0 for all 𝑡 ∈ [0,𝑇 ], then 𝜑𝑇 = 0. (2.46)

Proof. First we recall the expression of the solution 𝜑 (𝑡) = 𝑒 (𝑇−𝑡 )𝐴∗
𝜑𝑇 for all 𝑡 ∈ [0,𝑇 ]. It is easy to see

that the map 𝐹 : R𝑛 → R𝑛 defined by 𝐹 (𝜑𝑇 ) := 𝜑 (0) = 𝑒𝑇𝐴
∗
𝜑𝑇 is a bounded invertible linear operator

on R𝑛. Therefore, the inequalities (2.44) and (2.45) are equivalent. On the other hand, if the property

(2.46) holds, then ∥𝜑𝑇 ∥ :=
(∫ 𝑇

0
∥𝐵∗𝜑 (𝑡)∥2R𝑚 𝑑𝑡

) 1
2
defines a norm on R𝑛. Since any two norms in a finite

dimensional space are equivalent, we have for some 𝐶 > 0 that∫ 𝑇

0
∥𝐵∗𝜑 (𝑡)∥2R𝑚 𝑑𝑡 ≥ 𝐶 ∥𝜑𝑇 ∥2R𝑛 .

As a consequence, the inequalities (2.44), (2.45) and the property (2.46) are equivalent for finite
dimensional linear systems. Thus, we only prove Part (i) of this result.

Let 𝑢0 ∈ R𝑛. If the inequality (2.45) holds for all 𝜑𝑇 ∈ R𝑛, then the quadratic functional 𝐽 defined
by (2.42) is coercive. In fact

𝐽 (𝜑𝑇 ) ≥
𝐶

2
∥𝜑 (0)∥2R𝑛 − ∥𝑢0∥R𝑛 ∥𝜑 (0)∥R𝑛 ≥ 𝐶

2
∥𝜑𝑇 ∥2R𝑛 − ∥𝑢0∥R𝑛 ∥𝜑𝑇 ∥R𝑛 ,

thanks to the Cauchy-Schwarz inequality
��⟨𝑢0, 𝜑 (0)⟩R𝑛 �� ≤ ∥𝑢0∥R𝑛 ∥𝜑 (0)∥R𝑛 . Thus,

lim
∥𝜑𝑇 ∥R𝑛→∞

𝐽 (𝜑𝑇 ) = ∞.

Therefore, 𝐽 admits a minimizer 𝜑𝑇 ∈ R𝑛, thanks to Theorem 2.2.1. Applying Lemma 2.2.3, we can
say that the system (2.23) is null controllable at time 𝑇 .

Conversely, we suppose that the system (2.23) is null controllable at time 𝑇 > 0. We will prove
the inequality (2.44) via contradiction argument. If the inequality (2.44) is not true, then there exists

a sequence (𝜑𝑘
𝑇
)𝑘∈N ⊂ R𝑛 such that



𝜑𝑘 (0)


R𝑛

= 1 for all 𝑘 ∈ N and
∫ 𝑇

0



𝐵∗𝜑𝑘 (𝑡)

2
R𝑚
𝑑𝑡 → 0 as 𝑘 → ∞,

where 𝜑𝑘 is the solution of (2.38) with final state 𝜑𝑘
𝑇
for 𝑘 ∈ N. Since



𝜑𝑘 (0)


R𝑛

= 1 for all 𝑘 ∈ N, the
sequence (𝜑𝑘

𝑇
)𝑘∈N is bounded in R𝑛 and therefore, up to a subsequence, 𝜑𝑘

𝑇
→ 𝜑𝑇 as 𝑘 → ∞, for some

𝜑𝑇 ∈ R𝑛. Let 𝜑 denote the solution of (2.38) corresponding to this 𝜑𝑇 . Then

∥𝜑 (0)∥R𝑛 = lim
𝑘→∞




𝜑𝑘 (0)



R𝑛

= 1, and

∫ 𝑇

0
∥𝐵∗𝜑 (𝑡)∥2R𝑚 𝑑𝑡 = lim

𝑘→∞

∫ 𝑇

0




𝐵∗𝜑𝑘 (𝑡)


2
R𝑚
𝑑𝑡 = 0. (2.47)

On the other hand, since the system (2.23) is null controllable at time 𝑇 , by Lemma 2.2.2, for any
given 𝑢0 ∈ R𝑛, there exists a 𝑓 ∈ 𝐿2(0,𝑇 ;R𝑚) such that the identities∫ 𝑇

0

〈
𝑓 (𝑡), 𝐵∗𝜑𝑘 (𝑡)

〉
R𝑚
𝑑𝑡 +

〈
𝑢0, 𝜑

𝑘 (0)
〉
R𝑛

= 0

holds for all 𝑘 ∈ N. Taking limit as 𝑘 → ∞ in this identity, we deduce that∫ 𝑇

0
⟨𝑓 (𝑡), 𝐵∗𝜑 (𝑡)⟩R𝑚 𝑑𝑡 + ⟨𝑢0, 𝜑 (0)⟩R𝑛 = 0.

But from (2.47), 𝐵∗𝜑 (𝑡) = 0 for all 𝑡 ∈ [0,𝑇 ] and therefore ⟨𝑢0, 𝜑 (0)⟩R𝑛 = 0 for every 𝑢0 ∈ R𝑛. This
implies 𝜑 (0) = 0, which contradicts the fact ∥𝜑 (0)∥R𝑛 = 1 (see eq. (2.47)), and therefore the inequality
(2.44) holds for all 𝜑𝑇 ∈ R𝑛.

This completes the proof.
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The inequalities (2.44) and (2.45) are called the observability inequalities associated to the adjoint
system (2.38). The above result shows that proving controllability of the system (2.23) is equivalent
to prove certain observability inequalities corresponding to the adjoint system. Moreover, the prop-
erty (2.46) is called the unique continuation property, which gives approximate controllability of the
system (2.23). In the next section, we see that all these notions can be generalized for the infinite
dimensional linear systems. However, there are other several concepts available in the literature to
prove controllability of the finite dimensional linear system (2.23) which may or may not have direct
generalization into the infinite dimensional systems. We conclude this section by writing only the
statement of some of the famous and well-known results; proof of which can be found in many books,
for instance in [Zab20, TW09].

Theorem 2.2.3. The following statements are equivalent:

(i) The system (2.23) is null controllable at time 𝑇 > 0.

(ii) The Kalman matrix defined by

[𝐴 | 𝐵] = [𝐵 𝐴𝐵 𝐴2𝐵 . . . 𝐴𝑛−1𝐵]

has rank 𝑛.

(iii) The controllability Gramian

𝑄𝑇 =

∫ 𝑇

0
𝑒𝑡𝐴𝐵𝐵∗𝑒𝑡𝐴

∗
𝑑𝑡

is invertible.

Theorem 2.2.4 (Fattorini-Hautus test). The following statements are equivalent:

(i) The system (2.23) is null controllable at time 𝑇 > 0.

(ii) For every 𝜆 ∈ C, the matrix [𝜆𝐼 −𝐴 𝐵] has rank 𝑛.

(iii) For every 𝜆 ∈ 𝜎 (𝐴), the matrix [𝜆𝐼 −𝐴 𝐵] has rank 𝑛.

The above results indicates that, if the system (2.23) is controllable at some time 𝑇 > 0, then it is
controllable at every time 𝑇 and the matrix 𝑄𝑇 is invertible for every 𝑇 > 0. In the next few sections,
we will see that this phenomenon might not always possible in the case of infinite dimensional linear
systems or even non-linear systems posed in finite dimension.

2.2.2 Infinite dimensional linear systems

Let 𝐻 and 𝑈 be Hilbert spaces. We consider the following control system posed in infinite dimensional
space: {

𝑢′(𝑡) = 𝐴𝑢 (𝑡) + 𝐵𝑓 (𝑡), 𝑡 ∈ (0,𝑇 ),
𝑢 (0) = 𝑢0,

(2.48)

where 𝑇 > 0, 𝐴 : D(𝐴) ⊂ 𝐻 → 𝐻 is a closed and densely defined linear operator that generates a
C0-semigroup {𝑆 (𝑡)}𝑡≥0 on 𝐻 and 𝐵 : 𝑈 → 𝐻 is the control operator. The function 𝑢 : [0,𝑇 ] → 𝐻

represents the state, 𝑓 : [0,𝑇 ] → 𝑈 the control and 𝑢0 ∈ 𝐻 is the initial state.

The operator 𝐵 can be bounded or unbounded. In this thesis, we consider only the case when
𝐵 : 𝑈 → 𝐻 is an unbounded linear operator and address the controllability properties of the system
(2.48). In the case when 𝐵 is bounded, similar controllability properties can be studied and in this
context, we refer to the books [Zab20, TW09, CZ95] for more detail.

We note that the adjoint of 𝐴, denoted by 𝐴∗ : D(𝐴∗) ⊂ 𝐻 → 𝐻 , also generates a C0-semigroup
{𝑆∗(𝑡)}𝑡≥0 on 𝐻 , where 𝑆∗(𝑡) is the adjoint of the operator 𝑆 (𝑡) in 𝐻 . Let us denote D(𝐴∗)′ as the dual
of D(𝐴∗) with respect to the pivot space 𝐻 , that is

D(𝐴∗) ⊂ 𝐻 � 𝐻 ′ ⊂ D(𝐴∗)′.
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We assume that 𝐵 : 𝑈 → D(𝐴∗)′ is bounded. Then the adjoint 𝐵∗ : D(𝐴∗) → 𝑈 is also a bounded
linear operator. We further assume the following condition∫ 𝑇

0
∥𝐵∗𝑆∗(𝑡)𝜑 ∥2𝑈 𝑑𝑡 ≤ 𝐶 ∥𝜑 ∥2𝐻 , for all 𝜑 ∈ D(𝐴∗), (2.49)

where 𝐶 > 0 is a constant depending only on 𝑇 . This condition is known as the admissibility con-
dition/inequality, and it shows that we can uniquely extend the operator F : D(𝐴∗) → C0( [0,𝑇 ];𝑈 )
defined by

𝐹 (𝜑) := 𝐵∗𝑆∗(·)𝜑, 𝜑 ∈ D(𝐴∗)

as a continuous linear map from 𝐻 into 𝐿2(0,𝑇 ;𝑈 ). In this setup, we first define the notion of a solution
for the system (2.48).

Definition 2.2.2 (Strong solution). We say a continuous function 𝑢 : [0,𝑇 ] → 𝐻 is a strong solution
of (2.48) if the following conditions are satisfied:

(i) 𝑢 (𝑡) ∈ D(𝐴) for all 𝑡 ∈ [0,𝑇 ],

(ii) 𝑢 (0) = 𝑢0

(iii) 𝑢 is differentiable on (0,𝑇 ) and 𝑢′(𝑡) = 𝐴𝑢 (𝑡) + 𝐵𝑓 (𝑡) for all 𝑡 ∈ (0,𝑇 ).

Then we have the following existence and uniqueness result for the system (2.48).

Lemma 2.2.4. Let 𝑢0 ∈ D(𝐴) be given. If 𝑓 ∈ C1( [0,𝑇 ];𝑈 ), then the system (2.48) admits a unique
strong solution 𝑢 ∈ C0( [0,𝑇 ];𝐻 ) and is given by

𝑢 (𝑡) = 𝑆 (𝑡)𝑢0 +
∫ 𝑡

0
𝑆 (𝑡 − 𝑠)𝐵𝑓 (𝑠)𝑑𝑠, for 𝑡 ∈ [0,𝑇 ] . (2.50)

The proof follows from the properties of the C0-semigroup {𝑆 (𝑡)}𝑡≥0, see for instance Theorem
2.1.2. We note that, if 𝑓 is not continuous, then we cannot get a strong solution of the system (2.48).
In this case, we will define the notion of a weak solution for this system. First, we will write the
adjoint system associated to (2.48) as follows:{

−𝜑 ′(𝑡) = 𝐴∗𝜑 (𝑡), 𝑡 ∈ (0,𝑇 ),
𝜑 (𝑇 ) = 𝜑𝑇 ,

(2.51)

where 𝜑𝑇 ∈ 𝐻 . The solution to this system is given by 𝜑 (𝑡) = 𝑆∗(𝑇 − 𝑡)𝜑𝑇 for 𝑡 ∈ [0,𝑇 ].

Definition 2.2.3 (Weak solution). For any given 𝑢0 ∈ 𝐻 and 𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 ), we say a function
𝑢 ∈ C0( [0,𝑇 ];𝐻 ) is a weak solution of (2.48) if the following identity

⟨𝑢 (𝑡), 𝜑 (𝑡)⟩𝐻 − ⟨𝑢 (0), 𝜑 (0)⟩𝐻 =

∫ 𝑡

0
⟨𝑓 (𝑠), 𝐵∗𝜑 (𝑠)⟩𝑈 𝑑𝑠, ∀𝑡 ∈ [0,𝑇 ], (2.52)

holds for all 𝜑𝑇 ∈ 𝐻 , where 𝜑 is the solution of (2.51).

We note here that the term in the right hand side of the above expression is well-defined, thanks
to the admissibility condition (2.49). With this definition, we write the following result which gives
existence of a unique weak solution to the system (2.48).

Theorem 2.2.5. For any given 𝑢0 ∈ 𝐻 and 𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 ), the system (2.48) admits a unique weak
solution 𝑢 ∈ C0( [0,𝑇 ];𝐻 ). Moreover, we have the following estimate

∥𝑢∥C0 ( [0,𝑇 ];𝐻 ) ≤ 𝐶
(
∥𝑢0∥𝐻 + ∥ 𝑓 ∥𝐿2 (0,𝑇 ;𝑈 )

)
, (2.53)

where 𝐶 > 0 is a constant depending only on 𝑇 .
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We refer to the book of Coron [Cor07, Theorem 2.37] for a proof of this result. Once we have the
above Theorem, we can define the controllability notions for the system (2.48).

Definition 2.2.4. We say the system (2.48) is

(i) exactly controllable at time 𝑇 > 0 in the space 𝐻 if, for any given initial state 𝑢0 ∈ 𝐻 and final
state 𝑢𝑇 ∈ 𝐻 , there exists a control 𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 ) such that the associated solution of (2.48)
satisfies

𝑢 (𝑇 ) = 𝑢𝑇 in 𝐻.

(ii) null controllable at time 𝑇 > 0 in the space 𝐻 if, for any given initial state 𝑢0 ∈ 𝐻 there exists
𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 ) such that the associated solution of (2.48) satisfies

𝑢 (𝑇 ) = 0.

(iii) approximately controllable at time 𝑇 > 0 in the space 𝐻 if, for any given initial state 𝑢0 ∈ 𝐻 ,
final state 𝑢𝑇 ∈ 𝐻 and given 𝜖 > 0, there exists 𝑓𝜖 ∈ 𝐿2(0,𝑇 ;𝑈 ) such that the associated solution
of (2.48) satisfies

∥𝑢𝜖 (𝑇 ) − 𝑢𝑇 ∥𝐻 ≤ 𝜖.

Note that exact controllability always implies null and approximate controllability. However, the
converse is not true, in general, for infinite dimensional linear systems; see Section 2.4 for more details.

Let us assume, for the time, that the system (2.48) has a unique solution 𝑢 ∈ C0( [0,𝑇 ];𝐻 ) given
by

𝑢 (𝑡) = 𝑆 (𝑡)𝑢0 +
∫ 𝑡

0
𝑆 (𝑡 − 𝑠)𝐵𝑓 (𝑠)𝑑𝑠

for all 𝑡 ∈ [0,𝑇 ] (see Lemma 2.2.4). Then, from the expression of the solution, we have

𝑢 (𝑇 ) = 𝑆 (𝑇 )𝑢0 +
∫ 𝑇

0
𝑆 (𝑇 − 𝑠)𝐵𝑓 (𝑠)𝑑𝑠.

Thus, proving exact controllability of the system (2.48) at time 𝑇 in 𝐻 is equivalent to find a control
𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 ) such that the following relation∫ 𝑇

0
𝑆 (𝑇 − 𝑠)𝐵𝑓 (𝑠)𝑑𝑠 = 𝑢𝑇 − 𝑆 (𝑇 )𝑢0

holds for every 𝑢0, 𝑢𝑇 ∈ 𝐻 . For null and approximate controllability of the system (2.48), we will get

similar relations on the control 𝑓 . This motivates us to define a linear map 𝑓 ↦→
∫ 𝑇

0
𝑆 (𝑇 − 𝑠)𝐵𝑓 (𝑠)𝑑𝑠 in

appropriate Hilbert spaces and study the properties of this map. Also, note from Lemma 2.2.4 that, the

strong solution of (2.48) with 𝑢0 = 0 and 𝑓 ∈ C1( [0,𝑇 ];𝑈 ) can be written as 𝑢 (𝑇 ) =
∫ 𝑇

0
𝑆 (𝑇 −𝑠)𝐵𝑓 (𝑠)𝑑𝑠.

With this formula, we can now define the above map as follows:

Let 𝑇 > 0 be given. We define a linear map 𝐹𝑇 : 𝐿2(0,𝑇 ;𝑈 ) → 𝐻 by

𝐹𝑇 (𝑓 ) := 𝑢 (𝑇 ), 𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 ), (2.54)

where 𝑢 ∈ C0( [0,𝑇 ];𝐻 ) is the unique weak solution of (2.48) with 𝑢0 = 0 and 𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 ). Then, we
can find equivalent conditions for exact, null and approximate controllability for the system (2.48).

Theorem 2.2.6. The following statements hold:

(i) The system (2.48) is exactly controllable at time 𝑇 > 0 in 𝐻 if and only if Range(𝐹𝑇 ) = 𝐻 .

(ii) The system (2.48) is null controllable at time 𝑇 > 0 in 𝐻 if and only if Range(𝑆 (𝑇 )) ⊂ Range(𝐹𝑇 ).

(iii) The system (2.48) is approximately controllable at time 𝑇 > 0 in 𝐻 if and only if Range(𝐹𝑇 ) is
dense in 𝐻 .
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Proof. We prove each parts separately.

(i) Let us first assume that the system (2.48) be exactly controllable at time 𝑇 in the space 𝐻 . This
means, for any given 𝑧 ∈ 𝐻 and initial state 𝑢0 = 0, we can find a 𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 ) such that
𝑢 (𝑇 ) = 𝑧 in 𝐻 , that is, 𝐹𝑇 (𝑓 ) = 𝑧, which proves that Range(𝐹𝑇 ) = 𝐻 .
Conversely, we assume Range(𝐹𝑇 ) = 𝐻 . Let 𝑢0, 𝑢𝑇 ∈ 𝐻 be given. Let 𝑢1 denote the weak solution
of (2.48) with initial state 𝑢0 and 𝑓 = 0. Since Range(𝐹𝑇 ) = 𝐻 , we can find a 𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 ) such
that 𝐹𝑇 (𝑓 ) = 𝑢𝑇 −𝑢1(𝑇 ), that is 𝑢2(𝑇 ) = 𝑢𝑇 −𝑢1(𝑇 ), where 𝑢2 is the solution of (2.48) with initial
state 0 and above function 𝑓 . Then, by linearity of the system (2.48), the function 𝑢 := 𝑢1 + 𝑢2
is a solution of (2.48) with initial state 𝑢0 ∈ 𝐻 and the above function 𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 ). Moreover,
this solution satisfies 𝑢 (𝑇 ) = 𝑢1(𝑇 ) + 𝑢2(𝑇 ) = 𝑢𝑇 , which proves that the system (2.48) is exactly
controllable at time 𝑇 in the space 𝐻 .

(ii) Let the system (2.48) be null controllable at time 𝑇 in the space 𝐻 . Let 𝑢0 ∈ 𝐻 be given. We will
prove that 𝑆 (𝑇 )𝑢0 ∈ Range(𝐹𝑇 ). Note that, 𝑢1(𝑡) := 𝑆 (𝑡)𝑢0 is the weak solution of (2.48) with
this 𝑢0 and 𝑓 = 0. On the other hand, since the system (2.48) is null controllable at time 𝑇 in
𝐻 , there exists a control 𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 ) such that the solution 𝑢2 of (2.48) starting from −𝑢0 ∈ 𝐻
satisfies 𝑢2(𝑇 ) = 0. Then the function 𝑢 := 𝑢1 +𝑢2 is the weak solution of (2.48) with initial state
0 and control 𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 ). Moreover, 𝑢 (𝑇 ) = 𝑢1(𝑇 ) = 𝑆 (𝑇 )𝑢0, that is 𝐹𝑇 (𝑓 ) = 𝑆 (𝑇 )𝑢0, which
implies 𝑆 (𝑇 )𝑢0 ∈ Range(𝐹𝑇 ). Since 𝑢0 ∈ 𝐻 was arbitrary, the proof follows.

Conversely, we assume Range(𝑆 (𝑇 )) ⊂ Range(𝐹𝑇 ). Let 𝑢0 ∈ 𝐻 be given. Since −𝑆 (𝑇 )𝑢0 ∈
Range(𝐹𝑇 ), we get a 𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 ) such that 𝐹𝑇 (𝑓 ) = −𝑆 (𝑇 )𝑢0, that is the solution 𝑢1 of (2.48)
with initial state 0 and this 𝑓 satisfies 𝑢1(𝑇 ) = −𝑆 (𝑇 )𝑢0. Also, note that 𝑢2(𝑡) := 𝑆 (𝑡)𝑢0 is the
weak solution of (2.48) with initial state 𝑢0 and 𝑓 = 0. Then the function 𝑢 := 𝑢1 + 𝑢2 is the
weak solution of (2.48) with the above initial state 𝑢0 ∈ 𝐻 and control 𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 ). Moreover,
𝑢 (𝑇 ) = 𝑢1(𝑇 ) + 𝑢2(𝑇 ) = 0. This proves that the system (2.48) is null controllable at time 𝑇 in 𝐻 .

(iii) We finally assume that the system (2.48) is approximately controllable at time 𝑇 in the space 𝐻 .
This implies for given 𝑧 ∈ 𝐻 , initial state 0 and given 𝜖 > 0, there exists a control 𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 )
such that the solution 𝑢 of (2.48) satisfies ∥𝑢 (𝑇 ) − 𝑧∥𝐻 ≤ 𝜖, that is ∥𝐹𝑇 (𝑓 ) − 𝑧∥𝐻 ≤ 𝜖, proving
that Range(𝐹𝑇 ) is dense in 𝐻 .

Conversely, if Range(𝐹𝑇 ) is dense in 𝐻 then, for given 𝑢0, 𝑢𝑇 ∈ 𝐻 and 𝜖 > 0, we can find a
𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 ) such that ∥𝐹𝑇 (𝑓 ) + 𝑢1(𝑇 ) − 𝑢𝑇 ∥𝐻 ≤ 𝜖, where 𝑢1 is the weak solution of (2.48)
with the above 𝑢0 ∈ 𝐻 and 𝑓 = 0. This implies ∥𝑢2(𝑇 ) + 𝑢1(𝑇 ) − 𝑢𝑇 ∥𝐻 ≤ 𝜖, where 𝑢2 is the
unique weak solution of (2.48) with initial state 0 and the above function 𝑓 . Let us now define
𝑢 := 𝑢1 +𝑢2. Then 𝑢 is the weak solution of (2.48) with the above initial state 𝑢0 ∈ 𝐻 and control
𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 ) satisfying ∥𝑢 (𝑇 ) − 𝑢𝑇 ∥𝐻 = ∥𝑢1(𝑇 ) + 𝑢2(𝑇 ) − 𝑢𝑇 ∥𝐻 ≤ 𝜖. This proves that the system
(2.48) is approximately controllable at time 𝑇 in the space 𝐻 .

This completes the proof.

In general, finding the range of a linear operator is quite difficult, so we will further reduce the
above conditions with the help of some useful results from functional analysis. First, let us recall the
following result which is written in more general Banach spaces.

Theorem 2.2.7. Let 𝑋,𝑌 and 𝑍 be Banach spaces and let 𝐹 : 𝑋 → 𝑌 and 𝐺 : 𝑌 → 𝑍 be linear
operators. Then:

(i) 𝐹 is surjective if and only if there exists a 𝐶 > 0 such that ∥𝐹 ∗(𝑧)∥𝑋 ′ ≥ 𝐶 ∥𝑧∥𝑌 ′ holds for all 𝑧 ∈ 𝑌 ′.

(ii) Range(𝐹 ) is dense in 𝑌 if and only if 𝐹 ∗(𝑧) = 0 for all 𝑧 ∈ 𝑌 ′ implies 𝑧 = 0.

(iii) If 𝑌 is reflexive, then Range(𝐹 ) ⊂ Range(𝐺) if and only if there exists 𝐶 > 0 such that ∥𝐹 ∗(𝑧)∥𝑋 ′ ≤
𝐶 ∥𝐺∗(𝑧)∥𝑌 ′ for all 𝑧 ∈ 𝑍 ′.
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We refer to the books of Brezis [Bre11, Theorem 2.20, Corollary 2.18] and Coron [Cor07, Lemma
2.46, Lemma 2.48] for a proof of Theorem 2.2.7; see also [Zab20, Tré23, TWX20]. In this thesis, we will
assume this result and then, with the help of Theorem 2.2.6, we deduce some equivalent inequalities
for the controllability of the system (2.48). The proof is straightforward from Theorem 2.2.7 and so
we leave the details.

Theorem 2.2.8. The following statements hold:

(i) The system (2.48) is exactly controllable at time 𝑇 > 0 in 𝐻 if and only if there exists a 𝐶 > 0
such that



𝐹 ∗
𝑇
(𝑧)




𝐿2 (0,𝑇 ;𝑈 ) ≥ 𝐶 ∥𝑧∥𝐻 holds for all 𝑧 ∈ 𝐻 .

(ii) The system (2.48) is null controllable at time 𝑇 > 0 in 𝐻 if and only if there exists a 𝐶 > 0 such
that ∥𝑆∗(𝑇 ) (𝑧)∥𝐻 ≤ 𝐶



𝐹 ∗
𝑇
(𝑧)




𝐿2 (0,𝑇 ;𝑈 ) holds for all 𝑧 ∈ 𝐻 .

(iii) The system (2.48) is approximately controllable at time 𝑇 > 0 in 𝐻 if and only if 𝐹 ∗
𝑇
(𝑧) = 0 for

all 𝑧 ∈ 𝐻 implies 𝑧 = 0.

In view of this result, we now find the adjoint operator 𝐹 ∗
𝑇
: 𝐻 → 𝐿2(0,𝑇 ;𝑈 ). Let 𝜑𝑇 ∈ D(𝐴∗) and

𝑓 ∈ 𝐿2(0,𝑇 ;𝑈 ) be given. Let 𝑢 ∈ C0( [0,𝑇 ];𝐻 ) be the unique weak solution of (2.48) with this 𝑓 and
initial state 𝑢0 = 0. Then, we have〈

𝑓 , 𝐹 ∗𝑇 (𝜑𝑇 )
〉
𝐿2 (0,𝑇 ;𝑈 ) = ⟨𝐹𝑇 (𝑓 ), 𝜑𝑇 ⟩𝐻 = ⟨𝑢 (𝑇 ), 𝜑𝑇 ⟩𝐻 .

Since 𝑢 is a weak solution of (2.48), we have the following relation (see eq. (2.52)):

⟨𝑢 (𝑇 ), 𝜑𝑇 ⟩𝐻 =

∫ 𝑇

0
⟨𝑓 (𝑡), 𝐵∗𝜑 (𝑡)⟩𝑈 𝑑𝑡 .

Thus, we obtain 〈
𝑓 , 𝐹 ∗𝑇 (𝜑𝑇 )

〉
𝐿2 (0,𝑇 ;𝑈 ) = ⟨𝑓 , 𝐵∗𝜑⟩𝐿2 (0,𝑇 ;𝑈 )

and therefore 𝐹 ∗
𝑇
: 𝐻 → 𝐿2(0,𝑇 ;𝑈 ) is defined as

𝐹 ∗𝑇 (𝜑𝑇 ) = 𝐵∗𝜑, for all 𝜑𝑇 ∈ D(𝐴∗) .

Since D(𝐴∗) is dense in 𝐻 , the operator 𝐹 ∗
𝑇
: D(𝐴∗) → 𝐿2(0,𝑇 ;𝑈 ) has a unique extension on 𝐻 . Thus,

denoting the same function, the adjoint operator 𝐹 ∗
𝑇
: 𝐻 → 𝐿2(0,𝑇 ;𝑈 ) is defined as

𝐹 ∗𝑇 (𝜑𝑇 ) := 𝐵∗𝜑, for all 𝜑𝑇 ∈ 𝐻. (2.55)

Then, the statements of Theorem 2.2.8 reduces to the following (see Theorem 2.2.2 for a comparison
with the finite dimensional linear systems):

Theorem 2.2.9. The following statements hold:

(i) The system (2.48) is exactly controllable at time 𝑇 > 0 in 𝐻 if, and only if, there exists a 𝐶 > 0
such that the following observability inequality∫ 𝑇

0
∥𝐵∗𝜑 (𝑡)∥2𝑈 𝑑𝑡 ≥ 𝐶 ∥𝜑𝑇 ∥2𝐻 (2.56)

holds for all 𝜑𝑇 ∈ D(𝐴∗), where 𝜑 is the solution of the adjoint system (2.51).

(ii) The system (2.48) is null controllable at time 𝑇 > 0 in 𝐻 if, and only if, there exists a 𝐶 > 0
such that the observability inequality∫ 𝑇

0
∥𝐵∗𝜑 (𝑡)∥2𝑈 𝑑𝑡 ≥ 𝐶 ∥𝜑 (0)∥2𝐻 (2.57)

holds for all 𝜑𝑇 ∈ D(𝐴∗), where 𝜑 is the solution of the adjoint system (2.51).
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(iii) The system (2.48) is approximately controllable at time 𝑇 > 0 in 𝐻 if, and only if, the following
unique continuation principle holds:

If 𝜑 solves (2.51) and 𝐵∗𝜑 = 0 in 𝐿2(0,𝑇 ;𝑈 ), then 𝜑𝑇 = 0 in 𝐻. (2.58)

We note here that in finite dimensional setup, we have proved this result directly by constructing
a quadratic functional 𝐽 : R𝑛 → R. In comparison, for infinite dimensional linear systems, the function
𝐽 : 𝐻 → R may not be well-defined due to the less regularity of the solution. However, one can modify
the cost functional by choosing 𝜑𝑇 more regular (say from D(𝐴∗)) and prove that controllability is
equivalent to these observability inequalities. In this context, we refer to the end of Section 2.4 for
more details.

We now state a very useful result on approximate controllability of (2.48) in the presence of
backward uniqueness property of the associated homogeneous system (that is, with no control input).
First, let us consider the following homogeneous system{

𝑢′(𝑡) = 𝐴𝑢 (𝑡), 𝑡 ∈ (0,𝑇 ),
𝑢 (0) = 𝑢0,

(2.59)

where 𝑢0 is the initial state belong to some Hilbert space 𝐻 . We assume that this system (2.59) has
a unique solution 𝑢 ∈ C0( [0,𝑇 ];𝐻 ).

Definition 2.2.5. We say the system (2.59) satisfy the backward uniqueness property if

𝑢 (𝑇 ) = 0 in 𝐻 implies 𝑢 ≡ 0.

The backward uniqueness property is very important in control theoretic perspective. Note that,
the backward uniqueness of (2.59) will imply the same for adjoint system (2.51): “If 𝜑 (0) = 0 in 𝐻 ,
then necessarily 𝜑 ≡ 0”. Using this property, we will show that the approximate controllability can be
achieved from null controllability of the infinite dimensional linear system (2.48).

Proposition 2.2.1. Let the homogeneous system (2.59) satisfy the backward uniqueness property. Let
us also assume that the control system (2.48) is null controllable at some time 𝑇 > 0 in the space 𝐻 .
Then, the system (2.48) is approximately controllable at that time 𝑇 in 𝐻 .

Proof. Since the system (2.48) is null controllable at time 𝑇 > 0, applying Theorem 2.2.9-Part (ii), we
have the following observability inequality∫ 𝑇

0
∥𝐵∗𝜑 (𝑡)∥2𝑈 𝑑𝑡 ≥ 𝐶 ∥𝜑 (0)∥2𝐻

for all 𝜑𝑇 ∈ D(𝐴∗). To prove approximate controllability of the system (2.48) at time 𝑇 in 𝐻 , it
is enough to prove the unique continuation principle (2.58). Let 𝐵∗𝜑 = 0 in 𝐿2(0,𝑇 ;𝑈 ). The above
observability inequality is then yield 𝜑 (0) = 0 in 𝐻 . Thanks to the backward uniqueness property, we
deduce that 𝜑 ≡ 0 and hence 𝜑𝑇 = 0 in 𝐻 . This completes the proof.

Apart from the above result, we now state two results, which shows that the approximate con-
trollability can also achieved from null controllability in the absence of backward uniqueness. For the
proof of first part, we refer to the book [Cor07, Theorem 2.45, Page 57], whereas the second part
follows directly from Theorem 2.2.6.

Theorem 2.2.10. Let 𝐻 be a Hilbert space. Then:

1. If the system (2.48) is null controllable at every time 𝑇 > 0 in 𝐻 , then the system (2.48) is
approximately controllable at every time 𝑇 > 0 in 𝐻 .

2. If the system (2.48) is null controllable at some time 𝑇 > 0 in 𝐻 and Range(𝑆 (𝑇 )) is dense in
𝐻 , then the system (2.48) is approximately controllable at that time 𝑇 in 𝐻 .
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We finally conclude this section with some important results that are stated in finite dimensional
setup at the end of the previous section (see Theorem 2.2.3 and Theorem 2.2.4). Note that, there is
no natural generalization of the Kalman rank condition in the infinite dimensional case. However, the
Fattorini-Hautus test can be generalized only for the approximate controllability under some general
assumptions on the operator 𝐴. Also, recall from Theorem 2.2.3 that for finite dimensional linear
systems, controllability at time 𝑇 is equivalent to the invertibility of the Gramian matrix 𝑄𝑇 . We
can generalize this result for the infinite dimensional linear systems when the operator 𝐵 : 𝑈 → 𝐻 is
bounded, by defining the controllability Gramian 𝑄𝑇 : 𝐻 → 𝐻 as

𝑄𝑇 (𝑧) :=
∫ 𝑇

0
𝑆 (𝑡)𝐵𝐵∗𝑆∗(𝑡)𝑑𝑡, 𝑧 ∈ 𝐻. (2.60)

Note that, 𝑄𝑇 is a well-defined bounded linear operator on 𝐻 which is self-adjoint and non-negative
definite (since 𝐵 is bounded). We only state these results and for the proof, we refer to the lecture
note [Boy23, Theorem III.3.7, Page 40] and the book [Zab20, Sections 15.2–15.3]. We mention here
that the Fattorini-Hautus test has been used in several places of this thesis.

Theorem 2.2.11 (Fattorini-Hautus test). Let 𝐻 be Hilbert space and the resolvent operator (𝜆𝐼 −𝐴)−1
is compact on 𝐻 for every 𝜆 ∈ 𝜌 (𝐴). Let us also assume that the semigroup generated by −𝐴∗ is analytic.
Then the system (2.48) is approximately controllable at time 𝑇 > 0 in 𝐻 if and only if

ker(𝜆𝐼 −𝐴∗) ∩ ker(𝐵∗) = {0}.

Theorem 2.2.12. The following statements hold:

(i) The system (2.48) is exactly controllable at time 𝑇 in 𝐻 if and only if Range(𝑄
1
2

𝑇
) = 𝐻 .

(ii) The system (2.48) is null controllable at time 𝑇 in 𝐻 if and only if Range(𝑆 (𝑇 )) ⊂ Range(𝑄
1
2

𝑇
).

(iii) The system (2.48) is approximately controllable at time 𝑇 in 𝐻 if and only if Range(𝑄
1
2

𝑇
) is dense

in 𝐻 .

2.2.3 Nonlinear systems

In this section, we give a brief introduction to the controllability of nonlinear systems in finite and
infinite dimensions. We present one example of an infinite dimensional nonlinear system in Section
2.5 which is relevant to this thesis. First, we write a general nonlinear system in R𝑛 as follows:{

𝑢′(𝑡) = 𝐹 (𝑢 (𝑡), 𝑓 (𝑡)), 𝑡 ∈ (0,𝑇 ),
𝑢 (0) = 𝑢0.

(2.61)

Here 𝑇 > 0, 𝑢 : [0,𝑇 ] → R𝑛 represents the state vector, 𝑓 : [0,𝑇 ] → R𝑚 the control vector and 𝑢0 ∈ R𝑛
is the initial state. We assume that the nonlinear function 𝐹 : R𝑛 × R𝑚 → R𝑛 is regular enough. In
this setup, we first define the equilibrium point of this system.

Definition 2.2.6. We say a point (𝑢, 𝑓 ) ∈ R𝑛 × R𝑚 is an equilibrium (or steady state) of the system
(2.61) if

𝐹 (𝑢, 𝑓 ) = 0.

We wish to study controllability properties of (2.61) around some equilibrium point. For this, we
assume that this system (2.61) has a unique solution in the whole interval [0,𝑇 ]. Then, we define the
controllability notion for this system (see the figure below).

Definition 2.2.7. We say the system (2.61) is small-time locally controllable around the equilib-
rium (𝑢, 𝑓 ) if, for given 𝑇 > 0, there exists a 𝜖 > 0 such that for chosen 𝑢0, 𝑢𝑇 ∈ R𝑛 with ∥𝑢0 − 𝑢∥R𝑛 < 𝜖

and ∥𝑢𝑇 − 𝑢∥ < 𝜖, there exists a measurable function 𝑓 : [0,𝑇 ] → R𝑚 such that 𝑢 (𝑇 ) = 𝑢𝑇 in R𝑛.
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Figure 2.2: Small-time local controllability

If the above property holds at a given time 𝑇 > 0, then we say the system (2.61) is locally
controllable at time 𝑇 around (𝑢, 𝑓 ). In addition, if we don’t have smallness condition on the initial
and final states, we say the nonlinear system (2.61) is globally controllable.

Studying local controllability of the nonlinear system is very difficult compared to the finite dimen-
sional linear systems. There are a few techniques available in the literature for studying the small-time
local controllability of the general nonlinear system (2.61) including the linear test, the return method
and Lie algebra technique (which relies on iterated Lie brackets). We refer to the books [Cor07, Chap-
ter 3] and [Zab20, Chapter 6] for more insights in this matter. In this section, we only state some of
these results and provide some examples of nonlinear systems in finite dimension.

From the definition of small-time local controllability, it is easy to see that, for 𝐹 (𝑢 (𝑡), 𝑓 (𝑡)) = 𝐴𝑢 (𝑡)+
𝐵𝑓 (𝑡) with 𝐴 ∈ 𝑀𝑛 (R) and 𝐵 ∈ 𝑀𝑛,𝑚 (R), controllability of the pair (𝐴, 𝐵) implies local controllability
of the linear system {

𝑢′(𝑡) = 𝐴𝑢 (𝑡) + 𝐵𝑓 (𝑡), 𝑡 ∈ (0,𝑇 ).
𝑢 (0) = 𝑢0

around (𝑢, 𝑓 ) = (0, 0) ∈ R𝑛 × R𝑚 at every 𝑇 > 0. Moreover, the following result shows that we can
achieve local controllability of the nonlinear system (2.61) from the controllability of the corresponding
linear system.

Theorem 2.2.13. Let 𝑓 : R𝑛 × R𝑚 → R𝑛 be continuously differentiable in a neighborhood of the
equilibrium point (𝑢, 𝑓 ). If the linearized system around (𝑢, 𝑓 )

𝑢′(𝑡) = 𝜕𝐹

𝜕𝑢
(𝑢, 𝑓 )𝑢 (𝑡) + 𝜕𝐹

𝜕𝑓
(𝑢, 𝑓 ) 𝑓 (𝑡), 𝑡 ∈ (0,𝑇 ),

𝑢 (0) = 𝑢0

is controllable, then the nonlinear system (2.61) is locally controllable around (𝑢, 𝑓 ) at every 𝑇 > 0.

We refer to [Cor07, Theorem 3.8] and [Zab20, Theorem 6.6] for a proof of this result. Note that,
converse of the above Theorem is not true, in general. More precisely, there are locally controllable
nonlinear systems such that the linearized systems are not controllable, see Example 2.2.3 below.

Example 2.2.3. Let us consider 𝑢 = (𝑢1, 𝑢2, 𝑢3) ∈ R3, 𝑓 = (𝑓1, 𝑓2) ∈ R2 and

𝐹 (𝑢, 𝑓 ) = (𝑓1, 𝑓2, 𝑢1 𝑓2 − 𝑢2 𝑓1).

Note that
{
(𝑢, 0) : 𝑢 = (𝑢1, 𝑢2, 𝑢3) ∈ R3

}
⊂ R3 × R2 is the set of all equilibrium points of this system.

The linearized system around these equilibrium points is given by{
𝑢′(𝑡) = 𝐴𝑢 (𝑡) + 𝐵𝑓 (𝑡), 𝑡 ∈ (0,𝑇 ),
𝑢 (0) = 𝑢0,
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where

𝐴 :=
𝜕𝐹

𝜕𝑢
(𝑢, 0) = ©­«

0 0 0
0 0 0
0 0 0

ª®¬ , 𝐵 :=
𝜕𝐹

𝜕𝑓
(𝑢, 0) = ©­«

1 0
0 1

−𝑢2 𝑢1

ª®¬ .
Since Rank of the Kalman matrix is 2, the linear system is not controllable. However, one can
prove using Lie algebra technique that the nonlinear system is small-time locally controllable at any
equilibrium point (𝑢, 0), see [Cor07, Example 3.20, Page 135] or [Zab20, Example 6.3, Page 93] for
more details.

We conclude this section with an example of a nonlinear system that is not small-time locally
controllable.

Example 2.2.4. Let us consider 𝑢 = (𝑢1, 𝑢2, 𝑢3) ∈ R3, 𝑓 (𝑡) ∈ R and

𝐹 (𝑢, 𝑓 ) = (𝑓 ,𝑢3,−𝑢2 + 2𝑢1 𝑓 ) .

Note that (0, 0) ∈ R3 × R is an equilibrium point of this system. The linearized system around this
equilibrium point is given by {

𝑢′(𝑡) = 𝐴𝑢 (𝑡) + 𝐵𝑓 (𝑡), 𝑡 ∈ (0,𝑇 ),
𝑢 (0) = 𝑢0,

where

𝐴 :=
𝜕𝐹

𝜕𝑢
(0, 0) = ©­«

0 0 0
0 0 1
0 −1 0

ª®¬ , 𝐵 :=
𝜕𝐹

𝜕𝑓
(0, 0) = ©­«

1
0
0

ª®¬ .
Since rank of the Kalman matrix is 2, the linear system is not controllable and we show below that the
nonlinear system is also not small-time locally controllable around (0, 0).
We first write the nonlinear system as

𝑢′1(𝑡) = 𝑓 (𝑡), 𝑢′2(𝑡) = 𝑢3(𝑡), 𝑢′3(𝑡) = −𝑢2(𝑡) + 2𝑢1(𝑡) 𝑓 (𝑡),

for 𝑡 ∈ (0,𝑇 ). Thus, we obtain

𝑢′′2 (𝑡) + 𝑢2(𝑡) = 2𝑢1(𝑡)𝑢′1(𝑡), 𝑡 ∈ (0,𝑇 ) .

Assuming the initial state 𝑢 (0) = (0, 0, 0), we find that

𝑢2(𝑇 ) =
∫ 𝑇

0
cos(𝑇 − 𝑡)𝑢21 (𝑡)𝑑𝑡 .

This shows that 𝑢2(𝑇 ) ≥ 0 if 0 < 𝑇 ≤ 𝜋
2 . As a consequence, the nonlinear system cannot be small-time

locally controllable around (0, 0).

Like the finite dimensional case, there are no general results available in the literature to prove
small-time local controllability of the infinite dimensional nonlinear systems. In this context, we refer
to the book [Cor07, Chapter 4], where local controllability of several nonlinear equations (in infinite
dimension) has been proved by using variations of fixed-point methods; see also the book [Zab20]. In
Chapter 5, we will show another variation of fixed point, known as “the source term method” to prove
small-time local controllability of a coupled 2-parabolic system. Moreover, in Section 2.5, we give
some overview on the local controllability of a 1-d nonlinear heat equation (with square nonlinearity),
where we have utilized the controllability of the linearized system.
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2.3 The transport equation

This section is devoted to the controllability properties of the transport equation posed in one di-
mension. This equation plays a crucial role in this thesis because of its presence in the linearized
compressible Navier-Stokes system, as mentioned in the introduction. For this reason, we will present
a detailed study of controllability of this equation by using one boundary control. The results and
proofs addressed here are taken from the book [Cor07, Chapter 2]. In this context, we refer to the
book [?] for a study of general hyperbolic systems.

Let 𝑇, 𝐿 > 0. The transport equation in the interval (0, 𝐿) is given by

𝜌𝑡 + 𝑐𝜌𝑥 = 0,

where 𝑐 > 0 and 𝜌 := 𝜌 (𝑡, 𝑥) is the state. We take the initial condition as

𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑥 ∈ (0, 𝐿) .

We consider one of the following boundary conditions on 𝜌:

⋄ (Dirichlet): 𝜌 (𝑡, 0) = 0, for 𝑡 ∈ (0,𝑇 ),
⋄ (Periodic): 𝜌 (𝑡, 0) = 𝜌 (𝑡, 𝐿), for 𝑡 ∈ (0,𝑇 ) .

We first consider the Dirichlet case and provide a detailed study of controllability of this equation
using only one boundary control. The periodic case will be similar to the Dirichlet setup, so we will
give some comments at the end of this section.

2.3.1 Dirichlet setup

Let 𝑇, 𝐿 > 0 be given. We consider the following system:
𝜌𝑡 + 𝑐𝜌𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝜌 (𝑡, 0) = 𝑝 (𝑡), for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), in (0, 𝐿).

(2.62)

Here 𝑐 > 0, 𝜌 = 𝜌 (𝑡, 𝑥) is the state, 𝜌0 is the initial state and 𝑝 is a boundary control. We consider
the state space as 𝐿2(0, 𝐿), the control space as 𝐿2(0,𝑇 ) and define the unbounded linear operator
𝐴 : D(𝐴) ⊂ 𝐿2(0, 𝐿) → 𝐿2(0, 𝐿) as follows.{

D(𝐴) =
{
𝑓 ∈ 𝐻1(0, 𝐿) : 𝑓 (0) = 0

}
,

𝐴𝑓 := −𝑐 𝑓𝑥 , 𝑓 ∈ D(𝐴) .
(2.63)

We note here that the adjoint of the operator 𝐴 is given by{
D(𝐴∗) =

{
𝑔 ∈ 𝐻1(0, 𝐿) : 𝑔(𝐿) = 0

}
,

𝐴∗𝑔 := 𝑐𝑔𝑥 , 𝑔 ∈ D(𝐴∗) .
(2.64)

In this setup, we first write the following result, which shows that the operator (𝐴,D(𝐴)) gen-
erates a C0-semigroup {𝑆 (𝑡)}𝑡≥0 of contractions in 𝐿2(0, 𝐿). As a consequence, the adjoint operator
(𝐴∗,D(𝐴∗)) also generates a C0-semigroup {𝑆∗(𝑡)}𝑡≥0 of contractions in 𝐿2(0, 𝐿).

Lemma 2.3.1. The operator (𝐴,D(𝐴)) generates a C0-semigroup of contractions {𝑆 (𝑡)}𝑡≥0 in 𝐿2(0, 𝐿).

Proof. We will apply the Lumer-Philips theorem (Corollary 2.1.2) to prove this result. More precisely,
it is enough to prove that 𝐴 is a densely defined closed linear operator in 𝐿2(0, 𝐿) and both 𝐴,𝐴∗ are
dissipative in 𝐿2(0, 𝐿).

• Since C∞
𝑐 (0, 𝐿) ⊂ D(𝐴) is dense in 𝐿2(0, 𝐿), therefore D(𝐴) is dense in 𝐿2(0, 𝐿). Thus, 𝐴 is densely

defined.
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• Let (𝑓𝑛)𝑛∈N be a sequence in D(𝐴) such that 𝑓𝑛 → 𝑓 in 𝐿2(0, 𝐿) and 𝐴𝑓𝑛 → 𝑔 in 𝐿2(0, 𝐿) for some
𝑓 , 𝑔 ∈ 𝐿2(0, 𝐿). This implies

lim
𝑛→∞

∫ 𝐿

0
(−𝑐 𝑓𝑛)𝑥𝜑𝑑𝑥 =

∫ 𝐿

0
𝑔𝜑𝑑𝑥, ∀𝜑 ∈ C∞

𝑐 (0, 𝐿) .

An integration by parts yields

lim
𝑛→∞

∫ 𝐿

0
𝑐 𝑓𝑛𝜑𝑥𝑑𝑥 =

∫ 𝐿

0
𝑔𝜑𝑑𝑥, ∀𝜑 ∈ C∞

𝑐 (0, 𝐿) .

Since 𝑓𝑛 → 𝑓 in 𝐿2(0, 𝐿), we readily have∫ 𝐿

0
𝑐 𝑓 𝜑𝑥𝑑𝑥 =

∫ 𝐿

0
𝑔𝜑𝑑𝑥, ∀𝜑 ∈ C∞

𝑐 (0, 𝐿) .

This proves that 𝑓 ∈ 𝐻1(0, 𝐿) and −𝑐 𝑓𝑥 = 𝑔. It remains to prove that 𝑓 (0) = 0. Since 𝑓𝑛 ∈ D(𝐴),
therefore 𝑓𝑛 (0) = 0 for all 𝑛 ∈ N. Let 𝜑 ∈ C∞ [0, 𝐿] be such that 𝜑 (𝐿) = 0 and 𝜑 (0) ≠ 0. Then we
have after an integration by parts∫ 𝐿

0
𝑔𝜑𝑑𝑥 =

∫ 𝐿

0
(−𝑐 𝑓 )𝑥𝜑𝑑𝑥 =

∫ 𝐿

0
(𝑐 𝑓 )𝜑𝑥𝑑𝑥 − 𝑐 𝑓 (0)𝜑 (0) .

On the other hand∫ 𝐿

0
(𝑐 𝑓 )𝜑𝑥𝑑𝑥 = lim

𝑛→∞

∫ 𝐿

0
(𝑐 𝑓𝑛)𝜑𝑥𝑑𝑥 = lim

𝑛→∞

∫ 𝐿

0
(−𝑐 𝑓𝑛)𝑥𝜑𝑑𝑥 =

∫ 𝐿

0
𝑔𝜑𝑑𝑥.

Comparing these above two identities, we deduce that 𝑐 𝑓 (0)𝜑 (0) = 0, which implies 𝑓 (0) = 0 as
𝜑 (0) ≠ 0. Thus, 𝑓 ∈ D(𝐴) and therefore 𝐴 is closed.

• Let 𝑓 ∈ D(𝐴). Then

⟨𝐴𝑓 , 𝑓 ⟩𝐿2 (0,𝐿) = −𝑐
∫ 𝐿

0
𝑓𝑥 (𝑥) 𝑓 (𝑥)𝑑𝑥 = −𝑐

2
𝑓 2(𝐿) ≤ 0,

and therefore 𝐴 is dissipative in 𝐿2(0, 𝐿).

• Let 𝑔 ∈ D(𝐴∗). Then

⟨𝐴∗𝑔,𝑔⟩𝐿2 (0,𝐿) = 𝑐
∫ 𝐿

0
𝑔𝑥 (𝑥)𝑔(𝑥)𝑑𝑥 = −𝑐

2
𝑔2(0) ≤ 0,

and hence 𝐴∗ is also dissipative in 𝐿2(0, 𝐿).

The proof completes.

Thanks to this result, we can guarantee the existence and uniqueness of a strong solution to the
system (2.62) when the initial state 𝜌0 and control 𝑝 are more regular.

Lemma 2.3.2. Let us assume that 𝜌0 ∈ D(𝐴) and 𝑝 ∈ C2( [0,𝑇 ]) satisfies the compatibility condition
𝑝 (0) = 0. Then the system (2.62) admits a unique strong solution

𝜌 ∈ C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ C0( [0,𝑇 ];𝐻1(0, 𝐿)) .

Proof. Let 𝜌0 ∈ D(𝐴) and 𝑝 ∈ C2 [0,𝑇 ] with 𝑝 (0) = 0. We define the function 𝜌 (𝑡, 𝑥) = 𝜌 (𝑡, 𝑥) − 𝑝 (𝑡)
for (𝑡, 𝑥) ∈ [0,𝑇 ] × [0, 𝐿]. Then 𝜌 satisfies

𝜌𝑡 = 𝐴𝜌 + 𝑓 , in (0,𝑇 ) × (0, 𝐿),
𝜌 (𝑡, 0) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), in (0, 𝐿),

(2.65)

46



2.3. The transport equation

with 𝑓 (𝑡, 𝑥) := −𝑝′(𝑡) for (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 𝐿). Since 𝑓 ∈ C1( [0,𝑇 ] × [0, 𝐿]), by semigroup property (see
Corollary 2.1.1), this system (2.65) has a unique strong solution 𝜌 in the space

C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ C0( [0,𝑇 ];D(𝐴)) .

Consequently, the system (2.62) has a unique strong solution 𝜌 in the space C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩
C0( [0,𝑇 ];𝐻1(0, 𝐿)) . This completes the proof.

To guarantee the existence of a unique solution when 𝜌0 ∈ 𝐿2(0, 𝐿) and 𝑝 ∈ 𝐿2(0,𝑇 ), we need to
define the notion of a weak solution for the system (2.62) (see Definition 2.2.3). For this, we consider
the adjoint system corresponding to (2.62) as follows:

−𝜎𝑡 − 𝑐𝜎𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝜎 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜎 (𝑇, 𝑥) = 𝜎𝑇 (𝑥), in (0, 𝐿),

(2.66)

where 𝜎𝑇 ∈ 𝐿2(0, 𝐿). Then, using the adjoint semigroup {𝑆∗(𝑡)}𝑡≥0, we have the following result:

Lemma 2.3.3. For any given 𝜎𝑇 ∈ D(𝐴∗), the adjoint system (2.66) admits a unique strong solution

𝜎 ∈ C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ C0( [0,𝑇 ];D(𝐴∗)) .

We now define the notion of a weak solution of the system (2.62) when 𝜌0 ∈ 𝐿2(0, 𝐿) and 𝑝 ∈ 𝐿2(0,𝑇 ).

Definition 2.3.1 (Weak solution). Let 𝜌0 ∈ 𝐿2(0, 𝐿) and 𝑝 ∈ 𝐿2(0,𝑇 ) be given. We say a function
𝜌 ∈ C0( [0,𝑇 ];𝐿2(0, 𝐿)) is a weak solution of (2.62) if, for every 𝜎𝑇 ∈ D(𝐴∗) the following identity holds
true: ∫ 𝐿

0
𝜌 (𝑡, 𝑥)𝜎 (𝑡, 𝑥)𝑑𝑥 −

∫ 𝐿

0
𝜌0(𝑥)𝜎 (0, 𝑥)𝑑𝑥 − 𝑐

∫ 𝑡

0
𝑝 (𝑠)𝜎 (𝑠, 0)𝑑𝑠 = 0, ∀𝑡 ∈ [0,𝑇 ] . (2.67)

We note here that this formula is well-defined because of the fact that 𝜎 (·, 0) ∈ 𝐿2(0,𝑇 ), thanks to
Lemma 2.3.3. Using this definition, we have the following well-posedness result for the system (2.62).

Theorem 2.3.1. For any given 𝜌0 ∈ 𝐿2(0, 𝐿) and 𝑝 ∈ 𝐿2(0,𝑇 ), the system (2.62) admits a unique weak
solution

𝜌 ∈ C0( [0,𝑇 ];𝐿2(0, 𝐿)) .

Moreover, this solution 𝜌 satisfies

∥𝜌 ∥C0 ( [0,𝑇 ];𝐿2 (0,𝐿) ) ≤ 𝐶
(
∥𝜌0∥𝐿2 (0,𝐿) + ∥𝑝 ∥𝐿2 (0,𝑇 )

)
, (2.68)

for some 𝐶 > 0 depending only on 𝑇, 𝑐.

Proof. We first prove uniqueness of the solution. Let us suppose that 𝜌1, 𝜌2 ∈ C0( [0,𝑇 ];𝐿2(0, 𝐿)) be
two weak solutions of the system (2.62) and denote 𝜌 := 𝜌1 − 𝜌2. Then 𝜌 ∈ C0( [0,𝑇 ];𝐿2(0, 𝐿)) satisfies

𝜌𝑡 + 𝑐𝜌𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝜌 (𝑡, 0) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 0, in (0, 𝐿) .

Thus, we have from the definition of weak solution (see (2.67)):∫ 𝐿

0
𝜌 (𝑡, 𝑥)𝜎 (𝑡, 𝑥)𝑑𝑥 = 0, ∀𝑡 ∈ [0,𝑇 ],

for all 𝜎𝑇 ∈ D(𝐴∗). Thus we have 𝜌 (𝑡, ·) = 0 for all 𝑡 ∈ [0,𝑇 ].
On the other hand, to prove the existence of a weak solution, we consider the following cases:
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Case 1. Let us first assume that 𝜌0 ∈ D(𝐴) and 𝑝 ∈ C2 [0,𝑇 ] with 𝑝 (0) = 0. Then, applying Lemma 2.3.2,
there is a unique strong solution 𝜌 ∈ C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ C0( [0,𝑇 ];D(𝐴)) . We now prove the
estimate (2.68). Taking 𝐿2-inner product in (2.62) with 𝜌 and integrating over [0, 𝑡], we have∫ 𝑡

0

∫ 𝐿

0
𝜌𝑡𝜌𝑑𝑥𝑑𝑠 + 𝑐

∫ 𝑡

0

∫ 𝐿

0
𝜌𝑥𝜌𝑑𝑥𝑑𝑠 = 0.

Integrating by parts and using the boundary-initial conditions, we deduce that∫ 𝐿

0

[
𝜌2(𝑡, 𝑥) − 𝜌20 (𝑥)

]
𝑑𝑥 + 𝑐

∫ 𝑡

0

[
𝜌2(𝑠, 𝐿) − 𝑝2(𝑠)

]
𝑑𝑠 = 0.

This gives ∫ 𝐿

0
𝜌2(𝑡, 𝑥)𝑑𝑥 =

∫ 𝐿

0
𝜌20 (𝑥)𝑑𝑥 − 𝑐

∫ 𝑡

0
𝜌2(𝑠, 𝐿)𝑑𝑠 + 𝑐

∫ 𝑡

0
𝑝2(𝑠)𝑑𝑠

≤
∫ 𝐿

0
𝜌20 (𝑥)𝑑𝑥 + 𝑐

∫ 𝑇

0
𝑝2(𝑡)𝑑𝑡 .

Taking supremum over 𝑡 ∈ [0,𝑇 ], we obtain the inequality (2.68) when 𝜌0 ∈ D(𝐴) and 𝑝 ∈
C2 [0,𝑇 ] with 𝑝 (0) = 0.

Case 2. We now consider the case when 𝜌0 ∈ 𝐿2(0, 𝐿) and 𝑝 ∈ 𝐿2(0,𝑇 ). Since C∞
𝑐 (0,𝑇 ) is dense in 𝐿2(0,𝑇 ),

there exist sequences (𝜌𝑛0 )𝑛∈N ⊂ D(𝐴) and (𝑝𝑛)𝑛∈N ⊂ C2 [0,𝑇 ] with 𝑝𝑛 (0) = 0 for all 𝑛 ∈ N such
that

𝜌𝑛0 → 𝜌0 in 𝐿2(0, 𝐿), and 𝑝𝑛 → 𝑝 in 𝐿2(0,𝑇 ). (2.69)

Then, applying Case 1, for each 𝑛 ∈ N, we find a unique strong solution 𝜌𝑛 ∈ C0( [0,𝑇 ];𝐿2(0, 𝐿))
of the system 

𝜌𝑛𝑡 + 𝑐𝜌𝑛𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝜌𝑛 (𝑡, 0) = 𝑝𝑛 (𝑡), for 𝑡 ∈ (0,𝑇 ),
𝜌𝑛 (0, 𝑥) = 𝜌𝑛0 (𝑥), in (0, 1) .

(2.70)

Moreover, we have the following estimate

∥𝜌𝑛 ∥C0 ( [0,𝑇 ];𝐿2 (0,𝐿) ) ≤ 𝐶
(

𝜌𝑛0

𝐿2 (0,𝐿) + ∥𝑝𝑛 ∥𝐿2 (0,𝑇 )

)
, for all 𝑛 ∈ N. (2.71)

Let 𝜎 ∈ C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩C0( [0,𝑇 ];D(𝐴∗)) be the strong solution of the adjoint system (2.66)
with 𝜎𝑇 ∈ D(𝐴∗). Taking 𝐿2(0, 𝐿)-inner product in (2.70) with 𝜎 and integrating over [0, 𝑡], we
get ∫ 𝑡

0

∫ 𝐿

0
𝜌𝑛𝑡 𝜎𝑑𝑥𝑑𝑠 + 𝑐

∫ 𝑡

0

∫ 𝐿

0
𝜌𝑛𝑥𝜎𝑑𝑥𝑑𝑠 = 0, ∀𝑡 ∈ [0,𝑇 ] .

Integrating by parts and using the boundary-initial conditions, we deduce that∫ 𝐿

0
𝜌𝑛 (𝑡, 𝑥)𝜎 (𝑡, 𝑥)𝑑𝑥 −

∫ 𝐿

0
𝜌𝑛0 (𝑥)𝜎 (0, 𝑥)𝑑𝑥 − 𝑐

∫ 𝑡

0
𝑝𝑛 (𝑠)𝜎 (𝑠, 0)𝑑𝑠 = 0, ∀𝑡 ∈ [0,𝑇 ] . (2.72)

Let 𝑚,𝑛 ∈ N. By linearity of the equation (2.62), the solution corresponding to the initial state
𝜌𝑛0 −𝜌𝑚0 and control 𝑝𝑛−𝑝𝑚 is 𝜌𝑛−𝜌𝑚. From (2.71), we can say that this solution 𝜌𝑛−𝜌𝑚 satisfies
the following estimate

∥𝜌𝑛 − 𝜌𝑚 ∥C0 ( [0,𝑇 ];𝐿2 (0,𝐿) ) ≤ 𝐶
(

𝜌𝑛0 − 𝜌𝑚0 



𝐿2 (0,𝐿) + ∥𝑝𝑛 − 𝑝𝑚 ∥𝐿2 (0,𝑇 )

)
, for all 𝑚,𝑛 ∈ N.

Thanks to the convergence property (2.69), it follows that the sequence (𝜌𝑛)𝑛∈N is Cauchy in
the space C0( [0,𝑇 ];𝐿2(0, 𝐿)). Let 𝜌𝑛 → 𝜌 in C0( [0,𝑇 ];𝐿2(0, 𝐿)) for some 𝜌 ∈ C0( [0,𝑇 ];𝐿2(0, 𝐿)).
Then, 𝜌𝑛 (𝑇 ) → 𝜌 (𝑇 ) in 𝐿2(0, 𝐿) and therefore passing limit as 𝑛 → ∞ in the equation (2.72), we
deduce the identity (2.67). This shows that 𝜌 is a weak solution of (2.62). To obtain the desired
estimate (2.68), we pass the limit as 𝑛 → ∞ in the inequality (2.71).
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This completes the proof.

Remark 2.3.1. We want to mention here that the solution to the transport equation (2.62) can be
written explicitly using the method of characteristics (see the figure below) and is given by

𝜌 (𝑡, 𝑥) :=

𝜌0(𝑥 − 𝑐𝑡), if 𝑡 <

𝑥

𝑐
,

𝑝

(
𝑡 − 𝑥

𝑐

)
, if 𝑡 >

𝑥

𝑐
,

for all (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 𝐿). However, from this expression, one cannot conclude that 𝜌 belong
to C0( [0,𝑇 ];𝐿2(0, 𝐿)), because we do not have any information of the solution on the line 𝑥 = 𝑐𝑡 .
Therefore, the concept of weak solution is very useful for this system and once we have existence of a
weak solution 𝜌 in C0( [0,𝑇 ];𝐿2(0, 𝐿)), we can also obtain the following hidden regularity property of
this system.

Figure 2.3: The characteristics curves are straight lines parallel to 𝑡 = 𝑥
𝑐

Lemma 2.3.4 (A hidden regularity property). Let 𝜌0 ∈ 𝐿2(0, 𝐿) and 𝑝 ∈ 𝐿2(0,𝑇 ) be given. Then the
solution 𝜌 ∈ C0( [0,𝑇 ];𝐿2(0, 𝐿)) of the system

𝜌𝑡 + 𝑐𝜌𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝜌 (𝑡, 0) = 𝑝 (𝑡), for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), in (0, 𝐿)

(2.73)

satisfies the hidden regularity property

𝜌 (·, 𝐿) ∈ 𝐿2(0,𝑇 ).

Proof. We consider the following cases:

Case 1. Let us first assume that 𝜌0 ∈ D(𝐴) and 𝑝 ∈ C2 [0,𝑇 ] with 𝑝 (0) = 0. Then there is a unique strong
solution 𝜌 ∈ C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ C0( [0,𝑇 ];D(𝐴)), thanks to Lemma 2.3.2. Taking 𝐿2(0, 𝐿)-inner
product in (2.62) with 𝜌 and integrating over [0,𝑇 ], we have∫ 𝑇

0

∫ 𝐿

0
𝜌𝑡𝜌𝑑𝑥𝑑𝑡 + 𝑐

∫ 𝑇

0

∫ 𝐿

0
𝜌𝑥𝜌𝑑𝑥𝑑𝑡 = 0.

Integrating by parts and using the boundary-initial conditions, we deduce that∫ 𝐿

0

[
𝜌2(𝑇, 𝑥) − 𝜌20 (𝑥)

]
𝑑𝑥 + 𝑐

∫ 𝑇

0
[𝜌2(𝑡, 𝐿) − 𝑝2(𝑡)]𝑑𝑡 = 0.
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Thus, we can write

𝑐

∫ 𝑇

0
𝜌2(𝑡, 𝐿)𝑑𝑡 =

∫ 𝐿

0
𝜌20 (𝑥)𝑑𝑥 −

∫ 𝐿

0
𝜌2(𝑇, 𝑥)𝑑𝑥 + 𝑐

∫ 𝑇

0
𝑝2(𝑡)𝑑𝑡

≤
∫ 𝐿

0
𝜌20 (𝑥)𝑑𝑥 + 𝑐

∫ 𝑇

0
𝑝2(𝑡)𝑑𝑡 .

This proves the inequality∫ 𝑇

0
𝜌2(𝑡, 𝐿)𝑑𝑡 ≤ 1

𝑐

∫ 𝐿

0
𝜌20 (𝑥)𝑑𝑥 +

∫ 𝑇

0
𝑝2(𝑡)𝑑𝑡

when 𝜌0 ∈ D(𝐴) and 𝑝 ∈ C2 [0,𝑇 ] with 𝑝 (0) = 0.

Case 2. We now consider the case when 𝜌0 ∈ 𝐿2(0, 𝐿) and 𝑝 ∈ 𝐿2(0,𝑇 ). Then there exist sequences
(𝜌𝑛0 )𝑛∈N ⊂ D(𝐴) and (𝑝𝑛)𝑛∈N ⊂ C2 [0,𝑇 ] with 𝑝𝑛 (0) = 0 for all 𝑛 ∈ N such that

𝜌𝑛0 → 𝜌0 in 𝐿2(0, 𝐿), and 𝑝𝑛 → 𝑝 in 𝐿2(0,𝑇 ) .

For each 𝑛 ∈ N, let 𝜌𝑛 denotes the strong solution of (2.62) with initial state 𝜌𝑛0 and control 𝑝𝑛.
Also, let 𝜌 denotes the solution of (2.62) with the above 𝜌0 ∈ 𝐿2(0, 𝐿) and 𝑝 ∈ 𝐿2(0,𝑇 ). Then,
𝜌𝑛, 𝜌 ∈ C0( [0,𝑇 ];𝐿2(0, 𝐿)) and by uniqueness of solutions, we have that

𝜌𝑛 → 𝜌 in C0( [0,𝑇 ];𝐿2(0, 𝐿)) .

On the other hand, applying Case 1, the solution 𝜌𝑛 satisfies the following estimate

∥𝜌𝑛 (·, 𝐿)∥𝐿2 (0,𝑇 ) ≤ 𝐶
(

𝜌𝑛0

𝐿2 (0,𝐿) + ∥𝑝𝑛 ∥𝐿2 (0,𝑇 )

)
(2.74)

for all 𝑛 ∈ N and some constant 𝐶 > 0. Then, by linearity of the system, we have

∥𝜌𝑛 (·, 𝐿) − 𝜌𝑚 (·, 𝐿)∥𝐿2 (0,𝑇 ) ≤ 𝐶
(

𝜌𝑛0 − 𝜌𝑚0 



𝐿2 (0,𝐿) + ∥𝑝𝑛 − 𝑝𝑚 ∥𝐿2 (0,𝑇 )

)
, for all 𝑚,𝑛 ∈ N. (2.75)

Since 𝜌𝑛0 → 𝜌0 in 𝐿2(0, 𝐿) and 𝑝𝑛 → 𝑝 in 𝐿2(0,𝑇 ), it follows that the sequence (𝜌𝑛 (·, 𝐿))𝑛∈N is
Cauchy in the space 𝐿2(0,𝑇 ). Let us define

𝜌 (·, 𝐿) := lim
𝑛→∞

𝜌𝑛 (·, 𝐿) in 𝐿2(0,𝑇 ) .

Since the constant 𝐶 appearing in (2.75) does not depend on the choice of the sequences (𝜌𝑛0 )𝑛∈N
and (𝑝𝑛)𝑛∈N, the above function is well-defined. Now, passing limit as 𝑛 → ∞ in the inequality
(2.74), we deduce that

∥𝜌 (·, 𝐿)∥𝐿2 (0,𝑇 ) ≤ 𝐶
(
∥𝜌0∥𝐿2 (0,𝐿) + ∥𝑝 ∥𝐿2 (0,𝑇 )

)
when 𝜌0 ∈ 𝐿2(0, 𝐿) and 𝑝 ∈ 𝐿2(0,𝑇 ).

This completes the proof.

In a similar way, we can also obtain the hidden regularity property for the adjoint system (2.66):

Lemma 2.3.5. Let 𝜎𝑇 ∈ 𝐿2(0,𝑇 ) be given. Then the solution 𝜎 ∈ C0( [0,𝑇 ];𝐿2(0, 𝐿)) to the adjoint
system (2.66) satisfies

𝜎 (·, 0) ∈ 𝐿2(0,𝑇 ).

More precisely, the following estimate∫ 𝑇

0
𝜎2(𝑡, 0)𝑑𝑡 ≤ 𝐶 ∥𝜎𝑇 ∥2𝐿2 (0,𝐿)

holds for some constant 𝐶 > 0.
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These hidden regularity properties are very useful in the context of controllability of the infinite
dimensional linear systems (that contains a transport equation) using a boundary control; see Chapters
3–4 for instance. In this section also, we will see the use of these hidden regularity properties to achieve
controllability of the system (2.62). Note that, the existence result (Theorem 2.3.1) shows that the
value of the solution at time 𝑇 is well-defined in 𝐿2(0, 𝐿) and therefore we can study the controllability
properties for the system (2.62) in the space 𝐿2(0, 𝐿). We first write the following result which shows
that exact and null controllability are equivalent for this system.

Theorem 2.3.2. Let 𝑇 > 0 be given. Then the system (2.62) is exactly controllable at time 𝑇 in
𝐿2(0, 𝐿) if and only if it is null controllable at time 𝑇 in 𝐿2(0, 𝐿).

Proof. Let us assume that the system (2.62) be null controllable at time 𝑇 in the space 𝐿2(0, 𝐿). Let
𝜌0, 𝜌𝑇 ∈ 𝐿2(0, 𝐿) be given. We consider the following system

𝜌𝑡 + 𝑐𝜌𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝜌 (𝑡, 0) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌𝑇 (𝐿 − 𝑥), in (0, 𝐿).

(2.76)

Thanks to Lemma 2.3.4, we have 𝜌 (·, 𝐿) ∈ 𝐿2(0,𝑇 ). Denote 𝜌 (𝑡, 𝑥) := 𝜌 (𝑇 − 𝑡, 𝐿 − 𝑥) for (𝑡, 𝑥) ∈
(0,𝑇 ) × (0, 𝐿). Then 𝜌 ∈ C0( [0,𝑇 ];𝐿2(0, 𝐿)) and is a solution of the system

𝜌𝑡 + 𝑐𝜌𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝜌 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜌 (𝑇, 𝑥) = 𝜌𝑇 (𝑥), in (0, 𝐿) .

(2.77)

With the help of this solution and due to our assumption, we find the existence of a control 𝑝 ∈ 𝐿2(0,𝑇 )
such that the solution 𝜌 ∈ C0( [0,𝑇 ];𝐿2(0, 𝐿)) to the system

𝜌𝑡 + 𝑐𝜌𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝜌 (𝑡, 0) = 𝑝 (𝑡), for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥) − 𝜌 (0, 𝑥), in (0, 𝐿)

(2.78)

satisfies 𝜌 (𝑇, 𝑥) = 0 in (0, 𝐿). Denote 𝜌 := 𝜌+𝜌. Then 𝜌 satisfies the system (2.62) with 𝑝 = 𝜌 (𝑇−·, 𝐿)+𝑝 ∈
𝐿2(0,𝑇 ). Moreover, we have

𝜌 (𝑇, 𝑥) = 𝜌 (0, 𝐿 − 𝑥) + 𝜌 (𝑇, 𝑥) = 𝜌𝑇 (𝑥) in (0, 𝐿).

This proves that the system (2.62) is exactly controllable at time 𝑇 in 𝐿2(0, 𝐿).
Converse part is obvious. This completes the proof.

We therefore study the exact controllability of this system (2.62). The following result shows that
a minimal time is required to achieve exact controllability of the transport equation (2.62). This is
one of the main difference between finite and infinite dimensional linear systems. Recall that in finite
dimensional setup, no restriction on 𝑇 is required to achieve controllability (Theorem 2.2.3).

Theorem 2.3.3. The system (2.62) is exactly controllable at time 𝑇 in 𝐿2(0, 𝐿) if and only if 𝑇 ≥ 𝐿
𝑐
.

Proof. We will use the explicit expression of the solution

𝜌 (𝑡, 𝑥) =
{
𝜌0(𝑥 − 𝑐𝑡), if 𝑥 > 𝑐𝑡,

𝑝 (𝑐𝑡 − 𝑥), if 𝑥 < 𝑐𝑡,
(2.79)

to prove this result. Let us first assume that 0 < 𝑇 < 𝐿
𝑐
. We choose the initial state 𝜌0(𝑥) = 1 and final

state 𝜌𝑇 (𝑥) = 0 for all 𝑥 ∈ (0, 𝐿). Since 0 < 𝑇 < 𝐿
𝑐
, the solution of (2.62) with this initial state satisfies

𝜌 (𝑇, 𝑥) = 𝜌0(𝑥 − 𝑐𝑇 ) = 1 for all 𝑥 ∈ (𝑐𝑇 , 𝐿) (see the figure below). This implies there cannot exists any
𝑝 ∈ 𝐿2(0,𝑇 ) such that 𝜌 (𝑇, 𝑥) = 𝜌𝑇 (𝑥) for all 𝑥 ∈ (0, 𝐿). As a consequence, the system (2.62) cannot be
exactly controllable at time 𝑇 in 𝐿2(0, 𝐿).
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Figure 2.4: The control 𝑝 do not have any effect in the lower region.

On the other hand, let us assume 𝑇 ≥ 𝐿
𝑐
. Let 𝜌0, 𝜌𝑇 ∈ 𝐿2(0, 𝐿) be given. We define a function

𝑝 ∈ 𝐿2(0,𝑇 ) as

𝑝 (𝑡) :=


0, if 𝑡 ∈

(
0,𝑇 − 𝐿

𝑐

)
,

𝜌𝑇 (𝑐 (𝑇 − 𝑡)), if 𝑡 ∈
(
𝑇 − 𝐿

𝑐
,𝑇

)
.

Since 𝑇 ≥ 𝐿
𝑐
, the solution of (2.62) with the initial state 𝜌0 and the above control 𝑝 satisfies

𝜌 (𝑇, 𝑥) = 𝑝
(
𝑇 − 𝑥

𝑐

)
= 𝜌𝑇 (𝑥), 𝑥 ∈ (0, 𝐿),

see the figure below. Hence, the system is exactly controllable at time 𝑇 in 𝐿2(0, 𝐿).

Figure 2.5: The solution at time 𝑇 do not depend on the choice of the control 𝑝 in (0,𝑇 − 𝐿
𝑐
).

This completes the proof.

Recall that, in Section 2.2.2, we have derived some equivalent conditions for exact, null and ap-
proximate controllability in terms of the operator 𝐹𝑇 and its adjoint. In this case, we define the map
𝐹𝑇 : 𝐿2(0,𝑇 ) → 𝐿2(0, 𝐿) by

𝐹𝑇 (𝑝) := 𝜌 (𝑇, ·),
where 𝜌 is the unique weak solution of (2.62) with 𝜌0 = 0 and 𝑝 ∈ 𝐿2(0,𝑇 ). Using Theorem 2.3.1, we
know that 𝜌 ∈ C0( [0,𝑇 ];𝐿2(0, 𝐿)), and therefore 𝐹𝑇 is a well-defined linear map. From the definition
of weak solution (eq. (2.67)), the adjoint of this map 𝐹 ∗

𝑇
: 𝐿2(0, 𝐿) → 𝐿2(0,𝑇 ) can be computed as

𝐹 ∗𝑇 (𝜎𝑇 ) := 𝜎 (·, 0), for 𝜎𝑇 ∈ 𝐿2(0, 𝐿).
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Note that this map is well-defined, thanks to the hidden regularity property of the adjoint system
(2.66) (see Lemma 2.3.5). Consequently, the operator 𝐵∗ : D(𝐴∗) → R is defined as

𝐵∗(𝜑) := 𝜑 (0), for all 𝜑 ∈ D(𝐴∗).

With these maps, we can now state the following result, thanks to Theorem 2.2.8 and Theorem 2.2.9.

Theorem 2.3.4. The system (2.62) is exactly controllable at time 𝑇 in 𝐿2(0, 𝐿) if and only if there
exists a 𝐶 > 0 such that the following observability inequality∫ 𝑇

0
|𝜎 (𝑡, 0) |2 𝑑𝑡 ≥ 𝐶 ∥𝜎𝑇 ∥2𝐿2 (0,𝐿) (2.80)

holds for all 𝜎𝑇 ∈ D(𝐴∗).

Thus, to prove exact controllability of the system (2.62), it is enough to prove the above observ-
ability inequality (2.80). We use two different methods, one is using explicit expression of the solution
and the other is via multiplier method, to prove this observability inequality.

Theorem 2.3.5. The system (2.62) is exactly controllable at time 𝑇 in the space 𝐿2(0, 𝐿) if and only
if 𝑇 ≥ 𝐿

𝑐
.

Proof. Method 1: Explicit Solution. Let 0 < 𝑇 < 𝐿
𝑐
. We choose a function 𝜎𝑇 ∈ 𝐿2(0, 𝐿) as

𝜎𝑇 (𝑥) :=


1
√
𝑐𝑇
, if 0 < 𝑥 < 𝑐𝑇 ,

0, if 𝑐𝑇 < 𝑥 < 𝐿.

Then the solution of (2.66) with this 𝜎𝑇 satisfies 𝜎 (𝑡, 0) = 0 for all 𝑡 ∈ (0,𝑇 ). This contradicts the
inequality (2.80) as ∥𝜎𝑇 ∥𝐿2 (0,𝐿) = 1. Therefore, the system (2.62) cannot be exactly controllable at
time 𝑇 in 𝐿2(0, 𝐿).

We now assume that 𝑇 ≥ 𝐿
𝑐
. Thanks to Theorem 2.3.4, it is enough to prove the observability

inequality (2.80). Note that, we have from the characteristics

𝜎 (𝑡, 0) =


0, if 0 < 𝑡 < 𝑇 − 𝐿

𝑐
,

𝜎𝑇 (𝑐 (𝑇 − 𝑡)), if 𝑇 − 𝐿

𝑐
< 𝑡 < 𝑇 .

This yields ∫ 𝑇

0
|𝜎 (𝑡, 0) |2 𝑑𝑡 =

∫ 𝑇

𝑇− 𝐿
𝑐

|𝜎𝑇 (𝑐 (𝑇 − 𝑡)) |2 𝑑𝑡 = 1

𝑐

∫ 𝐿

0
|𝜎𝑇 (𝑥) |2 𝑑𝑥 =

1

𝑐
∥𝜎𝑇 ∥2𝐿2 (0,𝐿) ,

proving the observability inequality (2.80).

Method 2: Multiplier Method. In this case, we assume that 𝑇 > 𝐿
𝑐
. We cannot conclude exact

controllability of (2.62) at the optimal time 𝑇 = 𝐿
𝑐
using this method. However, this can be done

by using the explicit expression of the solution, as mentioned above. Here, we present this method
because of its various importance in several places. To prove the observability inequality (2.80) with
𝑇 > 𝐿

𝑐
, let us assume that 𝜎𝑇 ∈ D(𝐴∗). Then, using Lemma 2.3.3, the solution 𝜎 of (2.66) belongs to

the space
C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ C0( [0,𝑇 ];D(𝐴∗)).

Taking 𝐿2(0, 𝐿)-inner product in (2.66) with 𝜎 and integrating over [𝑡,𝑇 ], we deduce that

−
∫ 𝑇

𝑡

∫ 𝐿

0
𝜎𝑡𝜎𝑑𝑥𝑑𝑠 − 𝑐

∫ 𝑇

𝑡

∫ 𝐿

0
𝜎𝑥𝜎𝑑𝑥𝑑𝑠 = 0, 𝑡 ∈ (0,𝑇 ) .
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Integrating by parts and using the boundary-initial conditions, we get

−
∫ 𝐿

0
[𝜎2𝑇 (𝑥) − 𝜎2(𝑡, 𝑥)]𝑑𝑥 + 𝑐

∫ 𝑇

𝑡

𝜎2(𝑠, 0)𝑑𝑠 = 0, 𝑡 ∈ (0,𝑇 ).

This yields ∫ 𝐿

0
𝜎2(𝑡, 𝑥)𝑑𝑥 =

∫ 𝐿

0
𝜎2𝑇 (𝑥)𝑑𝑥 − 𝑐

∫ 𝑇

𝑡

𝜎2(𝑠, 0)𝑑𝑠

≥
∫ 𝐿

0
𝜎2𝑇 (𝑥)𝑑𝑥 − 𝑐

∫ 𝑇

0
𝜎2(𝑠, 0)𝑑𝑠, 𝑡 ∈ (0,𝑇 ).

An integration over the interval (0,𝑇 ) gives∫ 𝑇

0

∫ 𝐿

0
𝜎2(𝑡, 𝑥)𝑑𝑥𝑑𝑡 ≥ 𝑇

∫ 𝐿

0
𝜎2𝑇 (𝑥)𝑑𝑥 − 𝑐𝑇

∫ 𝑇

0
𝜎2(𝑠, 0)𝑑𝑠. (2.81)

On the other hand, taking 𝐿2(0, 𝐿)-inner product in (2.66) with 𝑥𝜎 and integrating over the time
interval [0,𝑇 ], we get

−
∫ 𝑇

0

∫ 𝐿

0
𝑥𝜎𝑡𝜎𝑑𝑥𝑑𝑡 − 𝑐

∫ 𝑇

0

∫ 𝐿

0
𝑥𝜎𝑥𝜎𝑑𝑥𝑑𝑡 = 0.

Integrating by parts and using the boundary-initial conditions, we deduce that

−
∫ 𝐿

0
[𝑥𝜎2𝑇 (𝑥) − 𝑥𝜎2(0, 𝑥)]𝑑𝑥 + 𝑐

∫ 𝑇

0

∫ 𝐿

0
𝜎2𝑑𝑥𝑑𝑡 = 0,

This gives ∫ 𝑇

0

∫ 𝐿

0
𝜎2𝑑𝑥𝑑𝑡 =

1

𝑐

∫ 𝐿

0
[𝑥𝜎2𝑇 (𝑥) − 𝑥𝜎2(0, 𝑥)]𝑑𝑥 ≤ 𝐿

𝑐

∫ 𝐿

0
𝜎2𝑇 (𝑥)𝑑𝑥. (2.82)

Combining the inequalities (2.81) and (2.82), we obtain

𝑇

∫ 𝐿

0
𝜎2𝑇 (𝑥)𝑑𝑥 − 𝑐𝑇

∫ 𝑇

0
𝜎2(𝑠, 0)𝑑𝑠 ≤ 𝐿

𝑐

∫ 𝐿

0
𝜎2𝑇 (𝑥)𝑑𝑥.

Thus, we finally have (
𝑇 − 𝐿

𝑐

) ∫ 𝐿

0
𝜎2𝑇 (𝑥)𝑑𝑥 ≤ 𝑐𝑇

∫ 𝑇

0
𝜎2(𝑠, 0)𝑑𝑠.

Since 𝑇 > 𝐿
𝑐
, the observability inequality (2.80) follows for all 𝜎𝑇 ∈ D(𝐴∗). This completes the

proof.

2.3.2 Periodic setup

Let 𝑇, 𝐿 > 0 be given. We now consider the following system:
𝜌𝑡 + 𝑐𝜌𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝜌 (𝑡, 0) = 𝜌 (𝑡, 1) + 𝑝 (𝑡), for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), in (0, 𝐿).

(2.83)

Here 𝑐 > 0, 𝜌 = 𝜌 (𝑡, 𝑥) is the state, 𝜌0 ∈ 𝐿2(0, 𝐿) is the initial state and 𝑝 ∈ 𝐿2(0,𝑇 ) is a boundary
control. We define the unbounded linear operator 𝐴 : D(𝐴) ⊂ 𝐿2(0, 𝐿) → 𝐿2(0, 𝐿) as follows:{

D(𝐴) =
{
𝑓 ∈ 𝐻1(0, 𝐿) : 𝑓 (0) = 𝑓 (𝐿)

}
,

𝐴𝑓 := −𝑐 𝑓𝑥 , 𝑓 ∈ D(𝐴) .
(2.84)

The adjoint of the operator 𝐴 is given by{
D(𝐴∗) =

{
𝑔 ∈ 𝐻1(0, 𝐿) : 𝑔(0) = 𝑔(𝐿)

}
,

𝐴∗𝑔 := 𝑐𝑔𝑥 , 𝑔 ∈ D(𝐴∗) .
(2.85)

Then, we have the following well-posedness result; the proof of which is similar to the Dirichlet case
and so we omit the details.
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2.3. The transport equation

Lemma 2.3.6. The operator (𝐴,D(𝐴)) (resp. (𝐴∗,D(𝐴∗))) generates a C0-semigroup of contractions
{𝑆 (𝑡)}𝑡≥0 in 𝐿2(0, 𝐿). Moreover, for given any 𝜌0 ∈ 𝐿2(0, 𝐿) and 𝑝 ∈ 𝐿2(0,𝑇 ), the system (2.83) has a
unique weak solution 𝜌 ∈ C0( [0,𝑇 ];𝐿2(0, 𝐿)) satisfying the following estimate:

∥𝜌 ∥C0 ( [0,𝑇 ];𝐿2 (0,𝐿) ) ≤ 𝐶
(
∥𝜌0∥𝐿2 (0,𝐿) + ∥𝑝 ∥𝐿2 (0,𝑇 )

)
,

for some constant 𝐶 > 0 depending only on 𝑇, 𝑐.

Further, we have the hidden regularity property 𝜌 (·, 0) ∈ 𝐿2(0,𝑇 ).

We then compute the adjoint map 𝐹 ∗
𝑇
: 𝐿2(0, 𝐿) → 𝐿2(0,𝑇 ) as

𝐹 ∗𝑇 (𝜎𝑇 ) := 𝜎 (·, 0), for 𝜎𝑇 ∈ 𝐿2(0, 𝐿),

where 𝜎 is the solution of the adjoint system
−𝜎𝑡 − 𝑐𝜎𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝜎 (𝑡, 0) = 𝜎 (𝑡, 𝐿), for 𝑡 ∈ (0,𝑇 ),
𝜎 (𝑇, 𝑥) = 𝜎𝑇 (𝑥), in (0, 𝐿) .

(2.86)

As a consequence, the operator 𝐵∗ : D(𝐴∗) → R is defined as

𝐵∗(𝜑) := 𝜑 (0), for all 𝜑 ∈ D(𝐴∗) .

We finally prove the following controllability result for the system (2.83). We present a different
method to prove the corresponding observability inequality by writing the solution of the adjoint
system in terms of a basis consisting of the eigenfunctions of the adjoint operator 𝐴∗.

Theorem 2.3.6. The system (2.83) is exactly controllable at time 𝑇 in 𝐿2(0, 𝐿) if and only if 𝑇 ≥ 𝐿
𝑐
.

Proof. Note that, thanks to Theorem 2.2.6, exact controllability of the system (2.83) is equivalent to
proving the observability inequality∫ 𝑇

0
|𝜎 (𝑡, 0) |2 𝑑𝑡 ≥ 𝐶 ∥𝜎𝑇 ∥2𝐿2 (0,𝐿) (2.87)

for all 𝜎𝑇 ∈ D(𝐴∗), where 𝜎 is the solution of (2.86). Let us first assume that 0 < 𝑇 < 𝐿
𝑐
. We choose

a non-trivial 𝜎𝑇 ∈ D(𝐴∗) such that supp(𝜎𝑇 ) ⊂ (𝑐𝑇 , 𝐿). Then, by the method of characteristics, the
solution 𝜎 of the adjoint system (2.86) satisfies 𝜎 (𝑡, 0) = 𝜎 (𝑡, 𝐿) = 0 for all 𝑡 ∈ (0,𝑇 ) but 𝜎 ≠ 0 in
(0,𝑇 ) × (0, 𝐿). This contradicts the observability inequality (2.87) and, as a consequence, the system
(2.83) cannot be exactly controllable at time 𝑇 in 𝐿2(0, 𝐿).

We now assume that 𝑇 ≥ 𝐿
𝑐
. Let 𝜎𝑇 ∈ D(𝐴∗) be given. It is easy to see that the eigenvalues of

the operator (𝐴∗,D(𝐴∗)) are 𝜆𝑛 = 2𝑖𝑐𝑛𝜋
𝐿

and the corresponding eigenfunctions are 𝜑𝑛 (𝑥) := 𝑒
2𝑖𝑛𝜋𝑥

𝐿 for
all 𝑛 ∈ Z. We therefore write 𝜎𝑇 as

𝜎𝑇 (𝑥) =
∑︁
𝑛∈Z

𝑎𝑛𝑒
2𝑖𝑛𝜋𝑥

𝐿 , for 𝑥 ∈ (0, 𝐿),

and the corresponding solution as

𝜎 (𝑡, 𝑥) =
∑︁
𝑛∈Z

𝑎𝑛𝑒
2𝑖𝑐𝑛𝜋

𝐿
(𝑇−𝑡 )𝑒

2𝑖𝑛𝜋𝑥
𝐿 , for (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 𝐿),

for some (𝑎𝑛)𝑛∈Z ∈ ℓ2. Since 𝑇 ≥ 𝐿
𝑐
, we have∫ 𝑇

0
|𝜎 (𝑡, 0) |2 𝑑𝑡 =

∫ 𝑇

0

�����∑︁
𝑛∈Z

𝑎𝑛𝑒
2𝑖𝑐𝑛𝜋

𝐿
(𝑇−𝑡 )

�����2 𝑑𝑡 = ∫ 𝑇

0

�����∑︁
𝑛∈Z

𝑎𝑛𝑒
2𝑖𝑐𝑛𝜋

𝐿
𝑡

�����2 𝑑𝑡 ≥ ∫ 𝐿
𝑐

0

�����∑︁
𝑛∈Z

𝑎𝑛𝑒
2𝑖𝑐𝑛𝜋

𝐿
𝑡

�����2 𝑑𝑡 .
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Changing the variable 𝑡 ↦→ 𝑐
𝐿
𝑡 , we get∫ 𝑇

0
|𝜎 (𝑡, 0) |2 𝑑𝑡 ≥

∫ 1

0

�����∑︁
𝑛∈Z

𝑎𝑛𝑒
2𝑖𝑛𝜋𝑡

�����2 𝑑𝑡 = ∑︁
𝑛∈Z

|𝑎𝑛 |2 , (2.88)

thanks to the Parseval’s identity. We similarly have

∥𝜎𝑇 ∥2𝐿2 (0,𝐿) =
∫ 𝐿

0

�����∑︁
𝑛∈Z

𝑎𝑛𝑒
2𝑖𝑛𝜋𝑥

𝐿

�����2 𝑑𝑥 =

∫ 1

0

�����∑︁
𝑛∈Z

𝑎𝑛𝑒
2𝑖𝑛𝜋𝑥

�����2 𝑑𝑥 =
∑︁
𝑛∈Z

|𝑎𝑛 |2 . (2.89)

Combining the above two estimates (2.88) and (2.89), the observability inequality (2.87) follows. This
completes the proof.

2.4 The heat equation

In this section, we will consider the one dimensional heat equation and study the controllability
properties using only a boundary control. In the next few chapters, all these properties will be
very useful in the context of controllability of the linearized compressible Navier-Stokes system (see
Chapters (3)–4) or in the case of nonlinear systems considered in Chapter 5. The contents of this
section can be found in any control theory books/ lecture notes, for instance in [MZ04, Section 2.5],
[Boy23, Chapter 4], [Cor07, Section 2.5]. In addition, controllability of the heat equation using a
localized distributed control is also studied in the above-mentioned references. In this thesis, we will
concentrate only on the boundary controllability of the heat equation.

Let 𝑇, 𝐿 > 0. The heat equation in the interval (0, 𝐿) is given by

𝑢𝑡 − 𝜈𝑢𝑥𝑥 = 0,

where 𝜈 > 0 is called the diffusion coefficient and 𝑢 = 𝑢 (𝑡, 𝑥) is the state. We take the initial condition
as

𝑢 (0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ (0, 𝐿) .

In this case, we consider one of the following three boundary conditions on 𝑢:

⋄ (Dirichlet): 𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
⋄ (Neumann): 𝑢𝑥 (𝑡, 0) = 0, 𝑢𝑥 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
⋄ (Periodic): 𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝐿), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 𝐿), for 𝑡 ∈ (0,𝑇 ) .

We will present a detailed study of the controllability properties of the heat equation in the Dirichlet
case using only one boundary control. The Neumann and periodic case will be similar to the Dirichlet
setup, so we will omit the details here. In fact, the Neumann case is studied with detail in Chapter
5 for both linear and nonlinear heat equations, see also Section 2.5. Moreover, similar controllability
studies for the heat equation with periodic boundary conditions is included in Chapter 3.

2.4.1 Dirichlet setup

Let 𝑇, 𝐿 > 0 be given. We consider the following system:
𝑢𝑡 − 𝜈𝑢𝑥𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 𝑞(𝑡), for 𝑡 ∈ (0,𝑇 ),
𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 𝐿).

(2.90)

Here 𝜈 > 0 is called the diffusion coefficient, 𝑢 = 𝑢 (𝑡, 𝑥) is the state, 𝑢0 is the initial state and 𝑞 is the
boundary control. In this section, we will study the controllability properties for this system at any
time 𝑇 > 0 in the space 𝐻−1(0, 𝐿) using the boundary control 𝑞 ∈ 𝐿2(0,𝑇 ) acting at 𝑥 = 𝐿.
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2.4. The heat equation

We first define the unbounded linear operator 𝐴 : D(𝐴) ⊂ 𝐿2(0, 𝐿) → 𝐿2(0, 𝐿) as follows.{
D(𝐴) =

{
𝑓 ∈ 𝐻2(0, 𝐿) : 𝑓 (0) = 𝑓 (𝐿) = 0

}
,

𝐴𝑓 := −𝜈 𝑓𝑥𝑥 , 𝑓 ∈ D(𝐴).
(2.91)

Note that the operator 𝐴 is self-adjoint, that is{
D(𝐴∗) = D(𝐴),
𝐴∗𝑔 := −𝜈𝑔𝑥𝑥 , 𝑔 ∈ D(𝐴∗) .

(2.92)

We now write following result which shows that the operator (−𝐴,D(𝐴)) generates a C0-semigroup
of contractions on 𝐿2(0, 𝐿).

Lemma 2.4.1. The operator (−𝐴,D(𝐴)) generates a C0-semigroup of contractions {𝑆 (𝑡)}𝑡≥0 on 𝐿2(0, 𝐿).

Proof. We will apply the Lumer-Philips theorem (see Corollary 2.1.2) to prove this result. Since
𝐴 = 𝐴∗, it is enough to prove that 𝐴 is a densely defined closed linear operator in 𝐿2(0, 𝐿) and that −𝐴
is dissipative in 𝐿2(0, 𝐿).

• Since C∞
𝑐 (0, 𝐿) ⊂ D(𝐴) is dense in 𝐿2(0, 𝐿), therefore D(𝐴) is dense in 𝐿2(0, 𝐿). Thus, 𝐴 is densely

defined.

• Let (𝑓𝑛)𝑛∈N be a sequence in D(𝐴) such that 𝑓𝑛 → 𝑓 in 𝐿2(0, 𝐿) and 𝐴𝑓𝑛 → 𝑔 in 𝐿2(0, 𝐿) for some
𝑓 , 𝑔 ∈ 𝐿2(0, 𝐿). This implies

lim
𝑛→∞

∫ 𝐿

0
(−𝜈 𝑓𝑛)𝑥𝑥𝜑𝑑𝑥 =

∫ 𝐿

0
𝑔𝜑𝑑𝑥, ∀𝜑 ∈ C∞

𝑐 (0, 𝐿) .

Integrating by parts twice yields

lim
𝑛→∞

∫ 𝐿

0
(−𝜈 𝑓𝑛)𝜑𝑥𝑥𝑑𝑥 =

∫ 𝐿

0
𝑔𝜑𝑑𝑥, ∀𝜑 ∈ C∞

𝑐 (0, 𝐿).

Since 𝑓𝑛 → 𝑓 in 𝐿2(0, 𝐿), we readily have∫ 𝐿

0
(−𝜈 𝑓 )𝜑𝑥𝑥𝑑𝑥 =

∫ 𝐿

0
𝑔𝜑𝑑𝑥, ∀𝜑 ∈ C∞

𝑐 (0, 𝐿). (2.93)

On the other hand, since the sequence ((𝑓𝑛)𝑥𝑥 )𝑛∈N is bounded in 𝐿2(0, 𝐿), it follows that (𝑓𝑛) is
bounded in 𝐻1(0, 𝐿) (thanks to the Poincaré Inequality). Therefore, up to a subsequence, the
sequence (𝑓𝑛)𝑛∈N converges weakly in 𝐻1(0, 𝐿) to some function 𝑓 ∈ 𝐻1(0, 𝐿). By uniqueness of
the limit, we see that 𝑓 = 𝑓 and consequently 𝑓 ∈ 𝐻1(0, 𝐿). Then, from (2.93), we deduce that
𝑓 ∈ 𝐻2(0, 𝐿) and −𝜈 𝑓𝑥𝑥 = 𝑔.

It remains to prove that 𝑓 (0) = 𝑓 (𝐿) = 0. Since 𝑓𝑛 ∈ D(𝐴), therefore 𝑓𝑛 (0) = 𝑓𝑛 (𝐿) = 0 for all
𝑛 ∈ N. Let 𝜑 ∈ C∞ [0, 𝐿] be such that 𝜑 (0) = 𝜑 (𝐿) = 𝜑𝑥 (𝐿) = 0 and 𝜑𝑥 (0) ≠ 0. For example, one
can take 𝜑 (𝑥) = 𝑥 (𝑥 − 𝐿)2 for all 𝑥 ∈ [0, 𝐿]. Then we have after twice integration by parts∫ 𝐿

0
𝑔𝜑𝑑𝑥 =

∫ 𝐿

0
(−𝜈 𝑓 )𝑥𝑥𝜑𝑑𝑥 =

∫ 𝐿

0
(−𝜈 𝑓 )𝜑𝑥𝑥𝑑𝑥 − 𝜈 𝑓 (0)𝜑𝑥 (0) .

On the other hand∫ 𝐿

0
(−𝜈 𝑓 )𝜑𝑥𝑥𝑑𝑥 = lim

𝑛→∞

∫ 𝐿

0
(−𝜈 𝑓𝑛)𝜑𝑥𝑥𝑑𝑥 = lim

𝑛→∞

∫ 𝐿

0
(−𝜈 𝑓𝑛)𝑥𝑥𝜑𝑑𝑥 =

∫ 𝐿

0
𝑔𝜑𝑑𝑥.

Comparing these above two identities, we deduce that 𝜈 𝑓 (0)𝜑𝑥 (0) = 0, which implies 𝑓 (0) = 0 as
𝜑𝑥 (0) ≠ 0. Similarly, one can prove that 𝑓 (𝐿) = 0. Thus, 𝑓 ∈ D(𝐴) and therefore 𝐴 is closed.
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• Let 𝑓 ∈ D(𝐴). Then

⟨𝐴𝑓 , 𝑓 ⟩𝐿2 (0,𝐿) = −𝜈
∫ 𝐿

0
𝑓𝑥𝑥 𝑓 𝑑𝑥 = 𝜈

∫ 𝐿

0
𝑓 2𝑥 𝑑𝑥 ≥ 0,

and therefore −𝐴 is dissipative in 𝐿2(0, 𝐿).

The proof completes.

Thanks to this result, we can guarantee the existence and uniqueness of a strong solution of the
system (2.90) when the initial state 𝑢0 and control 𝑞 are regular enough.

Theorem 2.4.1. Let us assume that 𝑢0 ∈ D(𝐴) and 𝑞 ∈ C2( [0,𝑇 ]) satisfies the compatibility condition
𝑞(0) = 0. Then the system (2.90) admits a unique strong solution

𝑢 ∈ C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ C0( [0,𝑇 ];𝐻2(0, 𝐿)) .

Proof. Let 𝑢0 ∈ D(𝐴) and 𝑞 ∈ C2 [0,𝑇 ] with 𝑞(0) = 0. We define the function 𝑢 (𝑡, 𝑥) = 𝑢 (𝑡, 𝑥) − 𝑥
𝐿
𝑞(𝑡)

for (𝑡, 𝑥) ∈ [0,𝑇 ] × [0, 𝐿]. Then 𝑢 satisfies
𝑢𝑡 = 𝐴𝑢 + 𝑓 , in (0,𝑇 ) × (0, 𝐿),
𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 𝐿),

(2.94)

with 𝑓 (𝑡, 𝑥) := −𝑥
𝐿
𝑞′(𝑡) for 𝑡 ∈ (0,𝑇 ) and 𝑥 ∈ (0, 𝐿). Since 𝑓 ∈ C1( [0,𝑇 ] × [0, 𝐿]), by semigroup property

(see Corollary 2.1.1), this system has a unique strong solution 𝑢 in the space

C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ C0( [0,𝑇 ];D(𝐴)).

Consequently, the system (2.62) has a unique strong solution 𝑢 in the space C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩
C0( [0,𝑇 ];𝐻2(0, 𝐿)). This completes the proof.

To guarantee the existence of a unique solution when 𝑢0 ∈ 𝐿2(0, 𝐿) and 𝑞 ∈ 𝐿2(0,𝑇 ), we need to
define the notion of a weak solution to the system (2.90). For this, we consider the adjoint system
corresponding to (2.90) as follows:

−𝑣𝑡 − 𝜈𝑣𝑥𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝑣 (𝑡, 0) = 0, 𝑣 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑣 (𝑇, 𝑥) = 𝑣𝑇 (𝑥), in (0, 𝐿) .

(2.95)

Here 𝑣𝑇 ∈ 𝐿2(0, 𝐿). Then, using the adjoint semigroup {𝑆∗(𝑡)}𝑡≥0, we have the following result:

Lemma 2.4.2. For any given 𝑣𝑇 ∈ D(𝐴∗), the adjoint system (2.95) admits a unique strong solution

𝑣 ∈ C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ C0( [0,𝑇 ];D(𝐴∗)) .

We then consider the following homogeneous system with a source term:
𝑢𝑡 − 𝜈𝑢𝑥𝑥 = 𝑓 , in (0,𝑇 ) × (0, 𝐿),
𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 𝐿) .

(2.96)

For this system, we study some well-posedness results which will be very useful in the later chapters
of this thesis. First, we define the notion of a weak solution for this system (2.96) when 𝑢0 ∈ 𝐿2(0, 𝐿)
and 𝑓 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)).
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Definition 2.4.1 (Weak solution). Let 𝑢0 ∈ 𝐿2(0, 𝐿) and 𝑓 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)) be given. We say a
function 𝑢 ∈ C0( [0,𝑇 ];𝐿2(0, 𝐿)) is a weak solution of (2.96) if for every 𝑣𝑇 ∈ D(𝐴∗) the following
identity holds true:∫ 𝐿

0
𝑢 (𝑡, 𝑥)𝑣 (𝑡, 𝑥)𝑑𝑥 −

∫ 𝐿

0
𝑢0(𝑥)𝑣 (0, 𝑥)𝑑𝑥 =

∫ 𝑡

0

∫ 𝐿

0
𝑓 (𝑠, 𝑥)𝑣 (𝑠, 𝑥)𝑑𝑥𝑑𝑠, ∀𝑡 ∈ [0,𝑇 ] . (2.97)

Then, with this definition of a weak solution, one can have the following result:

Theorem 2.4.2. Let 𝑢0 ∈ 𝐿2(0, 𝐿) and 𝑓 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)) be given. Then the system (2.96) has a
unique weak solution 𝑢 in the space

C0( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ 𝐿2(0,𝑇 ;𝐻1
0 (0, 𝐿)) .

Moreover, there exists a 𝐶 > 0 depending only on 𝜈,𝑇 such that

∥𝑢∥C0 ( [0,𝑇 ];𝐿2 (0,𝐿) ) + ∥𝑢∥𝐿2 (0,𝑇 ;𝐻1
0 (0,𝐿) )

≤ 𝐶
(
∥𝑢0∥𝐿2 (0,𝐿) + ∥ 𝑓 ∥𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) )

)
. (2.98)

Furthermore, if 𝑢0 ∈ 𝐻1
0 (0, 𝐿), this solution 𝑢 satisfies the following estimate:

∥𝑢∥C0 ( [0,𝑇 ];𝐻1
0 (0,𝐿) )

+ ∥𝑢∥𝐿2 (0,𝑇 ;𝐻2 (0,𝐿) ) ≤ 𝐶
(
∥𝑢0∥𝐻1

0 (0,𝐿)
+ ∥ 𝑓 ∥𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) )

)
(2.99)

for some 𝐶 > 0 depending only on 𝜈,𝑇 .

Proof. We will prove each part separately.

• Let us first prove uniqueness of the solutions. If 𝑢1 and 𝑢2 are two solutions of (2.96), then the
function 𝑢 := 𝑢1 − 𝑢2 satisfies the system

𝑢𝑡 − 𝜈𝑢𝑥𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑢 (0, 𝑥) = 0, in (0, 𝐿) .

By the definition of weak solution (eq. (2.97)), we have∫ 𝐿

0
𝑢 (𝑡, 𝑥)𝑣 (𝑡, 𝑥)𝑑𝑥 = 0, for all 𝑣𝑇 ∈ D(𝐴∗),

which implies 𝑢 (𝑡) = 0 in 𝐿2(0, 𝐿) for all 𝑡 ∈ (0,𝑇 ).
We now prove the existence of a solution to the system (2.96). Let us first consider the case
when 𝑢0 ∈ D(𝐴) and 𝑓 ∈ C1( [0,𝑇 ] × [0, 𝐿]). Then the system (2.96) has a unique strong solution
𝑢 ∈ C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ C0( [0,𝑇 ];D(𝐴)), thanks to the semigroup property (see Lemma 2.4.2).
We now prove the estimate (2.98) in this case.

Taking 𝐿2(0, 𝐿)-inner product in (2.96) with 𝑢, we get

1

2

𝑑

𝑑𝑡

∫ 𝐿

0
𝑢2(𝑡, 𝑥)𝑑𝑥 − 𝜈

∫ 𝐿

0
𝑢𝑥𝑥𝑢𝑑𝑥 =

∫ 𝐿

0
𝑓 𝑢𝑑𝑥, ∀𝑡 ∈ [0,𝑇 ] .

Integrating by parts and using the Young’s inequality, we obtain

1

2

𝑑

𝑑𝑡

∫ 𝐿

0
𝑢2(𝑡, 𝑥)𝑑𝑥+𝜈

∫ 𝐿

0
𝑢2𝑥 (𝑡, 𝑥)𝑑𝑥 =

∫ 𝐿

0
𝑓 𝑢𝑑𝑥 (2.100)

≤ 1

2

∫ 𝐿

0
𝑢2(𝑡, 𝑥)𝑑𝑥 + 1

2

∫ 𝐿

0
𝑓 2(𝑡, 𝑥)𝑑𝑥, ∀𝑡 ∈ [0,𝑇 ] .

Ignoring the term 𝜈
∫ 𝐿

0
𝑢2𝑥 (𝑡, 𝑥)𝑑𝑥 , we have

1

2

𝑑

𝑑𝑡

∫ 𝐿

0
𝑢2(𝑡, 𝑥)𝑑𝑥 ≤ 1

2

∫ 𝐿

0
𝑢2(𝑡, 𝑥)𝑑𝑥 + 1

2

∫ 𝐿

0
𝑓 2(𝑡, 𝑥)𝑑𝑥, ∀𝑡 ∈ [0,𝑇 ] .

59



2. Preliminaries

Applying Gronwall’s inequality (see [Eva10, Appendix B]), we deduce that

1

2

∫ 𝐿

0
𝑢2(𝑡, 𝑥)𝑑𝑥 ≤ 𝑒𝑡

(∫ 𝐿

0
𝑢20 (𝑥)𝑑𝑥 + 1

2

∫ 𝑡

0

∫ 𝐿

0
𝑓 2(𝑡, 𝑥)𝑑𝑥

)
, ∀𝑡 ∈ [0,𝑇 ] .

Taking supremum over 𝑡 ∈ [0,𝑇 ], we obtain

∥𝑢∥2C0 ( [0,𝑇 ];𝐿2 (0,𝐿) ) ≤ 2𝑒𝑇
(
∥𝑢0∥2𝐿2 (0,𝐿) + ∥ 𝑓 ∥2

𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) )

)
.

On the other hand, we have from (2.100) that

1

2

𝑑

𝑑𝑡

∫ 𝐿

0
𝑢2(𝑡, 𝑥)𝑑𝑥 + 𝜈

∫ 𝐿

0
𝑢2𝑥 (𝑡, 𝑥)𝑑𝑥 ≤ 1

2
∥𝑢∥2C0 ( [0,𝑇 ];𝐿2 (0,𝐿) ) +

1

2

∫ 𝐿

0
𝑓 2(𝑡, 𝑥)𝑑𝑥, ∀𝑡 ∈ [0,𝑇 ] .

Integrating over the interval [0,𝑇 ], we obtain

1

2

∫ 𝐿

0
[𝑢2(𝑇, 𝑥) − 𝑢20 (𝑥)]𝑑𝑥 + 𝜈

∫ 𝑇

0

∫ 𝐿

0
𝑢2𝑥 (𝑡, 𝑥)𝑑𝑥𝑑𝑡

≤ 𝑇

2
∥𝑢∥2C0 ( [0,𝑇 ];𝐿2 (0,𝐿) ) +

1

2

∫ 𝑇

0

∫ 𝐿

0
𝑓 2(𝑡, 𝑥)𝑑𝑥𝑑𝑡 .

Ignoring the term 1
2

∫ 𝐿

0
𝑢2(𝑇, 𝑥)𝑑𝑥 and using the previous C0( [0,𝑇 ];𝐿2(0, 𝐿))-estimate, we deduce

that
∥𝑢∥2

𝐿2 (0,𝑇 ;𝐻1
0 (0,𝐿) )

≤ 𝐶𝑒𝑇
(
∥𝑢0∥2𝐿2 (0,𝐿) + ∥ 𝑓 ∥2

𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) )

)
.

Here 𝐶 > 0 is a constant depending only on 𝜈.

Let us now consider the case when 𝑢0 ∈ 𝐿2(0, 𝐿) and 𝑓 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)). Let (𝑢𝑛0)𝑛∈N ⊂ D(𝐴)
be a sequence such that 𝑢𝑛0 → 𝑢0 in 𝐿2(0, 𝐿) and let (𝑓 𝑛)𝑛∈N ⊂ C1( [0,𝑇 ] × [0, 𝐿]) be such that
𝑓 𝑛 → 𝑓 in 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)). For each 𝑛 ∈ N, let 𝑢𝑛 denotes the strong solution of (2.96) with
initial state 𝑢𝑛0 and source term 𝑓 𝑛. Since 𝑢𝑛0 ∈ D(𝐴) and 𝑓 𝑛 ∈ C1( [0,𝑇 ] × [0, 𝐿]) for all 𝑛 ∈ N,
we have from the previous case that

∥𝑢𝑛 ∥C0 ( [0,𝑇 ];𝐿2 (0,𝐿) ) + ∥𝑢𝑛 ∥𝐿2 (0,𝑇 ;𝐻1
0 (0,𝐿) )

≤ 𝐶𝑒𝑇
(

𝑢𝑛0

𝐿2 (0,𝐿) + ∥ 𝑓 𝑛 ∥𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) )

)
, for all 𝑛 ∈ N.

(2.101)
Let 𝑣𝑇 ∈ D(𝐴∗) and let 𝑣 ∈ C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩C0( [0,𝑇 ];D(𝐴∗)) be the strong solution of (2.95)
(see Lemma 2.4.2). Since 𝑢𝑛 is the unique solution of (2.96), we have from (2.97) that∫ 𝐿

0
𝑢𝑛 (𝑡, 𝑥)𝑣 (𝑡, 𝑥)𝑑𝑥 −

∫ 𝐿

0
𝑢𝑛0 (𝑥)𝑣 (0, 𝑥)𝑑𝑥 =

∫ 𝑡

0

∫ 𝐿

0
𝑓 𝑛 (𝑠, 𝑥)𝑣 (𝑠, 𝑥)𝑑𝑥𝑑𝑡, (2.102)

for all 𝑛 ∈ N and 𝑡 ∈ [0,𝑇 ]. Let 𝑚,𝑛 ∈ N. Note that 𝑢𝑛 − 𝑢𝑚 is the strong solution of (2.96)
corresponding to the initial state 𝑢𝑛0 − 𝑢𝑚0 and source term 𝑓 𝑛 − 𝑓𝑚. Thus, we see from (2.101)
that this solution satisfies the estimate

∥𝑢𝑛 − 𝑢𝑚 ∥C0 ( [0,𝑇 ];𝐿2 (0,𝐿) )∩𝐿2 (0,𝑇 ;𝐻1
0 (0,𝐿) )

≤ 𝐶
(

𝑢𝑛0 − 𝑢𝑚0 



𝐿2 (0,𝐿) + ∥ 𝑓 𝑛 − 𝑓𝑚 ∥𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) )
)

for all 𝑚,𝑛 ∈ N. This implies the sequence (𝑢𝑛)𝑛∈N is Cauchy in the space C0( [0,𝑇 ];𝐿2(0, 𝐿)) ∩
𝐿2(0,𝑇 ;𝐻1

0 (0, 𝐿)). Let 𝑢𝑛 → 𝑢 in C0( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ 𝐿2(0,𝑇 ;𝐻1
0 (0, 𝐿)) for some function 𝑢 ∈

C0( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ 𝐿2(0,𝑇 ;𝐻1
0 (0, 𝐿)). Then, passing limit as 𝑛 → ∞ in the identity (2.102), we

see that 𝑢 is a weak solution of the system (2.96) with the above initial state 𝑢0 ∈ 𝐿2(0, 𝐿) and
source term 𝑓 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)). To prove the desired estimate (2.98), we pass limit as 𝑛 → ∞
in the inequality (2.101). This completes the proof of first part.

• To prove the estimate (2.99), we first assume that 𝑢0 ∈ D(𝐴) and 𝑓 ∈ C1( [0,𝑇 ] × [0, 𝐿]). Then,
the system (2.96) has a unique strong solution 𝑢 ∈ C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ C0( [0,𝑇 ];D(𝐴)). Taking
𝐿2(0, 𝐿)-inner product in (2.96) with 𝑢𝑡 , we get∫ 𝐿

0
𝑢2𝑡 𝑑𝑥 − 𝜈

∫ 𝐿

0
𝑢𝑡𝑢𝑥𝑥𝑑𝑥 =

∫ 𝐿

0
𝑓 𝑢𝑡𝑑𝑥, 𝑡 ∈ [0,𝑇 ] .
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An integration by parts gives∫ 𝐿

0
𝑢2𝑡 𝑑𝑥 + 𝜈

∫ 𝐿

0
𝑢𝑡𝑥𝑢𝑥𝑑𝑥 =

∫ 𝐿

0
𝑓 𝑢𝑡𝑑𝑥, 𝑡 ∈ [0,𝑇 ] .

The boundary term vanishes because 𝑢𝑡 (𝑡, 0) = 𝑢𝑡 (𝑡, 𝐿) = 0 for 𝑡 ∈ [0,𝑇 ]. Thus we can write

𝜈

2

𝑑

𝑑𝑡

∫ 𝐿

0
𝑢2𝑥𝑑𝑥 +

∫ 𝐿

0
𝑢2𝑡 𝑑𝑥 =

∫ 𝐿

0
𝑓 𝑢𝑡𝑑𝑥 ≤ 1

2

∫ 𝐿

0

(
𝑓 2 + 𝑢2𝑡

)
𝑑𝑥, 𝑡 ∈ [0,𝑇 ] .

This yields
1

2

∫ 𝐿

0
𝑢2𝑡 𝑑𝑥 + 𝜈

2

𝑑

𝑑𝑡

∫ 𝐿

0
𝑢2𝑥𝑑𝑥 ≤ 1

2

∫ 𝐿

0
𝑓 2𝑑𝑥, 𝑡 ∈ [0,𝑇 ] .

Ignoring the first term, we have

𝜈
𝑑

𝑑𝑡

∫ 𝐿

0
𝑢2𝑥𝑑𝑥 ≤

∫ 𝐿

0
𝑓 2𝑑𝑥, 𝑡 ∈ [0,𝑇 ] .

Integrating over [0, 𝑡], we get that∫ 𝐿

0
𝑢2𝑥 (𝑡, 𝑥)𝑑𝑥 −

∫ 𝐿

0
𝑢2𝑥 (0, 𝑥)𝑑𝑥 ≤

∫ 𝑡

0

∫ 𝐿

0
𝑓 2𝑑𝑥𝑑𝑠, 𝑡 ∈ [0,𝑇 ] .

Taking supremum over the interval [0,𝑇 ], we deduce that

∥𝑢∥2C0 ( [0,𝑇 ];𝐻1
0 (0,𝐿) )

≤ 𝑇
(
∥𝑢0∥2𝐻1

0 (0,𝐿)
+ ∥ 𝑓 ∥𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) )

)
,

thanks to the Poincaré inequality. To prove the required 𝐿2(𝐻2)-estimate, we take inner product
in (2.96) with 𝑢𝑥𝑥 and integrate over [0,𝑇 ]. We get∫ 𝑇

0

∫ 𝐿

0
𝑢𝑡𝑢𝑥𝑥𝑑𝑥𝑑𝑡 − 𝜈

∫ 𝑇

0

∫ 𝐿

0
𝑢2𝑥𝑥𝑑𝑥𝑑𝑡 =

∫ 𝑇

0

∫ 𝐿

0
𝑓 𝑢𝑥𝑥𝑑𝑥 .

Integrating by parts, we can get

𝜈

∫ 𝑇

0

∫ 𝐿

0
𝑢2𝑥𝑥𝑑𝑥𝑑𝑡 = −

∫ 𝑇

0

∫ 𝐿

0
𝑢𝑡𝑥𝑢𝑥𝑑𝑥𝑑𝑡 −

∫ 𝑇

0

∫ 𝐿

0
𝑓 𝑢𝑥𝑥𝑑𝑥 .

An integration by parts again yields

𝜈

∫ 𝑇

0

∫ 𝐿

0
𝑢2𝑥𝑥𝑑𝑥𝑑𝑡 = −

∫ 𝐿

0
[𝑢2𝑥 (𝑇, 𝑥) − 𝑢2𝑥 (0, 𝑥)]𝑑𝑥 −

∫ 𝑇

0

∫ 𝐿

0
𝑓 𝑢𝑥𝑥𝑑𝑥

≤
∫ 𝐿

0
𝑢2𝑥 (0, 𝑥)𝑑𝑥 +

∫ 𝑇

0

∫ 𝐿

0

(
1

4𝜖
𝑓 2 + 𝜖𝑢2𝑥𝑥

)
𝑑𝑥𝑑𝑡,

where we have used the Young’s inequality 𝑎𝑏 ≤ 𝜖𝑎2 + 𝑏2

4𝜖 for some 𝜖 > 0. Thus, we obtain

(𝜈 − 𝜖)
∫ 𝑇

0

∫ 𝐿

0
𝑢2𝑥𝑥𝑑𝑥𝑑𝑡 ≤

∫ 𝐿

0
𝑢2𝑥 (0, 𝑥)𝑑𝑥 + 1

4𝜖

∫ 𝑇

0

∫ 𝐿

0
𝑓 2𝑑𝑥𝑑𝑡 .

Choosing 𝜖 > 0 small enough so that 𝜈 − 𝜖 > 0, we deduce that

∥𝑢∥2
𝐿2 (0,𝑇 ;𝐻2 (0,𝐿) ) ≤ 𝐶

(
∥𝑢0∥2𝐻1

0 (0,𝐿)
+ ∥ 𝑓 ∥2

𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) )

)
,

thanks to the previous C0( [0,𝑇 ];𝐻1
0 (0, 𝐿))-estimate of 𝑢. Let us now consider the case when

𝑢0 ∈ 𝐻1
0 (0, 𝐿) and 𝑓 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)). Let (𝑢𝑛0)𝑛∈N ⊂ D(𝐴) and (𝑓 𝑛)𝑛∈N ⊂ C1( [0,𝑇 ] × [0, 𝐿])
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be sequences such that 𝑢𝑛0 → 𝑢0 in 𝐻1
0 (0, 𝐿) and 𝑓 𝑛 → 𝑓 in 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)). Then, we have the

following estimate:

∥𝑢𝑛 ∥C0 ( [0,𝑇 ];𝐻1
0 (0,𝐿) )

+ ∥𝑢𝑛 ∥𝐿2 (0,𝑇 ;𝐻2 (0,𝐿) ) ≤ 𝐶
(

𝑢𝑛0

𝐻1

0 (0,𝐿)
+ ∥ 𝑓 𝑛 ∥𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) )

)
, for all 𝑛 ∈ N.

This implies (𝑢𝑛)𝑛∈N is a Cauchy sequence in the space C0( [0,𝑇 ];𝐻1
0 (0, 𝐿)) ∩ 𝐿2(0,𝑇 ;𝐻2(0, 𝐿))

and by uniqueness of the solutions, the sequence (𝑢𝑛)𝑛∈N converges to the solution 𝑢 with
𝑢 ∈ C0( [0,𝑇 ];𝐻1

0 (0, 𝐿)) ∩ 𝐿2(0,𝑇 ;𝐻2(0, 𝐿)) corresponding to the above 𝑢0 ∈ 𝐻1
0 (0, 𝐿) and 𝑓 ∈

𝐿2(0,𝑇 ;𝐿2(0, 𝐿)). Then the desired estimate (2.99) follows by passing limit as 𝑛 → ∞ in the
above inequality.

This completes the proof.

We now consider the adjoint system with a source term:
−𝑣𝑡 − 𝜈𝑣𝑥𝑥 = 𝑔, in (0,𝑇 ) × (0, 𝐿),
𝑣 (𝑡, 0) = 0, 𝑣 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑣 (𝑇, 𝑥) = 𝑣𝑇 (𝑥), in (0, 𝐿),

(2.103)

where 𝑣𝑇 ∈ 𝐿2(0, 𝐿) and 𝑔 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)). Then, we have the following result; proof of which is
similar to the above Theorem and so we omit the details.

Lemma 2.4.3. Let 𝑣𝑇 ∈ 𝐿2(0, 𝐿) and 𝑔 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)) be given. Then there exists a unique weak
solution 𝑣 of (2.103) in the space

C0( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ 𝐿2(0,𝑇 ;𝐻1
0 (0, 𝐿)) .

Moreover, this solution 𝑣 satisfies the estimate

∥𝑣 ∥C0 ( [0,𝑇 ];𝐿2 (0,𝐿) ) + ∥𝑣 ∥𝐿2 (0,𝑇 ;𝐻1
0 (0,𝐿) )

≤ 𝐶
(
∥𝑣𝑇 ∥𝐿2 (0,𝐿) + ∥𝑔∥𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) )

)
(2.104)

for some 𝐶 > 0 depending only on 𝜈,𝑇 .

Further, if 𝑣𝑇 ∈ 𝐻1
0 (0, 𝐿), this solution 𝑣 satisfies the following estimate:

∥𝑣 ∥C0 ( [0,𝑇 ];𝐻1
0 (0,𝐿) )

+ ∥𝑣 ∥𝐿2 (0,𝑇 ;𝐻2 (0,𝐿) ) ≤ 𝐶
(
∥𝑣𝑇 ∥𝐻1

0 (0,𝐿)
+ ∥𝑔∥𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) )

)
(2.105)

for some 𝐶 > 0 depending only on 𝜈,𝑇 .

We are now ready to define the notion of a weak solution for the main control system (2.90) when
𝑢0 ∈ 𝐻−1(0, 𝐿) and 𝑞 ∈ 𝐿2(0,𝑇 ). In the literature, this type of solution (defined below) is often referred
as the “solution in the sense of transposition”.

Definition 2.4.2. Let the initial state 𝑢0 ∈ 𝐻−1(0, 𝐿) and control 𝑞 ∈ 𝐿2(0,𝑇 ) be given. We say a
function 𝑢 ∈ C0( [0,𝑇 ];𝐻−1(0, 𝐿)) is a weak solution (or a solution in the sense of transposition) of
(2.90) if, for every 𝑣𝑇 ∈ D(𝐴∗) the following identity holds true:

⟨𝑢 (𝑡), 𝑣 (𝑡)⟩𝐻 −1,𝐻1
0
− ⟨𝑢0, 𝑣 (0)⟩𝐻 −1,𝐻1 + 𝜈

∫ 𝑡

0
𝑞(𝑠)𝑣𝑥 (𝑠, 𝐿)𝑑𝑠 = 0, for all 𝑡 ∈ [0,𝑇 ], (2.106)

where 𝑣 is the strong solution of the adjoint system (2.95).

We note here that the above identity is well-defined because 𝑣 (0, ·) ∈ D(𝐴∗) and 𝑣𝑥 (·, 𝐿) ∈ 𝐿2(0,𝑇 ),
thanks to Lemma 2.4.2. Using this definition of a weak solution, we can now guarantee the existence
of a unique weak solution to the system (2.90). The statement is written below:
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Theorem 2.4.3. For any given 𝑢0 ∈ 𝐻−1(0, 𝐿) and 𝑞 ∈ 𝐿2(0,𝑇 ), the system (2.90) admits a unique
weak solution

𝑢 ∈ C0( [0,𝑇 ];𝐻−1(0, 𝐿)) .

Moreover, the solution 𝑢 satisfies

∥𝑢∥C0 ( [0,𝑇 ];𝐻 −1 (0,𝐿) ) ≤ 𝐶
(
∥𝑢0∥𝐻 −1 (0,𝐿) + ∥𝑞∥𝐿2 (0,𝑇 )

)
, (2.107)

for some 𝐶 > 0 depending only on 𝜈,𝑇 .

Proof. We first prove uniqueness of the solutions. Let us suppose that 𝑢1, 𝑢2 ∈ C0( [0,𝑇 ];𝐻−1(0, 𝐿)) be
two weak solutions of the system (2.90) and denote 𝑢 := 𝑢1−𝑢2. Then 𝑢 ∈ C0( [0,𝑇 ];𝐻−1(0, 𝐿)) satisfies
the system 

𝑢𝑡 − 𝑢𝑥𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑢 (0, 𝑥) = 0, in (0, 𝐿) .

From the definition of weak solution (see (2.106)), we readily have

⟨𝑢 (𝑡), 𝑣 (𝑡)⟩𝐻 −1,𝐻1
0
= 0, ∀𝑡 ∈ [0,𝑇 ],

for all 𝑣𝑇 ∈ D(𝐴∗). This implies 𝑢 (𝑡) = 0 in 𝐿2(0, 𝐿) for all 𝑡 ∈ [0,𝑇 ].
We now prove the existence of a weak solution to the system (2.90). We will consider 𝑢0 ∈ D(𝐴)

and 𝑞 ∈ C2 [0,𝑇 ] with 𝑞(0) = 0 and prove the result. Then, using a similar density argument as we
did in the proof of Theorem 2.4.2, the same will be true when 𝑢0 ∈ 𝐻−1(0, 𝐿) and 𝑞 ∈ 𝐿2(0,𝑇 ). Since
𝑢0 ∈ D(𝐴) and 𝑞 ∈ C2 [0,𝑇 ] satisfies 𝑞(0) = 0, applying Theorem 2.4.1, there is a unique strong solution
𝑢 ∈ C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ C0( [0,𝑇 ];𝐻2(0, 𝐿)) of the system (2.90). We now prove the estimate (2.107).
Let 𝜏 ∈ [0,𝑇 ] be fixed and 𝜉 ∈ 𝐻1

0 (0, 𝐿) be given. We consider the following system
−𝑣𝑡 − 𝜈𝑣𝑥𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝑣 (𝑡, 0) = 0, 𝑣 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑣 (𝜏, 𝑥) = 𝜉 (𝑥), in (0, 1).

(2.108)

Then 𝑣 ∈ C0( [0, 𝜏];𝐻1
0 (0, 𝐿)) ∩ 𝐿2(0, 𝜏 ;𝐻2(0, 𝐿)), thanks to Lemma 2.4.3. Moreover, we have the fol-

lowing estimate:

∥𝑣 ∥C0 ( [0,𝜏 ];𝐻1
0 (0,𝐿) )

+ ∥𝑣 ∥𝐿2 (0,𝜏 ;𝐻2 (0,𝐿) ) ≤ 𝐶 ∥𝜉 ∥𝐻1
0 (0,𝐿)

. (2.109)

Taking duality product in (2.90) with this 𝑣 and integrating over the interval (0, 𝜏), we get∫ 𝜏

0
⟨𝑢𝑡 (𝑠), 𝑣 (𝑠)⟩𝐻 −1,𝐻1

0
𝑑𝑠 − 𝜈

∫ 𝜏

0
⟨𝑢𝑥𝑥 (𝑠), 𝑣 (𝑠)⟩𝐻 −1,𝐻1

0
𝑑𝑠 = 0.

Integrating by parts, we readily have

⟨𝑢 (𝜏), 𝜉⟩𝐻 −1,𝐻1
0
− ⟨𝑢0, 𝑣 (0)⟩𝐻 −1,𝐻1

0
+ 𝜈

∫ 𝜏

0
𝑞(𝑠)𝑣𝑥 (𝑠, 𝐿)𝑑𝑠 = 0. (2.110)

Since 𝑣 ∈ 𝐿2(0, 𝜏 ;𝐻2(0, 𝐿)), the map 𝑣 ∈ 𝐿2(0, 𝜏 ;𝐻2(0, 𝐿)) ↦→ 𝑣𝑥 (·, 𝐿) ∈ 𝐿2(0,𝑇 ) is bounded. Therefore���⟨𝑢 (𝜏), 𝜉⟩𝐻 −1,𝐻1
0

���
𝐻 −1,𝐻1

0

≤
���⟨𝑢0, 𝑣 (0)⟩𝐻 −1,𝐻1

0

��� + 𝜈 ∫ 𝜏

0
|𝑞(𝑠) | |𝑣𝑥 (𝑠, 𝐿) | 𝑑𝑠

≤ ∥𝑢0∥𝐻 −1 (0,𝐿) ∥𝑣 (0)∥𝐻1
0 (0,𝐿)

+ 𝜈 ∥𝑞∥𝐿2 (0,𝑇 ) ∥𝑣𝑥 (·, 𝐿)∥𝐿2 (0,𝑇 )

≤ ∥𝑢0∥𝐻 −1 (0,𝐿) ∥𝑣 ∥C0 ( [0,𝑇 ];𝐻1
0 (0,𝐿) )

+ 𝜈 ∥𝑞∥𝐿2 (0,𝑇 ) ∥𝑣 ∥ (𝐿2 (0,𝑇 ;𝐻2 (0,𝐿) )

≤ 𝐶 ∥𝜉 ∥𝐻1
0 (0,𝐿)

(
∥𝑢0∥𝐻 −1 (0,𝐿) + ∥𝑞∥𝐿2 (0,𝑇 )

)
,
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thanks to the estimate (2.109). Thus we obtain

∥𝑢 (𝜏)∥𝐻 −1 (0,𝐿) = sup
∥𝜉 ∥

𝐻1
0
(0,𝐿)=1

���⟨𝑢 (𝜏), 𝜉⟩𝐻 −1,𝐻1
0

��� ≤ 𝐶 (
∥𝑢0∥𝐻 −1 (0,𝐿) + ∥𝑞∥𝐿2 (0,𝑇 )

)
.

Since 𝜏 ∈ [0,𝑇 ] is arbitrary, we deduce that

∥𝑢∥𝐿∞ (0,𝑇 ;𝐻 −1 (0,𝐿) ) ≤ 𝐶
(
∥𝑢0∥𝐻 −1 (0,𝐿) + ∥𝑞∥𝐿2 (0,𝑇 )

)
.

Applying the usual density argument, we can obtain the C0( [0,𝑇 ];𝐻−1(0, 𝐿))-estimate on 𝑢. This
completes the proof.

The above result guarantees the existence of a unique solution 𝑢 ∈ C0( [0,𝑇 ];𝐻−1(0, 𝐿)) to the
system (2.90) when 𝑢0 ∈ 𝐻−1(0, 𝐿) and 𝑞 ∈ 𝐿2(0,𝑇 ). In addition to this, we can also obtain a regularity
result for the system (2.90), which says that this solution 𝑢 also belongs to the space 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)).
To prove this result, we require another definition of a weak solution to the system (2.90), which is
written below.

Definition 2.4.3. Let 𝑢0 ∈ 𝐻−1(0, 𝐿) and 𝑞 ∈ 𝐿2(0,𝑇 ) be given. We say a function 𝑢 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 𝐿))
is a weak solution (or a solution in the sense of transposition) of the system (2.90) if, for every
𝑔 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)) the following identity holds true:

− ⟨𝑢0, 𝑣 (0)⟩𝐻 −1,𝐻1 + 𝜈
∫ 𝑇

0
𝑞(𝑡)𝑣𝑥 (𝑡, 𝐿)𝑑𝑡 +

∫ 𝑇

0

∫ 𝐿

0
𝑢𝑔𝑑𝑥𝑑𝑡 = 0, (2.111)

where 𝑣 is the weak solution of the adjoint system (2.103) with 𝑣𝑇 = 0.

It can be proved that this notion of defining a solution is equivalent to that considered in Definition
2.4.2, see for instance [Cor07, Section 2.5, Page 76]. With this definition, we now prove the regularity
result (𝐿2-estimate) of the solution 𝑢 to the system (2.90).

Proposition 2.4.1. For given 𝑢0 ∈ 𝐻−1(0, 𝐿) and 𝑞 ∈ 𝐿2(0,𝑇 ), the solution 𝑢 ∈ C0( [0,𝑇 ];𝐻−1(0, 𝐿))
of the system (2.90) belong to the space 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)) and we have the following estimate:

∥𝑢∥𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) ) ≤ 𝐶
(
∥𝑢0∥𝐻 −1 (0,𝐿) + ∥𝑞∥𝐿2 (0,𝑇 )

)
, (2.112)

where 𝐶 > 0 is a constant depending only on 𝜈,𝑇 .

Proof. We will prove the required estimate by assuming 𝑢0 ∈ D(𝐴) and 𝑞 ∈ C2 [0,𝑇 ] with 𝑞(0) = 0.
Then, applying a density argument, we can get the estimate when 𝑢0 ∈ 𝐻−1(0, 𝐿) and 𝑞 ∈ 𝐿2(0,𝑇 ).
For 𝑢0 ∈ D(𝐴) and 𝑞 ∈ C2 [0,𝑇 ] with 𝑞(0) = 0, the system (2.90) has a unique strong solution
𝑢 ∈ C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ C0( [0,𝑇 ];𝐻2(0, 𝐿)), thanks to Theorem 2.4.1. Let 𝑣 be the solution of the
adjoint system (2.103) with terminal data 𝑣𝑇 = 0 and source term 𝑔 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)). Then, applying
Lemma 2.4.3, this solution 𝑣 satisfies 𝑣 ∈ C0( [0,𝑇 ];𝐻1

0 (0, 𝐿)) ∩ 𝐿2(0,𝑇 ;𝐻2(0, 𝐿)) with the following
estimate

∥𝑣 ∥C0 ( [0,𝑇 ];𝐻1
0 (0,𝐿) )

+ ∥𝑣 ∥𝐿2 (0,𝑇 ;𝐻2 (0,𝐿) ) ≤ 𝐶 ∥𝑔∥𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) )

for some constant 𝐶 > 0. Taking duality product in (2.90) with 𝑣 and integrating over (0,𝑇 ), we have∫ 𝑇

0
⟨𝑢𝑡 (𝑡), 𝑣 (𝑡)⟩𝐻 −1,𝐻1

0
𝑑𝑠 − 𝜈

∫ 𝑇

0
⟨𝑢𝑥𝑥 (𝑡), 𝑣 (𝑡)⟩𝐻 −1,𝐻1

0
𝑑𝑠 = 0.

Integrating by parts and using the boundary-initial conditions, we deduce that

− ⟨𝑢 (0), 𝑣 (0)⟩𝐻 −1,𝐻1
0
+ 𝜈

∫ 𝑇

0
𝑞(𝑡)𝑣𝑥 (𝑡, 𝐿)𝑑𝑡 +

∫ 𝑇

0

∫ 𝐿

0
𝑢𝑔𝑑𝑥𝑑𝑡 = 0,
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since 𝑣 satisfies (2.103). Thus, we have����∫ 𝑇

0

∫ 𝐿

0
𝑢𝑔𝑑𝑥𝑑𝑡

���� ≤ ���⟨𝑢 (0), 𝑣 (0)⟩𝐻 −1,𝐻1
0

��� + 𝜈 ∫ 𝑇

0
|𝑞(𝑡) | |𝑣𝑥 (𝑡, 𝐿) | 𝑑𝑡

≤ ∥𝑢 (0)∥𝐻 −1 (0,𝐿) ∥𝑣 (0)∥𝐻1
0
+ 𝜈 ∥𝑞∥𝐿2 (0,𝑇 ) ∥𝑣𝑥 (·, 𝐿)∥𝐿2 (0,𝑇 )

≤ 𝐶 ∥𝑔∥𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) )
(
∥𝑢0∥𝐻 −1 (0,𝐿) + ∥𝑞∥𝐿2 (0,𝑇 )

)
.

Therefore

∥𝑢∥𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) ) = sup
∥𝑔∥

𝐿2 (𝐿2 )=1

����∫ 𝑇

0

∫ 𝐿

0
𝑢𝑔𝑑𝑥𝑑𝑡

���� ≤ 𝐶 (
∥𝑢0∥𝐻 −1 (0,𝐿) + ∥𝑞∥𝐿2 (0,𝑇 )

)
,

proving the required estimate when 𝑢0 ∈ D(𝐴) and 𝑞 ∈ C2 [0,𝑇 ] with 𝑞(0) = 0.

We now consider the case when 𝑢0 ∈ 𝐻−1(0, 𝐿) and 𝑞 ∈ 𝐿2(0,𝑇 ). Then there exist sequences
(𝑢𝑛0)𝑛∈N ⊂ D(𝐴) and (𝑞𝑛)𝑛∈N ⊂ C2 [0,𝑇 ] with 𝑞𝑛 (0) = 0 for all 𝑛 ∈ N such that 𝑢𝑛0 → 𝑢0 in 𝐿2(0, 𝐿) and
𝑞𝑛 → 𝑞 in 𝐿2(0,𝑇 ). For each 𝑛 ∈ N, let 𝑢𝑛 denote the strong solution of (2.90) with the above 𝑢𝑛0 and
𝑞𝑛. Then, applying Theorem 2.4.1, this solution 𝑢𝑛 belongs to C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ C0( [0,𝑇 ];𝐻2(0, 𝐿))
for all 𝑛 ∈ N. Since (𝑢𝑛0)𝑛∈N ⊂ D(𝐴) and (𝑞𝑛)𝑛∈N ⊂ C2 [0,𝑇 ] with 𝑞𝑛 (0) = 0 for all 𝑛 ∈ N, we have the
following estimate

∥𝑢𝑛 ∥𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) ) ≤ 𝐶
(

𝑢𝑛0

𝐻 −1 (0,𝐿) + ∥𝑞𝑛 ∥𝐿2 (0,𝑇 )

)
, for all 𝑛 ∈ N. (2.113)

Let 𝑔 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)) be given and let 𝑣 ∈ C0( [0,𝑇 ];𝐻1
0 (0, 𝐿))∩𝐿2(0,𝑇 ;𝐻2(0, 𝐿)) be the unique strong

solution of (2.103) (see Lemma 2.4.3). Taking 𝐿2(0, 𝐿)-inner product in (2.90) with 𝑣 and integrating
over [0,𝑇 ], we get ∫ 𝑇

0

∫ 𝐿

0
𝑢𝑛𝑡 𝑣𝑑𝑥𝑑𝑡 − 𝜈

∫ 𝑇

0

∫ 𝐿

0
𝑢𝑛𝑥𝑥𝑣𝑑𝑥𝑑𝑡 = 0, for all 𝑛 ∈ N.

Integrating by parts twice, we obtain

−
∫ 𝐿

0
𝑢𝑛0 (𝑥)𝑣 (0, 𝑥)𝑑𝑥 + 𝜈

∫ 𝑇

0
𝑞𝑛 (𝑡)𝑣𝑥 (𝑡, 𝐿)𝑑𝑡 +

∫ 𝑇

0

∫ 𝐿

0
𝑢𝑛𝑔𝑑𝑥𝑑𝑡 = 0, for all 𝑛 ∈ N. (2.114)

Let 𝑚,𝑛 ∈ N. Note that 𝑢𝑛 − 𝑢𝑚 is the strong solution of (2.96) corresponding to the initial state
𝑢𝑛0 − 𝑢𝑚0 and control 𝑞𝑛 − 𝑞𝑚. Thus, we see from (2.113) that this solution satisfies the estimate

∥𝑢𝑛 − 𝑢𝑚 ∥𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) ) ≤ 𝐶
(

𝑢𝑛0 − 𝑢𝑚0 



𝐿2 (0,𝐿) + ∥𝑞𝑛 − 𝑞𝑚 ∥𝐿2 (0,𝑇 )

)
for all𝑚,𝑛 ∈ N. This implies the sequence (𝑢𝑛)𝑛∈N is Cauchy in the space 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)). Let 𝑢𝑛 → 𝑢

in 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)) for some function 𝑢 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)). Then, passing limit as 𝑛 → ∞ in the identity
(2.114), we see from Definition 2.4.3 that 𝑢 is a weak solution of the system (2.96) with the above
initial state 𝑢0 ∈ 𝐿2(0, 𝐿) and control 𝑞 ∈ 𝐿2(0,𝑇 ). To prove the desired estimate (2.112), we pass limit
as 𝑛 → ∞ in the inequality (2.113). This completes the proof.

Since we have the well-posedness result for the heat equation (2.90) in 𝐻−1(0, 𝐿), we can study the
controllability properties of (2.90) in the space 𝐻−1(0, 𝐿). We first prove that the heat equation (2.90)
cannot be exactly controllable at any time 𝑇 > 0 in the space 𝐻−1(0, 𝐿) by using a boundary control
𝑞 ∈ 𝐿2(0,𝑇 ). For this, we consider the following homogeneous system

𝑢𝑡 − 𝜈𝑢𝑥𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 𝐿),

(2.115)

65



2. Preliminaries

with 𝑢0 ∈ 𝐻−1(0, 𝐿) and recall the unbounded operator 𝐴 : D(𝐴) ⊂ 𝐿2(0, 𝐿) → 𝐿2(0, 𝐿) where{
D(𝐴) =

{
𝑓 ∈ 𝐻2(0, 𝐿) : 𝑓 (0) = 𝑓 (𝐿) = 0

}
,

𝐴𝑓 := −𝜈 𝑓𝑥𝑥 , 𝑓 ∈ D(𝐴) .
(2.116)

The eigenvalues of this operator 𝐴 are 𝜆𝑛 := 𝑛2𝜋2

𝐿2
and the corresponding eigenfunctions are 𝜑𝑛 (𝑥) :=

sin
(
𝑛𝜋𝑥
𝐿

)
for all 𝑛 ∈ N. Since these eigenfunctions {𝜑𝑛 : 𝑛 ∈ N} forms an orthogonal basis of 𝐿2(0, 𝐿)

and hence a dense family in 𝐻−1(0, 𝐿), we can write 𝑢0 ∈ 𝐻−1(0, 𝐿) as

𝑢0(𝑥) =
∑︁
𝑛∈N

𝑎𝑛 sin
(𝑛𝜋𝑥
𝐿

)
, 𝑥 ∈ (0, 𝐿),

for some (𝑎𝑛)𝑛∈N such that
(𝑎𝑛
𝑛

)
𝑛∈N ∈ ℓ2. The solution of (2.115) is then given by the separation of

variable formula

𝑢 (𝑡, 𝑥) =
∑︁
𝑛∈N

𝑎𝑛𝑒
− 𝑛2𝜋2

𝐿2
𝑡
sin

(𝑛𝜋𝑥
𝐿

)
, for (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 𝐿).

Note that 𝑢 (𝑇 ) = 0 in 𝐻−1(0, 𝐿) implies the coefficients 𝑎𝑛 = 0 for all 𝑛 ∈ N, which immediately gives
𝑢 ≡ 0. This shows that the system (2.115) satisfies the backward uniqueness property (see Definition
2.2.5). On the other hand, from this expression of the solution, we deduce that

𝑢𝑡 (𝑇, 𝑥) = −
∑︁
𝑛∈N

𝑎𝑛
𝑛2𝜋2

𝐿2
𝑒
− 𝑛2𝜋2

𝐿2
𝑇
sin

(𝑛𝜋𝑥
𝐿

)
, for 𝑥 ∈ (0, 𝐿)

and therefore 𝑢𝑥𝑥 (𝑇 ) = 𝑢𝑡 (𝑇 ) ∈ 𝐿2(0, 𝐿), which implies 𝑢 (𝑇 ) ∈ 𝐻2(0, 𝐿). On the other hand, we have

𝑢𝑡𝑥𝑥 (𝑇, 𝑥) = −
∑︁
𝑛∈N

𝑎𝑛
𝑛4𝜋4

𝐿4
𝑒
− 𝑛2𝜋2

𝐿2
𝑇
sin

(𝑛𝜋𝑥
𝐿

)
, for 𝑥 ∈ (0, 𝐿).

This gives 𝑢𝑥𝑥𝑥𝑥 (𝑇 ) = 𝑢𝑡𝑥𝑥 (𝑇 ) ∈ 𝐿2(0,𝑇 ) and therefore 𝑢 (𝑇 ) ∈ 𝐻4(0, 𝐿). A repeated argument shows
that 𝑢 (𝑇 ) ∈ 𝐻2𝑘 (0, 𝐿) for all 𝑘 ∈ N. As a consequence, we have 𝑢 (𝑇 ) ∈ C∞(0, 𝐿]. Using this argument in
the main control system (2.90), we see that the solution is smooth far away from the right end 𝑥 = 𝐿,
that is 𝑢 (𝑇 ) ∈ C∞(0, 𝐿). Therefore, the heat equation (2.90) cannot be exactly controllable at time 𝑇
in the space 𝐻−1(0, 𝐿) (and in particular, in 𝐿2(0, 𝐿)) by using a boundary control 𝑞 ∈ 𝐿2(0,𝑇 ). Thus,
we only concentrate on the null controllability of this system at time 𝑇 in 𝐻−1(0, 𝐿), since approximate
controllability will follow due to the backward uniqueness property of the equation (2.115) (thanks to
Proposition 2.2.1).

Recall that, in Sections 2.2.2–2.3, we have derived some equivalent conditions for null controllability
in terms of the operator 𝐹𝑇 and its adjoint. In this case, we define the map 𝐹𝑇 : 𝐿2(0,𝑇 ) → 𝐻−1(0, 𝐿)
by

𝐹𝑇 (𝑞) := 𝑢 (𝑇, ·),
where 𝑢 is the unique weak solution of (2.90) with 𝑢0 = 0 and 𝑞 ∈ 𝐿2(0,𝑇 ). Using Theorem 2.4.3, we
know that 𝑢 ∈ C0( [0,𝑇 ];𝐻−1(0, 𝐿)) and therefore 𝐹𝑇 is a well-defined linear map. From the definition
of weak solution (eq. (2.106)), the adjoint of this map 𝐹 ∗

𝑇
: 𝐻1

0 (0, 𝐿) → 𝐿2(0,𝑇 ) is given by

𝐹 ∗𝑇 (𝑣𝑇 ) := 𝑣𝑥 (·, 𝐿), for 𝑣𝑇 ∈ 𝐻1
0 (0, 𝐿) .

Thanks to Lemma 2.4.3, this map is well-defined and with the help of this map, we can now state the
following result; the proof of which follows from Theorem 2.2.8.

Theorem 2.4.4. The system (2.90) is null controllable at time 𝑇 in 𝐻−1(0, 𝐿) if and only if there
exists a 𝐶 > 0 such that the following inequality∫ 𝑇

0
|𝑣𝑥 (𝑡, 𝐿) |2 𝑑𝑡 ≥ 𝐶 ∥𝑣 (0)∥2

𝐻1
0 (0,𝐿)

(2.117)

holds for all 𝑣𝑇 ∈ 𝐻1
0 (0, 𝐿).
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Thus, to prove null controllability of the system (2.90), it is enough to prove the observability
inequality (2.117). We state the result below.

Theorem 2.4.5. The system (2.90) is null controllable at any time 𝑇 > 0 in the space 𝐻−1(0, 𝐿).

Proof. Let 𝑇 > 0 be given and let 𝑣𝑇 ∈ 𝐻1
0 (0, 𝐿). Since the eigenfunctions

{
sin

(
𝑛𝜋𝑥
𝐿

)
: 𝑛 ∈ N

}
of 𝐴

forms a complete (dense) family in 𝐻1
0 (0, 𝐿), we can write

𝑣𝑇 (𝑥) =
∑︁
𝑛∈N

𝑎𝑛 sin
(𝑛𝜋𝑥
𝐿

)
, 𝑥 ∈ (0, 𝐿),

for some (𝑎𝑛)𝑛∈N such that (𝑛𝑎𝑛)𝑛∈N ∈ ℓ2. Then the solution to the adjoint system (2.95) is given by

𝑣 (𝑡, 𝑥) =
∑︁
𝑛∈N

𝑎𝑛𝑒
− 𝑛2𝜋2

𝐿2
(𝑇−𝑡 )

sin
(𝑛𝜋𝑥
𝐿

)
, (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 𝐿) .

Thus, we have∫ 𝑇

0
|𝑣𝑥 (𝑡, 𝐿) |2 𝑑𝑡 =

∫ 𝑇

0

�����∑︁
𝑛∈N

𝑎𝑛 (−1)𝑛
𝑛𝜋

𝐿
𝑒
− 𝑛2𝜋2

𝐿2
(𝑇−𝑡 )

�����2 𝑑𝑡 = ∫ 𝑇

0

�����∑︁
𝑛∈N

𝑎𝑛 (−1)𝑛
𝑛𝜋

𝐿
𝑒
− 𝑛2𝜋2

𝐿2
𝑡

�����2 𝑑𝑡 .
Note that, thanks to Theorem 2.1.13 (or Theorem 2.1.14), the family

(
𝑒
− 𝑛2𝜋2

𝐿2
𝑡

)
𝑛∈N

has a biorthogonal

sequence (𝑞𝑘 )𝑘∈N in 𝐿2(0,𝑇 ) with the estimate ∥𝑞𝑘 ∥𝐿2 (0,𝑇 ) ≤ 𝐶𝑒𝜖Re(𝜆𝑘 ) for all 𝑘 ∈ N and 𝜖 > 0. Thus,
we can apply the parabolic Ingham’s inequality (2.20) in Theorem 2.1.19 to deduce that∫ 𝑇

0
|𝑣𝑥 (𝑡, 𝐿) |2 𝑑𝑡 ≥

∑︁
𝑛∈N

|𝑎𝑛 |2
𝑛2𝜋2

𝐿2
𝑒
−2𝑛2𝜋2

𝐿2
𝑇
. (2.118)

On the other hand, we have

∥𝑣 (0)∥2
𝐻1

0 (0,𝐿)
=

∫ 𝐿

0
|𝑣𝑥 (0, 𝑥) |2 𝑑𝑥 =

∫ 𝐿

0

�����∑︁
𝑛∈N

𝑎𝑛
𝑛𝜋

𝐿
𝑒
− 𝑛2𝜋2

𝐿2
𝑇
cos

(𝑛𝜋𝑥
𝐿

)�����2 𝑑𝑥
Since the set

{
cos

(
𝑛𝜋𝑥
𝐿

)
: 𝑛 ∈ N ∪ {0}

}
is an orthogonal basis in 𝐿2(0, 𝐿), we deduce that

∥𝑣 (0)∥2
𝐻1

0 (0,𝐿)
≤ 𝐶

∑︁
𝑛∈N

|𝑎𝑛 |2
𝑛2𝜋2

𝐿2
𝑒
−2𝑛2𝜋2

𝐿2
𝑇
. (2.119)

Combining the estimates (2.118) and (2.119), we obtain the required observability inequality (2.117).
This completes the proof.

This method for proving null controllability of (2.90) is a crucial part in this thesis, in particular in
Chapters 3 and 4. Apart from this method, we now give a different approach, the so called moments
method (introduced in Section 2.1.3), to prove null controllability of the heat equation (2.90). This
technique will be very useful in the later chapters of this thesis (see Chapters 4–5). Before proceeding,
we first write the following result which gives an equivalent condition for null controllability of the
system (2.90).

Lemma 2.4.4 (Equivalent criterion for null controllability). The heat equation (2.90) is null control-
lable at time 𝑇 > 0 in 𝐻−1(0, 𝐿) if, and only if, for every 𝑢0 ∈ 𝐻−1(0, 𝐿) there exists 𝑞 ∈ 𝐿2(0,𝑇 ) such
that the following identity ∫ 𝑇

0
𝑞(𝑡)𝑣𝑥 (𝑡, 𝐿)𝑑𝑡 = ⟨𝑢0, 𝑣 (0)⟩𝐻 −1,𝐻1

0
(2.120)

holds for every 𝑣𝑇 ∈ 𝐻1
0 (0, 𝐿).
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Proof. Let us first consider the case when 𝑢0 ∈ D(𝐴) and 𝑞 ∈ C2 [0,𝑇 ] with 𝑞(0) = 0. Then the
strong solution 𝑢 to (2.90) satisfy 𝑢 ∈ C1( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ C0( [0,𝑇 ];D(𝐴)). Let 𝑣𝑇 ∈ 𝐻1

0 (0, 𝐿). Then
the solution 𝑣 of the adjoint system (2.95) belong to the space C0( [0,𝑇 ];𝐻1

0 (0, 𝐿)) ∩ 𝐿2(0,𝑇 ;𝐻2(0, 𝐿)),
thanks to Lemma 2.4.3. Taking inner product in (2.90) with this 𝑣 , we get∫ 𝑇

0
⟨𝑢𝑡 , 𝑣⟩𝐻 −1,𝐻1

0
𝑑𝑡 − 𝜈

∫ 𝑇

0
⟨𝑢𝑥𝑥 , 𝑣⟩𝐻 −1,𝐻1

0
𝑑𝑡 = 0.

Integrating by parts and using the boundary-initial conditions, we obtain

⟨𝑢 (𝑇 ), 𝑣𝑇 ⟩𝐻 −1,𝐻1
0
− ⟨𝑢0, 𝑣 (0)⟩𝐻 −1,𝐻1

0
+ 𝜈

∫ 𝑇

0
𝑞(𝑡)𝑣𝑥 (𝑡, 𝐿)𝑑𝑡 = 0,

for all 𝑣𝑇 ∈ 𝐻1
0 (0, 𝐿). Using a density argument, this identity is also true when 𝑢0 ∈ 𝐻−1(0, 𝐿) and

𝑞 ∈ 𝐿2(0,𝑇 ). We now assume that the system (2.90) is null controllable at time 𝑇 in 𝐻−1(0, 𝐿). Then,
for every 𝑢0 ∈ 𝐻−1(0, 𝐿) there exists a 𝑞 ∈ 𝐿2(0,𝑇 ) such that the associated solution satisfies 𝑢 (𝑇 ) = 0.
Consequently, we have the required identity (2.120). On the other hand, if for every 𝑢0 ∈ 𝐻−1(0, 𝐿)
there exists a 𝑞 ∈ 𝐿2(0,𝑇 ) such that the identity (2.120) holds, then we deduce from the above relation
that

⟨𝑢 (𝑇 ), 𝑣𝑇 ⟩𝐻 −1,𝐻1
0
= 0, for all 𝑣𝑇 ∈ 𝐻1

0 (0, 𝐿) .

As a consequence, we obtain 𝑢 (𝑇 ) = 0 and therefore the system (2.90) is null controllable at time 𝑇 in
𝐻−1(0, 𝐿). This completes the proof.

We can further reduce the above equivalent identity into a set of moments problem by using the
eigen-elements of the operator 𝐴. This moment problem will be similar to the one considered in
Section 2.1.3 (see Example 2.1.6).

Lemma 2.4.5 (Reduction to the moments problem). The system (2.90) is null controllable at time
𝑇 > 0 in 𝐻−1(0, 𝐿) if, and only if, there exists 𝑞 ∈ 𝐿2(0,𝑇 ) such that the following identities holds:∫ 𝑇

0
𝑞(𝑇 − 𝑡)𝑒−

𝑛2𝜋2

𝐿2
𝑡
𝑑𝑡 = 𝜔𝑛, for all 𝑛 ∈ N, (2.121)

where

𝜔𝑛 =
(−1)𝑛𝐿𝑒−

𝑛2𝜋2

𝐿2
𝑇

𝑛𝜋

〈
𝑢0, sin

(𝑛𝜋 ·
𝐿

)〉
𝐻 −1,𝐻1

0

, 𝑛 ∈ N. (2.122)

Proof. Recall that, the set of eigenfunctions {𝜑𝑛 : 𝑛 ∈ N} of 𝐴, where 𝜑𝑛 (𝑥) = sin
(
𝑛𝜋𝑥
𝐿

)
for 𝑛 ∈ N,

forms a dense family in 𝐻1
0 (0, 𝐿). With this 𝜑𝑛, the solution of the adjoint system (2.95) is

𝑣𝑛 (𝑡, 𝑥) = 𝑒−
𝑛2𝜋2

𝐿2
(𝑇−𝑡 )

sin
(𝑛𝜋𝑥
𝐿

)
, 𝑡 ∈ (0,𝑇 ), 𝑥 ∈ (0, 𝐿),

for all 𝑛 ∈ N. Plugging this value of 𝑣𝑛 in (2.120), we readily have∫ 𝑇

0
𝑞(𝑡)𝑒−

𝑛2𝜋2

𝐿2
(𝑇−𝑡 ) (−1)𝑛𝑛𝜋

𝐿
𝑑𝑡 =

〈
𝑢0, 𝑒

− 𝑛2𝜋2

𝐿2
𝑇
sin

(𝑛𝜋 ·
𝐿

)〉
𝐻 −1,𝐻1

0

for all 𝑛 ≥ 1. Changing the variable 𝑡 ↦→ 𝑇 − 𝑡 in the above integral, the proof follows.

From the above Lemma, it is enough to solve the moments problem (2.121) for proving null control-
lability of the system (2.90), and with the help of a suitable biorthogonal family of the exponentials,
we now solve this moments problem. The statement is given below:

Theorem 2.4.6. Let 𝑇 > 0 be given. Then the system (2.90) is null controllable at time 𝑇 in the
space 𝐻−1(0, 𝐿).
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Proof. We first apply Theorem 2.1.12 to obtain a biorthogonal sequence (𝑞𝑘 )𝑘∈N to the exponential

family (𝑒−
𝑛2𝜋2

𝐿2
𝑡 )𝑛∈N in 𝐿2(0,𝑇 ) with the estimate

∥𝑞𝑘 ∥𝐿2 (0,𝑇 ) ≤ 𝑀𝑒
𝜖 𝑘2𝜋2

𝐿2 , for all 𝑘 ≥ 1, (2.123)

for some constant 𝑀 > 0 and all 𝜖 > 0. We define 𝑞(𝑇 − 𝑡) :=
∑︁
𝑘∈N

𝜔𝑘𝑞𝑘 (𝑡), for 𝑡 ∈ (0,𝑇 ), where 𝜔𝑘 is

defined by (2.122). Then, it is easy to see that 𝑞 satisfies (2.121). It remains to prove that 𝑞 ∈ 𝐿2(0,𝑇 ).
In fact,

∥𝑞∥𝐿2 (0,𝑇 ) ≤
∑︁
𝑘∈N

|𝜔𝑘 | ∥𝑞𝑘 ∥𝐿2 (0,𝑇 ) ,

≤ 𝑀
∑︁
𝑘∈N

𝐿𝑒
− 𝑘2𝜋2

𝐿2
𝑇

𝑘𝜋
∥𝑢0∥𝐻 −1 (0,𝐿)





sin (
𝑘𝜋 ·
𝐿

)




𝐻1

0 (0,𝐿)
𝑒
𝜖 𝑘2𝜋2

𝐿2

≤ 𝑀 ∥𝑢0∥𝐻 −1 (0,𝐿)
∑︁
𝑘∈N

𝑒
− 𝑘2𝜋2

𝐿2
(𝑇−𝜖 )

.

Choosing 𝜖 > 0 small enough such that 𝑇 − 𝜖 > 0, we deduce that

∥𝑞∥𝐿2 (0,𝑇 ) ≤ 𝑀 ∥𝑢0∥𝐻 −1 (0,1) ,

for some 𝑀 > 0. Then, applying Lemma 2.4.5 the proof follows.

Remark 2.4.1 (Control cost). We can estimate the constant 𝑀 appearing in the above inequality.
The role of this constant (called the “cost of the control”) appears when we deal with the nonlinear
systems and prove local controllability using the controllability properties of the associated linearized
system (see the next section and Chapter 5 for more details). To estimate this constant, we use the
general biorthogonal result (Theorem 2.1.15) to obtain the bound of the biorthogonal sequence (𝑞𝑘 )𝑘∈N
as

∥𝑞𝑘 ∥𝐿2 (0,𝑇 ) ≤ 𝑀𝑒𝑀
√
𝜆𝑘+𝑀

𝑇 , for all 𝑘 ∈ N,

where recall that 𝜆𝑘 = 𝑘2𝜋2

𝐿2
for 𝑘 ∈ N. Thus, we have

∥𝑞∥𝐿2 (0,𝑇 ) ≤
∑︁
𝑘∈N

𝑒−𝜆𝑘𝑇
√
𝜆𝑘

∥𝑢0∥𝐻 −1 (0,𝐿)




sin(√︁𝜆𝑘 ·)




𝐻1

0 (0,𝐿)
∥𝑞𝑘 ∥𝐿2 (0,𝑇 )

≤ 𝑀 ∥𝑢0∥𝐻 −1 (0,𝐿)
∑︁
𝑘∈N

𝑒−𝜆𝑘𝑇+𝑀
√
𝜆𝑘+𝑀

𝑇

≤ 𝑀 ∥𝑢0∥𝐻 −1 (0,𝐿)
∑︁
𝑘∈N

𝑒
𝑀
𝑇
+𝑀2

2𝑇 𝑒−
1
2𝜆𝑘𝑇

≤ 𝑀𝑒
𝑀
𝑇
+𝑀2

2𝑇 ∥𝑢0∥𝐻 −1 (0,𝐿)
∑︁
𝑘∈N

𝑒−
1
2𝜆𝑘𝑇 ,

where we have used the Young’s inequality 𝑀
√
𝜆𝑘 = 𝑀√

𝑇

√
𝜆𝑘𝑇 ≤ 𝑀2

2𝑇 + 𝜆𝑘𝑇

2 . On the other hand, we have

that ∑︁
𝑘∈N

𝑒−
1
2𝜆𝑘𝑇 ≤

∑︁
𝑘∈N

2

𝜆𝑘𝑇
≤ 𝐶

𝑇
(2.124)

for some 𝐶 > 0 independent of 𝑇 . Thus, we have

∥𝑞∥𝐿2 (0,𝑇 ) ≤ 𝐶𝑒
𝐶
𝑇 ∥𝑢0∥𝐻 −1 (0,𝐿) (2.125)

for some 𝐶 > 0 independent of 𝑇 .
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We conclude this section with the comment that, like the finite dimensional linear systems, one can
prove the equivalence between controllability and observability by introducing a quadratic functional
in appropriate function spaces, see for instance [MZ04, Zua07]; see also the proof of Theorem 2.2.2.
More precisely, to prove null controllability of the heat equation (2.90) at any time 𝑇 > 0 in the space
𝐿2(0, 𝐿), it is enough to prove the following observability inequality:∫ 𝑇

0
|𝑣𝑥 (𝑡, 𝐿) |2 𝑑𝑡 ≥ 𝐶 ∥𝑣 (0)∥2

𝐿2 (0,𝐿) (2.126)

for all 𝑣𝑇 ∈ D(𝐴∗), thanks to Theorem 2.2.8 (see Theorem 2.4.4 for comparison). For this, we define
the following subspace of 𝐿2(0, 𝐿)

H :=

{
𝜑𝑇 ∈ 𝐿2(0, 𝐿) : the solution 𝜑 of (2.95) satisfies

∫ 𝑇

0
|𝜑𝑥 (𝑡, 𝐿) |2 𝑑𝑡 < ∞

}
and define a quadratic functional 𝐽 : H → R by

𝐽 (𝜑𝑇 ) :=
1

2

∫ 𝑇

0
|𝜑𝑥 (𝑡, 𝐿) |2 𝑑𝑡 +

∫ 𝐿

0
𝑢0(𝑥)𝜑 (0, 𝑥)𝑑𝑥, 𝜑𝑇 ∈ H . (2.127)

Note that, thanks to Lemma 2.4.2, we find that D(𝐴∗) ⊂ H . Also, 𝐽 is not coercive with respect to
the usual 𝐿2-norm. Thus, we define a new norm on 𝐻 as follows:

∥𝜑𝑇 ∥H :=

(∫ 𝑇

0
|𝜑𝑥 (𝑡, 𝐿) |2 𝑑𝑡

) 1
2

. (2.128)

To prove this a norm, we only need to verify the following property:

∥𝜑𝑇 ∥H = 0 implies 𝜑𝑇 = 0.

Indeed, ∥𝜑𝑇 ∥H = 0 implies 𝜑𝑥 (𝑡, 𝐿) = 0 for a.e. 𝑡 ∈ (0,𝑇 ). The observability inequality (2.126) is then
gives 𝜑 (0, 𝑥) = 0 for a.e. 𝑥 ∈ (0, 𝐿). Since the heat equation has backward uniqueness property, we
readily have 𝜑𝑇 (𝑥) = 0 for a.e. 𝑥 ∈ (0, 𝐿).

With this new norm, the functional 𝐽 is continuous and coercive onH . Therefore, 𝐽 has a minimizer
(say 𝜑𝑇 ) in H . Let 𝜑 denotes the solution of (2.95) with respect to this terminal data 𝜑𝑇 . Then, we
have ∫ 𝑇

0
𝜑𝑥 (𝑡, 𝐿)𝜑𝑥 (𝑡, 𝐿)𝑑𝑡 +

∫ 𝐿

0
𝑢0(𝑥)𝜑 (0, 𝑥)𝑑𝑥 = 0 (2.129)

for all 𝜑𝑇 ∈ H . On the other hand, we have for 𝑞(𝑡) = −𝜑𝑥 (𝑡, 𝐿),∫ 𝑇

0
𝑢 (𝑇, 𝑥)𝜑𝑇 (𝑥)𝑑𝑥 −

∫ 𝐿

0
𝑢0(𝑥)𝜑 (0, 𝑥)𝑑𝑥 −

∫ 𝑇

0
𝜑𝑥 (𝑡, 𝐿)𝜑𝑥 (𝑡, 𝐿)𝑑𝑡 = 0 (2.130)

for all 𝜑𝑇 ∈ H , thanks to eq. (2.106). Comparing the above two equations, we obtain∫ 𝑇

0
𝑢 (𝑇, 𝑥)𝜑𝑇 (𝑥)𝑑𝑥 = 0

for all 𝜑𝑇 ∈ H . Since the space H is dense in 𝐿2(0, 𝐿), we deduce that 𝑢 (𝑇, 𝑥) = 0 in (0, 𝐿). This proves
that the system (2.90) is null controllable at time 𝑇 in the space 𝐿2(0, 𝐿).

Remark 2.4.2. We note here that the observation term 𝑣𝑥 (·, 𝐿) does not necessarily belong to 𝐿2(0,𝑇 )
if we take 𝑣𝑇 ∈ 𝐿2(0, 𝐿). Also, note that the space 𝐻1

0 (0, 𝐿) ⊂ H , thanks to the regularity result (Lemma
2.4.3). Further, one can prove that 𝐻𝑠 (0, 𝐿) ⊂ H for any 𝑠 > 1

2 .
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2.5 A nonlinear heat equation

In this section, our main focus is to give a brief introduction to the “source term method”, introduced
by Liu, Takahashi and Tucsnak in [LTT13], to prove small-time local null controllability of a nonlinear
heat equation. This technique has been explained in detail in Chapter 5 for a nonlinear coupled
parabolic system, so we leave the technical details here.

For given finite time 𝑇 > 0, we consider the following system
𝑦𝑡 − 𝑦𝑥𝑥 = 𝑓 (𝑦), in (0,𝑇 ) × (0, 𝐿),

𝑦𝑥 (𝑡, 0) = 𝑞(𝑡), 𝑦𝑥 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),

𝑦 (0, 𝑥) = 𝑦0(𝑥), in (0, 𝐿).
(2.131)

Here 𝑦0 ∈ 𝐿2(0, 𝐿) is the initial state, 𝑞 ∈ 𝐿2(0,𝑇 ) is the (Neumann) boundary control and 𝑓 is
a nonlinear function with 𝑓 (0) = 0. Before writing any results, let us first define the notion of
controllability for this system.

Definition 2.5.1. We say the system (2.131) is small-time locally null controllable around the
equilibrium 0 in the space 𝐿2(0, 𝐿) if, for any given 𝑇 > 0, there exists a 𝛿 > 0 such that for given
𝑦0 ∈ 𝐿2(0, 𝐿) with ∥𝑦0∥𝐿2 (0,𝐿) ≤ 𝛿, there exists a control 𝑞 ∈ 𝐿2(0,𝑇 ) such that the associated solution 𝑦
of (2.131) satisfies

𝑦 (𝑇 ) = 0.

If the above holds for any 𝑦0 ∈ 𝐿2(0, 𝐿), we say the system is globally null controllable in 𝐿2(0, 𝐿).

There are a significant amount of local and global controllability results known for the nonlinear
heat equation using a distributed or boundary control; see for instance the works [Bar00, DFCGBZ02,
È95, HSLBP23, FPZ95, FC97, FI96, LB20a] and the references therein. In this section, we consider
the simplest case when 𝑓 (𝑦) = 𝑦2 in (2.131) and provide a brief idea of proving small-time local null
controllability of (2.131), as mentioned in [LTT13]. We refer to Chapter 5 for more details.

Step 1. We first linearize the system (2.131) around the equilibrium point 0
𝑦𝑡 − 𝑦𝑥𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),

𝑦𝑥 (𝑡, 0) = 𝑞(𝑡), 𝑦𝑥 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),

𝑦 (0, 𝑥) = 𝑦0(𝑥), in (0, 𝐿),

(2.132)

and prove null controllability of this system at any time 𝑇 > 0 in the space 𝐿2(0, 𝐿) by using a
Neumann control 𝑞 with the cost estimate

∥𝑞∥𝐿2 (0,𝑇 ) ≤ 𝐶𝑒
𝐶
𝑇 ∥𝑦0∥𝐿2 (0,𝐿) ,

for some constant 𝐶 > 0 independent of 𝑇 . To prove this result one can use, for instance, the
method of moments, which we have described in Section 2.4 for the heat equation with Dirichlet
boundary conditions; the same can be done for Neumann case also. We note here that, due
to the Neumann boundary conditions, the solution 𝑦 of the linearized system (2.132) belongs
to C0( [0,𝑇 ];𝐿2(0, 𝐿)) ∩ 𝐿2(0,𝑇 ;𝐻1(0, 𝐿)); the proof of which will be similar to Proposition 5.2.3.
This is the main reason for considering the Neumann conditions instead of Dirichlet.

Step 2. We then consider the linearized system with a source term 𝜉 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 𝐿))
𝑦𝑡 − 𝑦𝑥𝑥 = 𝜉, in (0,𝑇 ) × (0, 𝐿),
𝑦𝑥 (𝑡, 0) = 𝑞(𝑡), 𝑦𝑥 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑦 (0, 𝑥) = 𝑦0(𝑥), in (0, 𝐿)

(2.133)
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and prove null controllability of this system at any time 𝑇 in some weighted 𝐿2 space. More
precisely, we prove the following inequality



 𝑦𝑤0






C0 ( [0,𝑇 ];𝐿2 (0,𝐿) )∩𝐿2 (0,𝑇 ;𝐻1 (0,𝐿) )

+




 𝑞𝑤0






𝐿2 (0,𝑇 )

≤ 𝐶𝑒𝐶𝑇+𝐶
𝑇

(
∥𝑦0∥𝐿2 (0,𝐿) +





 𝜉𝑤𝑠






𝐿2 (0,𝑇 ;𝐿2 (0,𝐿) )

)
,

for appropriate weight functions 𝑤0,𝑤𝑠 ∈ C0 [0,𝑇 ] with 𝑤0(𝑇 ) = 𝑤𝑠 (𝑇 ) = 0, where 𝐶 > 0 is a
constant independent of 𝑇 . Note that, the above inequality gives 𝑦 (𝑇 ) =

𝑦 (𝑇 )
𝑤0 (𝑇 )𝑤0(𝑇 ) = 0 (as

𝑦 (𝑇 )
𝑤0 (𝑇 ) is bounded in 𝐿2(0, 𝐿)), proving null controllability of the system (2.133). We refer to
Proposition 5.4.1 for detailed explanations.

Step 3. Finally, for suitable 𝛿 > 0, we define the mapping 𝐹 : 𝑆𝛿 → 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)) as 𝐹 (𝜉) := 𝑦2 for
𝜉 ∈ 𝑆𝛿 , where 𝑆𝛿 is a 𝛿-neighborhood around 0 of the 𝑤𝑠-weighted 𝐿

2(0,𝑇 ;𝐿2(0, 𝐿)) space. Then,
applying Banach fixed point theorem, we prove that there exists a 𝛿 > 0 such that for 𝑦0 ∈ 𝐿2(0, 𝐿)
with ∥𝑦0∥𝐿2 (0,𝐿) ≤ 𝛿, the map 𝐹 : 𝑆𝛿 → 𝑆𝛿 has a unique fixed point 𝜉 ∈ 𝑆𝛿 . This will imply that
the solution 𝑦 of (2.131) satisfies 𝑦 (𝑇 ) = 0, proving small-time local null controllability of the
nonlinear system (2.131) in 𝐿2(0, 𝐿). We refer to Section 5.4.2 for more details.

Remark 2.5.1. Apart from the source term method mentioned above, there is an alternative approach/
variations to deal with the local controllability of the nonlinear heat equation (2.131). First, we fix a
given element 𝑦 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)) and consider the following problem

𝑦𝑡 − 𝑦𝑥𝑥 = 𝑓 (𝑦), in (0,𝑇 ) × (0, 𝐿),
𝑦𝑥 (𝑡, 0) = 𝑞(𝑡), 𝑦𝑥 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑦 (0, 𝑥) = 𝑦0(𝑥), in (0, 𝐿).

(2.134)

Here, the term 𝑓 (𝑦) is appearing in the equation as a source term. If we are able to prove null
controllability of this system (2.134), then we can conclude small-time local null controllability of
the nonlinear system (2.131) by using a fixed-point argument. Moreover, to prove null controllability
of (2.134), one may introduce a cost functional (with the source term 𝑓 (𝑦)) and try minimizing it to
deduce the Euler-Lagrange equation, which gives an equivalent condition for null controllability (similar
to (2.120) but with a source term 𝑓 (𝑦)). This technique has been addressed in many works, see for
instance the articles [EGGP12, EGG16, ES18] and the lecture note [Erv14].
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Chapter 3

Linearized compressible Navier-Stokes
system (barotropic and non-barotropic)

This chapter is taken from the article [Kum24]:

“J. Kumbhakar. Null controllability of one-dimensional barotropic and non-barotropic linearized
compressible Navier-Stokes system using one boundary control, 2023. doi: 10.48550/arXiv.2301.04080.”
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3. Linearized compressible Navier-Stokes system (barotropic and non-barotropic)

In this chapter, we study boundary null controllability properties of the linearized compressible
Navier-Stokes equations in the interval (0, 2𝜋) for both barotropic and non-barotropic fluids using
only one boundary control. We consider all the possible cases of the act of control for both systems
(density, velocity and temperature). These controls are acting on the boundary and are given as the
difference of the values at 𝑥 = 0 and 𝑥 = 2𝜋 . In this setup, using a boundary control acting only in
density, we first prove null controllability of both the barotropic and non-barotropic systems at large
time in the spaces ( ¤𝐿2 (0, 2𝜋))2 and ( ¤𝐿2 (0, 2𝜋))3 respectively (where the dot represents functions
with mean value zero). When the control is acting only in the velocity component, we prove
null controllability at large time in the spaces ¤𝐻1

per(0, 2𝜋) × ¤𝐿2 (0, 2𝜋) and ¤𝐻1
per(0, 2𝜋) × ( ¤𝐿2 (0, 2𝜋))2

respectively. Further, in both cases, we prove that these null controllability results are sharp with
respect to the regularity of the initial states in velocity/ temperature case, and time in the density
case. Finally, for both barotropic and non-barotropic fluids, we prove that, under some assumptions,
the system cannot be approximately controllable at any time, whether there is a control acting in
density, velocity or temperature.

3.1 Introduction and main results

3.1.1 Linearized compressible Navier-Stokes system in 1d

Let 𝐼 = (0, +∞) be the time interval and Ω ⊂ R be a spatial domain. For a compressible, isentropic
(barotropic) fluid, that is, when the pressure depends only on the density and the temperature is
constant, the Navier-Stokes system in 𝐼 × Ω consists of the equation of continuity and the momentum
equation

𝜌𝑡 (𝑡, 𝑥) + (𝜌𝑢)𝑥 (𝑡, 𝑥) = 0,

𝜌 (𝑡, 𝑥) [𝑢𝑡 (𝑡, 𝑥) + 𝑢 (𝑡, 𝑥)𝑢𝑥 (𝑡, 𝑥)] + 𝑝𝑏𝑥 (𝑡, 𝑥) − (𝜆 + 2𝜇)𝑢𝑥𝑥 (𝑡, 𝑥) = 0,

where 𝜌 denotes the density of the fluid, 𝑢 is the velocity. The constants 𝜆, 𝜇 are called the viscosity
coefficients that satisfy 𝜇 > 0 and 𝜆+𝜇 ≥ 0. The pressure 𝑝𝑏 satisfies the following constitutive equation
in 𝐼 × Ω

𝑝𝑏 (𝑡, 𝑥) = 𝑎𝜌𝛾 (𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝐼 × Ω,

for some constants 𝑎 > 0 and 𝛾 ≥ 1. In the case of non-barotropic fluids, that is, when the pressure
is a function of both density and temperature of the fluid, the Navier-Stokes system consists of the
equation of continuity, the momentum equation, and an additional thermal energy equation

𝑐𝜈𝜌 (𝑡, 𝑥) [𝜃𝑡 (𝑡, 𝑥) + 𝑢 (𝑡, 𝑥)𝜃𝑥 (𝑡, 𝑥)] + 𝜃 (𝑡, 𝑥)𝑝𝑛𝑏𝜃 (𝑡, 𝑥)𝑢𝑥 (𝑡, 𝑥) − 𝜅𝜃𝑥𝑥 (𝑡, 𝑥) − (𝜆 + 2𝜇)𝑢2𝑥 (𝑡, 𝑥) = 0,

where 𝜃 is the temperature of the fluid, 𝑐𝜈 is the specific heat constant, and 𝜅 is the heat conductivity
constant. For an ideal gas, Boyles law gives the pressure 𝑝𝑛𝑏 (𝑡, 𝑥) = 𝑅𝜌 (𝑡, 𝑥)𝜃 (𝑡, 𝑥) in 𝐼 × Ω with 𝑅 as
the universal gas constant. See [Fei04, Chapter 1] for more about compressible flows.

3.1.2 The barotropic case

Let 𝑇 > 0 be a finite time. We first consider the Navier-Stokes system for compressible, isentropic
(barotropic) fluids linearized around some constant steady state (𝑄0,𝑉0) with 𝑄0 > 0 and 𝑉0 > 0

𝜌𝑡 (𝑡, 𝑥) +𝑉0𝜌𝑥 (𝑡, 𝑥) +𝑄0𝑢𝑥 (𝑡, 𝑥) = 0, in (0,𝑇 ) × (0, 2𝜋),

𝑢𝑡 (𝑡, 𝑥) −
𝜆 + 2𝜇

𝑄0
𝑢𝑥𝑥 (𝑡, 𝑥) +𝑉0𝑢𝑥 (𝑡, 𝑥) + 𝑎𝛾𝑄𝛾−2

0 𝜌𝑥 (𝑡, 𝑥) = 0, in (0,𝑇 ) × (0, 2𝜋).
(3.1)

The initial conditions are

𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ (0, 2𝜋). (3.2)

We will consider two different problems, based on the act of control, by imposing any one of the
following boundary conditions on the system (3.1).
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3.1. Introduction and main results

• Control in density:

𝜌 (𝑡, 0) = 𝜌 (𝑡, 2𝜋) + 𝑝 (𝑡), 𝑢 (𝑡, 0) = 𝑢 (𝑡, 2𝜋), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 2𝜋), 𝑡 ∈ (0,𝑇 ). (3.3)

• Control in velocity:

𝜌 (𝑡, 0) = 𝜌 (𝑡, 2𝜋), 𝑢 (𝑡, 0) = 𝑢 (𝑡, 2𝜋) + 𝑞(𝑡), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 2𝜋), 𝑡 ∈ (0,𝑇 ), (3.4)

where 𝑝 and 𝑞 are controls acting on the boundary and are given as the difference of the values at
𝑥 = 0 and 𝑥 = 2𝜋 .

Definition 3.1.1. Let 𝐻 be a Hilbert space. We say the system (3.1)-(3.2)-(3.3) (resp. (3.1)-(3.2)-
(3.4)) is

• null controllable at time 𝑇 in the space 𝐻 if, for any (𝜌0, 𝑢0) ∈ 𝐻 , there exists a control
𝑝 ∈ 𝐿2(0,𝑇 ) (resp. 𝑞 ∈ 𝐿2(0,𝑇 )) such that the associated solution satisfies

(𝜌 (𝑇 ), 𝑢 (𝑇 )) = (0, 0).

• approximately controllable at time 𝑇 in the space 𝐻 if, for any (𝜌0, 𝑢0), (𝜌𝑇 , 𝑢𝑇 ) ∈ 𝐻 and any
𝜖 > 0, there exists a control 𝑝 ∈ 𝐿2(0,𝑇 ) (resp. 𝑞 ∈ 𝐿2(0,𝑇 )) such that the associated solution
satisfies

∥(𝜌 (𝑇 ), 𝑢 (𝑇 )) − (𝜌𝑇 , 𝑢𝑇 )∥𝐻 ≤ 𝜖.

Our main goal in this article is to study null controllability of the system (3.1) at a given time 𝑇 > 0
with the initial condition (3.2) and one of the boundary conditions (3.3) and (3.4).

Before stating our main results, we first define the positive constants

𝜇0 :=
𝜆 + 2𝜇

𝑄0
, 𝑏 := 𝑎𝛾𝑄

𝛾−2
0 . (3.5)

We also introduce the Sobolev space for any 𝑠 > 0

𝐻𝑠
per(0, 2𝜋) =

{
𝜑 : 𝜑 =

∑︁
𝑛∈Z

𝑐𝑛𝑒
𝑖𝑛𝑥 ,

∑︁
𝑛∈Z

|𝑛 |2𝑠 |𝑐𝑛 |2 < ∞
}
,

with the norm

∥𝜑 ∥𝐻𝑠
per (0,2𝜋 ) :=

(∑︁
𝑛∈Z

(1 + |𝑛 |2)𝑠 |𝑐𝑛 |2
) 1

2

.

For 𝑠 > 0, we denote 𝐻−𝑠
per(0, 2𝜋) to be the dual of the Sobolev space 𝐻𝑠

per(0, 2𝜋) with respect to the
pivot space 𝐿2(0, 2𝜋). We also define the space

¤𝐿2(0, 2𝜋) :=
{
𝜑 ∈ 𝐿2(0, 2𝜋) :

∫ 2𝜋

0
𝜑 (𝑥)𝑑𝑥 = 0

}
and

¤𝐻𝑠
per(0, 2𝜋) :=

{
𝜑 ∈ 𝐻𝑠

per(0, 2𝜋) :

∫ 2𝜋

0
𝜑 (𝑥)𝑑𝑥 = 0

}
.

We also denote ¤𝐻−𝑠
per(0, 2𝜋) as the dual of ¤𝐻𝑠

per(0, 2𝜋) with respect to the pivot space 𝐿2(0, 2𝜋). Note
that, if the system (3.1)-(3.2)-(3.3) is null controllable at time 𝑇 by using a boundary control 𝑝, then
integrating both equations in (3.1), we get a compatibility condition on the initial states

𝑎𝛾𝑄
𝛾−2
0

∫ 2𝜋

0
𝜌0(𝑥)𝑑𝑥 = 𝑉0

∫ 2𝜋

0
𝑢0(𝑥)𝑑𝑥 = −𝑎𝛾𝑄𝛾−2

0 𝑉0

∫ 𝑇

0
𝑝 (𝑡)𝑑𝑡 .

If the system (3.1)-(3.2)-(3.4) is null controllable at time 𝑇 by using a boundary control 𝑞, then also
we will get a similar compatibility condition on the initial states. Since every initial state (𝜌0, 𝑢0) in
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3. Linearized compressible Navier-Stokes system (barotropic and non-barotropic)

(𝐿2(0, 2𝜋))2 will not satisfy this compatibility condition, we will work on the Hilbert space ( ¤𝐿2(0, 2𝜋))2
to avoid this difficulty.

When a boundary control 𝑞 is acting in the velocity component, it is known in [CM15] that the
system (3.1)-(3.2)-(3.4) is null controllable at time 𝑇 > 2𝜋

𝑉0
provided that the initial state is regular

enough, in particular, lies in the space ¤𝐻𝑠+1
per (0, 2𝜋) × ¤𝐻𝑠

per(0, 2𝜋) for 𝑠 > 9
2 . In the first part of our

article, we generalize this result (with respect to the regularity of initial states). In fact, we prove
null controllability of (3.1)-(3.2)-(3.4) at time 𝑇 > 2𝜋

𝑉0
in the optimal space ¤𝐻1

per(0, 2𝜋) × ¤𝐿2(0, 2𝜋) (see
Theorem 3.1.2). In addition, we also prove null controllability of the system (3.1) at time 𝑇 > 2𝜋

𝑉0
in

( ¤𝐿2(0, 2𝜋))2 when there is a boundary control 𝑝 acting in the density component and that the null
controllability fails when the time is small, in particular, when 0 < 𝑇 < 2𝜋

𝑉0
(see Theorem 3.1.1).

These results requires certain restrictions on the coefficients appearing in the system (3.1); otherwise
the system is not even approximately controllable (see Proposition 3.1.1). To be more precise, if the

coefficients 𝑄0,𝑉0, 𝜇0, 𝑏 (defined by (3.5)) satisfy
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∈ N, then the associated adjoint operator 𝐴∗

(defined by (3.19)) admits an eigenvalue with algebraic multiplicity and geometric multiplicity both
are equal to 2, failing the unique continuation property (see the proof of Proposition 3.1.1 for details).

However, if
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∉ N, then all the eigenvalues of 𝐴∗ have geometric multiplicity 1 and in this case,

we can achieve null controllability of the system (3.1) by using one boundary control acting either in
density or in velocity.

The first main results concerning the null controllability of the system (3.1) are stated below.

Theorem 3.1.1 (Control in density). The following statements hold:

(i) Let us assume that
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∉ N. Then, the system (3.1)-(3.2)-(3.3) is null controllable at any

time 𝑇 > 2𝜋
𝑉0

in the space ( ¤𝐿2(0, 2𝜋))2.

(ii) If 0 < 𝑇 < 2𝜋
𝑉0
, the system (3.1)-(3.2)-(3.3) cannot be null controllable at 𝑇 in the space ( ¤𝐿2(0, 2𝜋))2.

Theorem 3.1.2 (Control in velocity). The following statements hold:

(i) Let us assume that
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∉ N. Then, the system (3.1)-(3.2)-(3.4) is null controllable at any

time 𝑇 > 2𝜋
𝑉0

in the space ¤𝐻1
per(0, 2𝜋) × ¤𝐿2(0, 2𝜋).

(ii) If 0 ≤ 𝑠 < 1, the system (3.1)-(3.2)-(3.4) cannot be null controllable at any time 𝑇 > 0 in the
space ¤𝐻𝑠

per(0, 2𝜋) × ¤𝐿2(0, 2𝜋).

Remark 3.1.1. Following the proof of Theorem 3.1.1 - Part (ii), lack of null controllability of the
system (3.1)-(3.2)-(3.4) cannot be obtained when the time is small, in particular, when 0 < 𝑇 < 2𝜋

𝑉0
.

However, the lack of controllability at small time may be possible to obtain by constructing a Gaussian
beam, as mentioned in [Mai15, Theorem 1.5] for the interior control case. Further, null controllability
of the system (3.1) at time 𝑇 = 2𝜋

𝑉0
is inconclusive in both cases, whether there is a control acting in

density or velocity.

The following result shows that the restriction on the coefficients
(
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∉ N

)
is necessary and

sufficient to achieve null controllability of the system (3.1).

Proposition 3.1.1. If
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∈ N, the system (3.1)-(3.2)-(3.3) (resp. (3.1)-(3.2)-(3.4)) is not

approximately controllable at any time 𝑇 > 0 in the space (𝐿2(0, 2𝜋))2.

We note here that, due to the backward uniqueness property of the system (3.1), null controllability at
time 𝑇 will give us the approximate controllability at that time 𝑇 for both the systems (3.1)-(3.2)-(3.3)
and (3.1)-(3.2)-(3.4), see Section 3.4.2 for more details.
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3.1.3 The non-barotropic case

We next consider the Navier-Stokes system for compressible non-barotropic fluids linearized around
some constant steady state (𝑄0,𝑉0,𝜓0) with 𝑄0,𝑉0,𝜓0 > 0

𝜌𝑡 (𝑡, 𝑥) +𝑉0𝜌𝑥 (𝑡, 𝑥) +𝑄0𝑢𝑥 (𝑡, 𝑥) = 0, in (0,𝑇 ) × (0, 2𝜋),

𝑢𝑡 (𝑡, 𝑥) −
𝜆 + 2𝜇

𝑄0
𝑢𝑥𝑥 (𝑡, 𝑥) +

𝑅𝜓0

𝑄0
𝜌𝑥 (𝑡, 𝑥) +𝑉0𝑢𝑥 (𝑡, 𝑥) + 𝑅𝜃𝑥 (𝑡, 𝑥) = 0, in (0,𝑇 ) × (0, 2𝜋),

𝜃𝑡 (𝑡, 𝑥) −
𝜅

𝑄0𝑐𝜈
𝜃𝑥𝑥 (𝑡, 𝑥) +

𝑅𝜓0

𝑐𝜈
𝑢𝑥 (𝑡, 𝑥) +𝑉0𝜃𝑥 (𝑡, 𝑥) = 0, in (0,𝑇 ) × (0, 2𝜋) .

(3.6)

The initial conditions are

𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), 𝜃 (0, 𝑥) = 𝜃0(𝑥), 𝑥 ∈ (0, 2𝜋). (3.7)

In this case, we will consider three different problems, based on the act of control, by imposing any
one of the following boundary conditions on the system (3.6).

• Control in density:

𝜌 (𝑡, 0) = 𝜌 (𝑡, 2𝜋)+𝑝 (𝑡), 𝑢 (𝑡, 0) = 𝑢 (𝑡, 2𝜋), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 2𝜋), 𝜃 (𝑡, 0) = 𝜃 (𝑡, 2𝜋), 𝜃𝑥 (𝑡, 0) = 𝜃𝑥 (𝑡, 2𝜋). (3.8)

• Control in velocity:

𝜌 (𝑡, 0) = 𝜌 (𝑡, 2𝜋), 𝑢 (𝑡, 0) = 𝑢 (𝑡, 2𝜋)+𝑞(𝑡), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 2𝜋), 𝜃 (𝑡, 0) = 𝜃 (𝑡, 2𝜋), 𝜃𝑥 (𝑡, 0) = 𝜃𝑥 (𝑡, 2𝜋). (3.9)

• Control in temperature:

𝜌 (𝑡, 0) = 𝜌 (𝑡, 2𝜋), 𝑢 (𝑡, 0) = 𝑢 (𝑡, 2𝜋), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 2𝜋), 𝜃 (𝑡, 0) = 𝜃 (𝑡, 2𝜋) + 𝑟 (𝑡), 𝜃𝑥 (𝑡, 0) = 𝜃𝑥 (𝑡, 2𝜋) .
(3.10)

for 𝑡 ∈ (0,𝑇 ), where 𝑝, 𝑞 and 𝑟 are controls acting on the boundary and are given as the difference of
the values at 𝑥 = 0 and 𝑥 = 2𝜋 .

In this case also, we want to prove null controllability of the system (3.6) at a given time 𝑇 > 0
depending on the act of the control. Similar to the barotropic case, we will work on the Hilbert space
( ¤𝐿2(0, 2𝜋))3 to avoid the compatibility conditions on the initial states.

Definition 3.1.2. Let 𝐻 be a Hilbert space. We say the system (3.6)-(3.7)-(3.8) (resp. (3.6)-(3.7)-
(3.9), (3.6)-(3.7)-(3.10)) is

• null controllable at time 𝑇 in the space 𝐻 if, for any (𝜌0, 𝑢0, 𝜃0) ∈ 𝐻 , there exists a control
𝑝 ∈ 𝐿2(0,𝑇 ) (resp. 𝑞, 𝑟 ∈ 𝐿2(0,𝑇 )) such that the associated solution satisfies

(𝜌 (𝑇 ), 𝑢 (𝑇 ), 𝜃 (𝑇 )) = (0, 0, 0).

• approximately controllable at time 𝑇 in the space 𝐻 if, for any given (𝜌0, 𝑢0, 𝜃0),(𝜌𝑇 , 𝑢𝑇 , 𝜃𝑇 ) ∈
𝐻 and any 𝜖 > 0, there exists a control 𝑝 ∈ 𝐿2(0,𝑇 ) (resp. 𝑞, 𝑟 ∈ 𝐿2(0,𝑇 )) such that the associated
solution satisfies

∥(𝜌 (𝑇 ), 𝑢 (𝑇 ), 𝜃 (𝑇 )) − (𝜌𝑇 , 𝑢𝑇 , 𝜃𝑇 )∥𝐻 ≤ 𝜖.

We next study mainly the null controllability of the system (3.6) at a given time 𝑇 > 0 starting
from the initial condition (3.7) and with one of the boundary conditions (3.8)-(3.9) and (3.10). Since
the additional thermal energy equation satisfied by 𝜃 do not have any coupling with the density 𝜌, we
can expect similar controllability results like the barotropic case. However, in this case, we have two
parabolic equations with coefficients

𝜆+2𝜇
𝑄0

and 𝜅
𝑄0𝑐𝜈

and therefore by looking at [FCGBdT10, LdT13,

AKBGBdT14], one question arises naturally:

“Under what conditions on these coefficients, the system (3.6) is null controllable?”

In fact, we will prove that there exist coefficients for which the system (3.6) may not even be approx-
imately controllable at any time 𝑇 > 0 in (𝐿2(0, 2𝜋))2. However, under some stronger assumptions
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on the diffusion coefficients, we can prove null controllability of (3.6) at any given time 𝑇 > 2𝜋
𝑉0

in
appropriate spaces (see Theorem 3.1.3).

Before going any further, we first denote the (positive) diffusion coefficients for the non-barotropic
system

𝜆0 :=
𝜆 + 2𝜇

𝑄0
, 𝜅0 :=

𝜅

𝑄0𝑐𝜈
, (3.11)

and define the set

S :=

(𝜆0, 𝜅0) :

√︄
𝜆0

𝜅0
∉ Q

 . (3.12)

We denote the same constant
𝜆+2𝜇
𝑄0

by 𝑙𝑎𝑚𝑏𝑑𝑎0 instead of 𝑚𝑢0 to distinguish it from the barotropic
case. Also, the reason behind introducing such a set S is explained at the end of this section. First
we will state our next main results which concerns null and approximate controllability of the system
(3.6).

Theorem 3.1.3. Let us assume that (𝜆0, 𝜅0) ∈ S be such that there exists a 𝑀 > 0 with the property
that ������

√︄
𝜆0

𝜅0
− 𝑎

𝑏

������ > 1

𝑏𝑀
(3.13)

holds for all rational numbers 𝑎
𝑏
. We further assume that all the eigenvalues of 𝐴∗ (defined by (3.75))

have geometric multiplicity equal to 1. Then,

(i) the system (3.6)-(3.7)-(3.8) is null controllable at any time 𝑇 > 2𝜋
𝑉0

in the space ( ¤𝐿2(0, 2𝜋))3.

(ii) the systems (3.6)-(3.7)-(3.9) and (3.6)-(3.7)-(3.10) are null controllable at any time 𝑇 > 2𝜋
𝑉0

in

the space ¤𝐻1
per(0, 2𝜋) × ( ¤𝐿2(0, 2𝜋))2.

Proposition 3.1.2. The following statements hold:

(i) The system (3.6)-(3.7)-(3.8) is not null controllable at small time 0 < 𝑇 < 2𝜋
𝑉0

in the space

( ¤𝐿2(0, 2𝜋))3.

(ii) The systems (3.6)-(3.7)-(3.9) and (3.6)-(3.7)-(3.10) are not null controllable at any time 𝑇 > 0
in the space ¤𝐻𝑠

per(0, 2𝜋) × ( ¤𝐿2(0, 2𝜋))2 for any 0 ≤ 𝑠 < 1.

Remark 3.1.2. Similar to the barotropic case (Remark 3.1.1), lack of null controllability of the system
(3.6)-(3.7)-(3.9) or (3.6)-(3.7)-(3.10) is open when the time is small, in particular, when 0 < 𝑇 < 2𝜋

𝑉0
.

Moreover, null controllability of the system (3.6) at time 𝑇 = 2𝜋
𝑉0

is inconclusive in all cases, whether
there is a control act in density, velocity or temperature.

Like the barotropic case, null controllability at some time 𝑇 implies approximate controllability
at that time 𝑇 of the system (3.6), thanks to the backward uniqueness property of (3.6) (Section
3.4.2), and the following result shows that the restriction (𝜆0, 𝜅0) ∈ S is not sufficient to conclude null
controllability of the system (3.6).

Proposition 3.1.3. There exist constants (𝜆0, 𝜅0) ∈ S and 𝑄0,𝑉0,𝜓0, 𝑅, 𝑐𝜈 > 0 for which the systems
(3.6)-(3.7)-(3.8), (3.6)-(3.7)-(3.9) and (3.6)-(3.7)-(3.10) are not approximately controllable at any time
𝑇 > 0 in the space (𝐿2(0, 2𝜋))3.

Remark 3.1.3. Similar to the barotropic case, there exist constants for which the operator 𝐴∗ (defined
by (3.75)) has eigenvalues with geometric multiplicity greater than 1 (see Remark 3.3.2). However,
characterization of these constants is quite difficult due to the complicated cubic characteristic polyno-
mial (3.87).
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3.1.4 An Ingham-type inequality

One of the main ingredients to prove the null controllability results for both barotropic and non-
barotropic systems (Theorem 3.1.1 - Theorem 3.1.2 - Theorem 3.1.3) is the following Ingham-type
inequality; the proof of this inequality is given in the next chapter (see Section 4.5).

Lemma 3.1.1. Let {𝜈ℎ𝑛}𝑛∈Z and {𝜈𝑝𝑛 }𝑛∈Z be two sequences in C with the following properties: there
exists 𝑁 ∈ N, such that

(H1) for all 𝑛, 𝑙 ∈ Z, 𝜈ℎ𝑛 ≠ 𝜈ℎ
𝑙
unless 𝑛 = 𝑙;

(H2) 𝜈ℎ𝑛 = 𝛽 + 𝜏𝑛𝑖 + 𝑒𝑛 for all |𝑛 | ≥ 𝑁 ;

where 𝜏 > 0, 𝛽 ∈ C and {𝑒𝑛} |𝑛 | ≥𝑁 ∈ ℓ2.
Also, there exist constants 𝐴0 ≥ 0, 𝐵0 ≥ 𝛿 with 𝛿 > 0 and some 𝜖 > 0, 𝑟 > 1 for which {𝜈𝑝𝑛 }𝑛∈Z

satisfies

(P1) for all 𝑛, 𝑙 ∈ Z, 𝜈𝑝𝑛 ≠ 𝜈
𝑝

𝑙
unless 𝑛 = 𝑙;

(P2) −Re(𝜈𝑝𝑛 )
|Im(𝜈𝑝𝑛 ) | ≥ 𝑐̂ for some 𝑐̂ > 0 and for all |𝑛 | ≥ 𝑁 ;

(P3)
��𝜈𝑝𝑛 − 𝜈𝑝

𝑙

�� ≥ 𝛿 |𝑛𝑟 − 𝑙𝑟 | for all 𝑛 ≠ 𝑙 with |𝑛 | , |𝑙 | ≥ 𝑁 and

(P4) 𝜖 (𝐴0 + 𝐵0 |𝑛 |𝑟 ) ≤
��𝜈𝑝𝑛 �� ≤ 𝐴0 + 𝐵0 |𝑛 |𝑟 for all |𝑛 | ≥ 𝑁 .

We also assume that the families are disjoint, i.e.,{
𝜈ℎ𝑛, 𝑛 ∈ Z

}
∩

{
𝜈
𝑝
𝑛 , 𝑛 ∈ Z

}
= ∅.

Then, for any time 𝑇 > 2𝜋
𝜏
, there exists a positive constant 𝐶 depending only on 𝑇 such that∫ 𝑇

0

�����∑︁
𝑛∈Z

𝑎𝑛𝑒
𝜈
𝑝
𝑛 𝑡 +

∑︁
𝑛∈Z

𝑏𝑛𝑒
𝜈ℎ𝑛 𝑡

�����2 𝑑𝑡 ≥ 𝐶
(∑︁
𝑛∈Z

|𝑎𝑛 |2𝑒2Re(𝜈𝑝𝑛 )𝑇 +
∑︁
𝑛∈Z

|𝑏𝑛 |2
)
, (3.14)

for all sequences {𝑎𝑛}𝑛∈Z and {𝑏𝑛}𝑛∈Z in ℓ2.

Remark 3.1.4. In the proof of Lemma 3.1.1, we have used the following parabolic and hyperbolic
Ingham inequalities for the families (𝑒𝜈

𝑝
𝑛 𝑡 )𝑛∈Z and (𝑒𝜈ℎ𝑛 𝑡 )𝑛∈Z respectively:∫ 𝑇

0

�����∑︁
𝑛∈Z

𝑎𝑛𝑒
𝜈
𝑝
𝑛 𝑡

�����2 𝑑𝑡 ≥ 𝐶1

∑︁
𝑛∈Z

|𝑎𝑛 |2 𝑒2Re(𝜈𝑝𝑛 )𝑇 , for any 𝑇 > 0, (3.15)

𝐶2

∑︁
𝑛∈Z

|𝑏𝑛 |2 ≤
∫ 𝑇

0

�����∑︁
𝑛∈Z

𝑏𝑛𝑒
𝜈ℎ𝑛 𝑡

�����2 𝑑𝑡 ≤ 𝐶3

∑︁
𝑛∈Z

|𝑏𝑛 |2 , for any 𝑇 >
2𝜋

𝜏
, (3.16)

for some 𝐶𝑖 > 0, 𝑖 = 1, 2, 3. If the sequence (𝜈ℎ𝑛)𝑛∈Z satisfy hypotheses (H1)-(H2), then the hyperbolic
Ingham inequality (3.16) can be deduced from the proof of Ingham [Ing36]; see for instance [CMRR14,
Proposition 3.1]. On the other hand, the proof of parabolic Ingham inequality (3.15) requires the exis-

tence of a biorthogonal family (𝑞𝑘 )𝑘∈Z ⊂ 𝐿2(0,𝑇 ) of (𝑒𝜈
𝑝
𝑛 𝑡 )𝑛∈Z with the estimate ∥𝑞𝑘 ∥𝐿2 (0,𝑇 ) ≤ 𝐶𝜖𝑒

𝜖Re(𝜈𝑝𝑛 )

for some 𝐶𝜖 > 0 depending on some small parameter 𝜖, see for instance [LZ02, Proposition 3.2] and
[CMRR14, Proposition 3.2-3.3]; see also [Han91, Theorem 1.1] for the existence of a biorthogonal
family in this setup. Note that, the hypotheses (P1)–(P4) can be relaxed to the following:{

Re(−𝜈𝑝𝑛 ) ≥ 𝑐
��𝜈𝑝𝑛 �� , ��𝜈𝑝𝑛 − 𝜈𝑝𝑚

�� ≥ 𝛿 |𝑛 −𝑚 | , ∀𝑛,𝑚 ∈ Z,∑
𝑛∈Z

1

|𝜈𝑝𝑛 | < ∞, (3.17)
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for some 𝑐, 𝛿 > 0. In this setup, we refer to [FCGBdT10, Proposition 3.4] for a proof of the inequality
(3.15); see also [LZ02, Proposition 3.2] for a version of (3.15) when the sequence (𝜈𝑝𝑛 )𝑛∈Z ⊂ R. More-
over, when the eigenvalues (𝜈𝑝𝑛 )𝑛∈Z fails to satisfy the gap condition (hypothesis (P3)) but admits a

good approximation (by rational numbers), there exists a biorthogonal sequence to the family (𝑒𝜈
𝑝
𝑛 𝑡 )𝑛∈Z

in 𝐿2(0,𝑇 ) with the required estimate (see for instance [LdT13, Lemma 2]), giving the inequality (3.15)
in this case also. As a consequence, the combined parabolic-hyperbolic Ingham-type inequality (3.14)
can also be deduced under these new assumptions on the sequence (𝜈𝑝𝑛 )𝑛∈Z.

Notations: For any vector v, we denote its transpose by v† (instead of v𝑇 ). Throughout the article,
𝐶 > 0 denotes a generic constant that may depend on the time 𝑇 .

Proving null controllability of the systems (3.1) and (3.6) using a boundary control is equivalent
to proving an observability inequality for the corresponding adjoint systems. Spectrum of the as-
sociated linearized operators (for the adjoint systems) and the above Ingham-type inequality (3.14)
plays a crucial role to prove such observability inequalities. For the system (3.1) (barotropic fluids),
spectrum of the associated adjoint operator consists of two branches of complex eigenvalues, namely,
the hyperbolic and parabolic branches. The hyperbolic branch has eigenvalues with the real part
converging to −𝑏𝑄0

𝜇0
, whereas real part of the parabolic branch diverges to −∞. We have obtained

explicit expressions of the eigenvalues and eigenfunctions in terms of a Riesz basis (See Lemma 3.2.3
for details). For the non-barotropic fluids (that is, system (3.6)), we get three branches of complex
eigenvalues; one is of the hyperbolic type, and two are parabolic types. Similar to the barotropic
case, the real part of the hyperbolic branch converges to −𝑅𝜓0

𝜆0
and real parts of both the parabolic

branches diverge to −∞. In this case, we have obtained explicit expressions of eigenfunctions and
asymptotic behavior of the eigenvalues (Lemma 3.3.3). We also proved that the eigenfunctions form
a Riesz basis in ( ¤𝐿2(0, 2𝜋))2 for the barotropic system (Proposition 3.2.3) and in ( ¤𝐿2(0, 2𝜋))3 for the
non-barotropic system (Proposition 3.3.4). Then, by writing the solutions to the corresponding ad-
joint systems in terms of the eigenfunctions, the null controllability results have been proved using
the combined parabolic-hyperbolic Ingham type inequality (3.14).

A vast amount of literature is available on the controllability of Navier-Stokes equations for in-
compressible fluids. For instance, one can see the works of Coron [Cor96], Coron and Fursikov
[CF96], Fursikov and Imanuvilov [FE96, FE99], Imanuvilov [Ima98, Ima01], Fernández-Cara et al.
[FCGIP04a, FCGIP06], Guerrero [Gue06], Coron and Guerrero [CG09], Chapouly [Cha09], Coron
and Lissy [CL14], Badra, Ervedoza and Guerrero [BEG16], Coron, Marbach and Sueur [CMS20]. In
comparison, for compressible fluids, less works are available on the Navier-Stokes system’s controlla-
bility. In this context, we first mention the work of Ervedoza et al. [EGGP12], where the authors
established local exact controllability of one dimensional (nonlinear) compressible Navier-Stokes sys-
tem at a large time 𝑇 in the space 𝐻3(0, 𝐿) × 𝐻3(0, 𝐿) using two boundary controls. This result has
been improved in [ES18] where the null controllability is achieved in the space 𝐻1(0, 𝐿) × 𝐻1(0, 𝐿).
However, studying the controllability of the (nonlinear) compressible Navier-Stokes system using only
one boundary control is challenging and it is an interesting open problem. In this article, we focus
only on the linearized system and study controllability properties.

It is known in [CRR12] that, for barotropic fluids, the one-dimensional compressible Navier-Stokes
system linearized around (𝑄0, 0) (with 𝑄0 > 0) cannot be null controllable at any time 𝑇 > 0 by
using a boundary control or a localized distributed control. For the linearized system around (𝑄0,𝑉0)
(with 𝑄0,𝑉0 > 0), the authors in [CMRR14] proved null controllability of the Navier-Stokes equations
(with homogeneous periodic boundary conditions) for viscous, compressible isothermal barotropic
fluids at time 𝑇 (large) in the space ¤𝐻1

per(0, 2𝜋) × 𝐿2(0, 2𝜋), when there is an interior control acting
only in the velocity equation. They also proved that the space ¤𝐻1

per(0, 2𝜋) × 𝐿2(0, 2𝜋) is optimal
in the sense that if one choose the initial states from ¤𝐻𝑠

per(0, 2𝜋) × 𝐿2(0, 2𝜋) with 0 ≤ 𝑠 < 1, the
linearized system cannot be null controllable at any time 𝑇 > 0. In the case of linearization around
(𝑄0,𝑉0) with 𝑄0,𝑉0 > 0, the compressible Navier-Stokes system (3.1) is equivalent (in some sense) to
the transformed system in [MRR13]. Using a moving distributed control, the authors in [MRR13]
proved the null controllability of a one-dimensional structurally damped wave equation in the space
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𝐻𝑠+2 × 𝐻𝑠 for 𝑠 > 15
2 . There is a generalization to this result in higher dimensions by Chaves-Silva,

Rosier, and Zuazua [CSRZ14b]. Inspired by the work of Martin, Rosier and Rouchon [MRR13],
Chowdhury and Mitra in [CM15] proved the null controllability of the same compressible Navier-Stokes
system linearized around (𝑄0,𝑉0) at time 𝑇 (large) by using a boundary control acting on the velocity
component through periodic conditions, provided the initial states are regular enough, more precisely,
in the space ¤𝐻1+𝑠

per (0, 2𝜋) × ¤𝐻𝑠
per(0, 2𝜋) with 𝑠 > 4.5. However, the question of null controllability at a

large time𝑇 in the space ¤𝐻1+𝑠
per (0, 2𝜋)× ¤𝐻𝑠

per(0, 2𝜋) with 𝑠 ≤ 4.5 was unaddressed in [CM15], and up to the
author’s knowledge, there has been no improvement of this result. In this chapter, we have answered
this question (see Theorem 3.1.2). In fact, we have proved null controllability of the linearized system
(3.1)-(3.2)-(3.4) at large time 𝑇 in the space ¤𝐻1

per(0, 2𝜋) × ¤𝐿2(0, 2𝜋) by using one boundary control
acting in the velocity component. We have also proved that our result is optimal in the sense that
the system (3.1)-(3.2)-(3.4) cannot be null controllable at any 𝑇 > 0 by a boundary control (acting
in velocity) when the initial states belong to the space ¤𝐻𝑠

per(0, 2𝜋) × ¤𝐿2(0, 2𝜋) with 0 ≤ 𝑠 < 1. On
the other hand, when a control is acting only in the density component through periodic boundary
conditions, we have established null controllability of the linearized system (3.1)-(3.2)-(3.3) at large
time 𝑇 in the space ( ¤𝐿2(0, 2𝜋))2 and that null controllability fails at small time 𝑇 . In this context,
it is worth mentioning that the authors in [CM15] could only proved null controllability in the space
¤𝐻1+𝑠
per (0, 2𝜋) × ¤𝐻𝑠

per(0, 2𝜋) with 𝑠 > 4.5 is because of the biorthogonal estimate (corresponding to the

hyperbolic family (𝑒𝜈ℎ𝑛 𝑡 )𝑛∈Z) of order |𝑘 |4 (see Proposition 3.2 in [CM15]), which forces the initial state
to be more regular. However, in our case, we have used the Ingham-type inequality (3.14) which

do not require any biorthogonal estimate of the family (𝑒𝜈ℎ𝑛 𝑡 )𝑛∈Z, giving the optimal space for null
controllability of (3.1). Furthermore, null controllability of the system (3.1) under the assumption
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∈ N was not addressed properly in [CM15, Remark 3.4] and we have proved that, under this

assumption, the system (3.1) fails to satisfy the unique continuation property; as a result the system
(3.1) cannot be approximately controllable in (𝐿2(0, 2𝜋))2 at any time 𝑇 > 0.

For the non-barotropic fluids, it is known in [Mai15] that the compressible Navier-Stokes system
linearized around (𝑄0, 0,𝜓0) (with 𝑄0,𝜓0 > 0) is not null controllable at any time 𝑇 > 0 by using
a boundary control or a localized distributed control. For the linearization around (𝑄0,𝑉0,𝜓0) with
𝑄0,𝑉0,𝜓0 > 0, it is only known that the system is not null controllable at small time by a localized
interior control or a boundary control acting on the velocity component (see [Mai15, Theorem 1.5]
for instance). To the author’s knowledge, no controllability result is known for the linearized system
around (𝑄0,𝑉0,𝜓0), that is, the system (3.6), when the time is large, which is studied for the first
time in this article. On the other hand, for nonlinear system, we mention the work of [Mol19],
where the author proved local null controllability of the nonlinear system, in dimensions 1, 2 and
3, at large time in the space 𝐻2(Ω) × 𝐻2(Ω) × 𝐻2(Ω) using three controls acting on velocity and
temperature on the whole boundary and density on the inflow boundary. Moreover, in one dimension,
this result has been improved by choosing the initial state from 𝐻1(0, 𝐿) ×𝐻1(0, 𝐿) ×𝐻1(0, 𝐿). However,
controllability of this nonlinear system using one boundary control is very difficult to study and is
an open problem. In this article, we study null and approximate controllability of only the linearized
version, mainly the system (3.6). Since the system (3.6) consists of a transport equation coupled
with two parabolic equations, it is worth mentioning some results known for the coupled parabolic
equations. In [FCGBdT10], the authors considered a 2-parabolic system with diffusion coefficients
𝑑1, 𝑑2 > 0 and with zeroth order coupling. They proved that the coupled parabolic system is (boundary)

approximately controllable at time 𝑇 > 0 if and only if 𝑑1 = 𝑑2 or
√︃

𝑑1
𝑑2

∉ Q. Moreover, they also proved

that, when 𝑑1 = 𝑑2, the system is (boundary) null controllable at any time 𝑇 > 0. If
√︃

𝑑1
𝑑2

∉ Q, the

authors in [LdT13] provided an example of a system which is approximately controllable but not
null controllable at any time 𝑇 > 0. This phenomena occurs because eigenvalues of the associated
operator condensate; as a consequence, fails to satisfy the gap condition, which is very crucial to
obtain 𝐿2-estimate of the biorthogonal family. However, they [LdT13] also proved that, if 𝑑1 = 1 and√
𝑑2 ∉ Q is such that we can approximate it as

��√𝑑2 − 𝑎
𝑏

�� > 𝐶

𝑏𝑁
for some 𝐶, 𝑁 > 0 and all rational

numbers 𝑎
𝑏
, then the system is null controllable at any time 𝑇 > 0. Such approximation is referred as

“Diophantine approximations”. Thus our assumption in Theorem 3.1.3 seems appropriate. We refer

81



3. Linearized compressible Navier-Stokes system (barotropic and non-barotropic)

to [AKBGBdT14] for more insights in this matter, in terms of condensation index of the eigenvalues
and minimal time for null controllability of one dimensional coupled parabolic equations. In the
context of controllability results for general coupled parabolic equations, we refer to the works of
[Gue07, BBM20, BBGBO14, AKBGBdT11a, KBDK05, AKBGBdT11b] (and the references therein).

The main difficulty in the linearized compressible Navier-Stokes system is the presence of trans-
port and parabolic coupling. The thermoelasticity system is also an example involving both transport
and parabolic effects. Lebeau and Zuazua[LZ98] have studied distributed controllability for thermoe-
lasticity systems. Following [LZ98], Beauchard et al. in [BKLB20] proved null controllability for
some coupled transport-parabolic systems when an interior control is acting on the system. They
proved null controllability at large time 𝑇 in the space 𝐿2(0, 2𝜋) × ¤𝐿2(0, 2𝜋) by one interior control
acting in the density equation and in the space ¤𝐻2(0, 2𝜋) × 𝐻2(0, 2𝜋) when only one interior control
is acting in the velocity equation; see also [KL23] for an improvement of the controllability space to
¤𝐻1(0, 2𝜋) × 𝐿2(0, 2𝜋) in the velocity (internal) control case.

In [BCDK22], Bhandari, Chowdhury, Dutta and the author considered the linearized compressible
Navier-Stokes system (3.1) with Dirichlet and mixed (Periodic-Dirichlet type) boundary conditions.
We proved that the system (3.1) (with Dirichlet boundary conditions) is null controllable at large time
𝑇 in the space ¤𝐿2(0, 1) × 𝐿2(0, 1) by using a boundary control acting only on the density part. On the
other hand, when a boundary control is acting only on the velocity component, we proved that the
system (3.1) (with Dirichlet-Periodic boundary conditions) is null controllable at large time 𝑇 in the

space ¤𝐻 1
2 (0, 1) ×𝐿2(0, 1). We have applied the Ingham-type inequality (3.14) and the moments method

to prove these controllability results. In contrast to [BCDK22], the main contribution of this article
is that we prove the null controllability of the one-dimensional linearized compressible Navier-Stokes
system for both barotropic and non-barotropic fluids by using only one boundary control. We consider
all the possible cases of the act of control for both systems (3.1) and (3.6). Further, we obtain better
regularity of the initial states for the controllability of barotropic system (3.1) compared to [CM15].
In the case of non-barotropic fluids, since the transport equation does not affect the temperature
equation, it is pretty natural to obtain similar spaces of null controllability of the system (3.6). The
combined parabolic-hyperbolic Ingham type inequality (Lemma 3.1.1) helps us obtain each case’s best
possible results (with respect to the state space). Our results cannot be obtained as a consequence
of interior control results by the extension method. In addition, when the boundary control acts in
the density component, we prove that both systems (3.1) and (3.6) are not null controllable at small
time. The proof is inspired from [BKLB20] and is independent of that in [Mai15].

The result stated in Theorem 3.1.1 is similar to the results in [BKLB20], showing that we can
achieve the space ( ¤𝐿2(0, 2𝜋))2 in the case of only one boundary control (acting in density) also. Likewise
the case of interior control [CMRR14, BKLB20, KL23], we also obtain similar results for our boundary
control case (acting in velocity) (Theorem 3.1.2).

The rest of this chapter is organized as follows:

– In Section 3.2, we prove all the controllability results for the barotropic system (3.1) at a large
time 𝑇 using a boundary control that acts either in density or velocity, that is, Theorem 3.1.1
and Theorem 3.1.2. The proof of lack of approximate controllability at any time 𝑇 under the
restriction on the coefficients (Proposition 3.1.1) is also included in this section.

– In Section 3.3, we consider the non-barotropic system (3.6) and give all the related controllability
results based on the act of the control, namely the proofs of Theorem 3.1.3 and Proposition
3.1.2. We have also included the proof of lack of approximate controllability result at any time
𝑇 (Proposition 3.1.3).

– In section 3.4, we give few comments and open questions regarding controllability results under
Dirichlet or Neumann boundary conditions and the backward uniqueness property.
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3.2 Controllability of the linearized compressible Navier-Stokes
system (barotropic case)

3.2.1 Functional setting

Recall from (3.5) the positive constants

𝜇0 :=
𝜆 + 2𝜇

𝑄0
, 𝑏 := 𝑎𝛾𝑄

𝛾−2
0 .

We define the inner product in the space (𝐿2(0, 2𝜋))2 as follows〈(
𝑓1

𝑔1

)
,

(
𝑓2

𝑔2

)〉
𝐿2×𝐿2

:= 𝑏

∫ 2𝜋

0
𝑓1(𝑥) 𝑓2(𝑥)𝑑𝑥 +𝑄0

∫ 2𝜋

0
𝑔1(𝑥)𝑔2(𝑥)𝑑𝑥,

for 𝑓𝑖 , 𝑔𝑖 ∈ 𝐿2(0, 2𝜋), 𝑖 = 1, 2. From now on-wards, the notation ⟨·, ·⟩𝐿2×𝐿2 means the above inner product
in 𝐿2 × 𝐿2. We write the system (3.1) in abstract differential equation

𝑈 ′(𝑡) = 𝐴𝑈 (𝑡), 𝑈 (0) = 𝑈0, 𝑡 ∈ (0,𝑇 ), (3.18)

where 𝑈 := (𝜌,𝑢)†,𝑈0 := (𝜌0, 𝑢0)† and the operator 𝐴 is given by

𝐴 :=

(
−𝑉0𝜕𝑥 −𝑄0𝜕𝑥

−𝑏𝜕𝑥 𝜇0𝜕𝑥𝑥 −𝑉0𝜕𝑥

)
with the domain

D(𝐴) := 𝐻1
per(0, 2𝜋) × 𝐻2

per(0, 2𝜋).

The adjoint of the operator 𝐴 is given by

𝐴∗ :=

(
𝑉0𝜕𝑥 𝑄0𝜕𝑥

𝑏𝜕𝑥 𝜇0𝜕𝑥𝑥 +𝑉0𝜕𝑥

)
(3.19)

with the same domain D(𝐴∗) = D(𝐴). The adjoint system is then given by


−𝜎𝑡 (𝑡, 𝑥) −𝑉0𝜎𝑥 (𝑡, 𝑥) −𝑄0𝑣𝑥 (𝑡, 𝑥) = 0, in (0,𝑇 ) × (0, 2𝜋),
−𝑣𝑡 (𝑡, 𝑥) − 𝜇0𝑣𝑥𝑥 (𝑡, 𝑥) −𝑉0𝑣𝑥 (𝑡, 𝑥) − 𝑏𝜎𝑥 (𝑡, 𝑥) = 0, in (0,𝑇 ) × (0, 2𝜋),
𝜎 (𝑡, 0) = 𝜎 (𝑡, 2𝜋), 𝑣 (𝑡, 0) = 𝑣 (𝑡, 2𝜋), 𝑣𝑥 (𝑡, 0) = 𝑣𝑥 (𝑡, 2𝜋), 𝑡 ∈ (0,𝑇 ),
𝜎 (𝑇, 𝑥) = 𝜎𝑇 (𝑥), 𝑣 (𝑇, 𝑥) = 𝑣𝑇 (𝑥), 𝑥 ∈ (0, 2𝜋) .

(3.20)

We now write the adjoint system with source terms 𝑓 and 𝑔.


−𝜎𝑡 (𝑡, 𝑥) −𝑉0𝜎𝑥 (𝑡, 𝑥) −𝑄0𝑣𝑥 (𝑡, 𝑥) = 𝑓 , in (0,𝑇 ) × (0, 2𝜋),
−𝑣𝑡 (𝑡, 𝑥) − 𝜇0𝑣𝑥𝑥 (𝑡, 𝑥) −𝑉0𝑣𝑥 (𝑡, 𝑥) − 𝑏𝜎𝑥 (𝑡, 𝑥) = 𝑔, in (0,𝑇 ) × (0, 2𝜋),
𝜎 (𝑡, 0) = 𝜎 (𝑡, 2𝜋), 𝑣 (𝑡, 0) = 𝑣 (𝑡, 2𝜋), 𝑣𝑥 (𝑡, 0) = 𝑣𝑥 (𝑡, 2𝜋), 𝑡 ∈ (0,𝑇 ),
𝜎 (𝑇, 𝑥) = 𝜎𝑇 (𝑥), 𝑣 (𝑇, 𝑥) = 𝑣𝑇 (𝑥), 𝑥 ∈ (0, 2𝜋) .

(3.21)

3.2.2 Well-posedness of the systems

This section devotes to the well-posedness of the system (3.1) under the boundary conditions (3.3),
(3.4) and the initial conditions (3.2), and the adjoint system (3.21).

When there is no control acting on the system, we have the existence of solutions to the system (3.1)
using semigroups.
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Lemma 3.2.1 ([CMRR14, Lemma 2.1]). The operator 𝐴 (resp. 𝐴∗) generates a C0-semigroup of
contractions on (𝐿2(0, 2𝜋))2. Moreover, for every 𝑈0 ∈ (𝐿2(0, 2𝜋))2 the system (3.18) admits a unique
weak solution 𝑈 in C0( [0,𝑇 ]; (𝐿2(0, 2𝜋))2) and

∥𝑈 (𝑡)∥ (𝐿2 (0,2𝜋 ) )2 ≤ 𝐶 ∥𝑈0∥ (𝐿2 (0,2𝜋 ) )2

for all 𝑡 ≥ 0.

The following lemma shows the existence of a unique weak solution to the adjoint system (3.21).

Lemma 3.2.2. The following statements hold:

1. For any given source term (𝑓 , 𝑔) ∈ 𝐿2(0,𝑇 ; (𝐿2(0, 2𝜋))2) and given (𝜎𝑇 , 𝑣𝑇 ) ∈ (𝐿2(0, 2𝜋))2, the
adjoint system (3.21) has a unique weak solution (𝜎, 𝑣) in the space

C0( [0,𝑇 ];𝐿2(0, 2𝜋)) × [C0( [0,𝑇 ];𝐿2(0, 2𝜋)) ∩ 𝐿2(0,𝑇 ;𝐻1
per(0, 2𝜋))] .

Furthermore, we have the hidden regularity property 𝜎 (·, 2𝜋) ∈ 𝐿2(0,𝑇 ).

2. For any given (𝑓 , 𝑔) ∈ 𝐿2(0,𝑇 ;𝐻1
per(0, 2𝜋) × 𝐿2(0, 2𝜋)) and (𝜎𝑇 , 𝑣𝑇 ) ∈ 𝐻−1

per(0, 2𝜋) × 𝐿2(0, 2𝜋), the
system (3.20) admits a unique solution (𝜎, 𝑣) ∈ C0( [0,𝑇 ];𝐻−1

per(0, 2𝜋) × 𝐿2(0, 2𝜋)).
In particular, when (𝜎𝑇 , 𝑣𝑇 ) = (0, 0), the solution (𝜎, 𝑣) belong to the space

C0( [0,𝑇 ];𝐻1
per(0, 2𝜋)) × [C0( [0,𝑇 ];𝐻1

per(0, 2𝜋)) ∩ 𝐿2(0,𝑇 ;𝐻2
per(0, 2𝜋))] .

Proof of the first part is given in Appendix A.0.2; see also Appendix A.1 for the hidden regularity
result. For the second part, we refer to [CMRR14, Proposition 2.5], see also [Gir08, Chapter 4].

Once we have the existence results of the homogeneous system (without any boundary control) as-
sociated to the system (3.1), we can now guarantee the existence of a unique solution to the system
(3.1) (in the sense of transposition) when there is a boundary control 𝑝 (resp. 𝑞) acting in density
(resp. velocity) in the space 𝐿2(0,𝑇 ). Before writing the statements, let us first define the notion of a
solution in the sense of transposition.

Definition 3.2.1. We give the following definitions based on the act of the control.

1. For any given initial state (𝜌0, 𝑢0) ∈ (𝐿2(0, 2𝜋))2 and boundary control 𝑝 ∈ 𝐿2(0,𝑇 ), a function
(𝜌,𝑢) ∈ 𝐿2(0,𝑇 ; (𝐿2(0, 2𝜋))2) is a solution to the system (3.1)-(3.2)-(3.3) if, for any given (𝑓 , 𝑔) ∈
𝐿2(0,𝑇 ; (𝐿2(0, 2𝜋))2) the following identity holds true:∫ 𝑇

0

〈
(𝜌 (𝑡, ·), 𝑢 (𝑡, ·))†, (𝑓 (𝑡, ·), 𝑔(𝑡, ·))†

〉
𝐿2×𝐿2 𝑑𝑡

=
〈
(𝜌0(·), 𝑢0(·))†, (𝜎 (0, ·), 𝑣 (0, ·))†

〉
𝐿2×𝐿2 + 𝑏

∫ 𝑇

0

[
𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋)

]
𝑝 (𝑡)𝑑𝑡,

where (𝜎, 𝑣) is the unique weak solution to the adjoint system (3.21) with (𝜎𝑇 , 𝑣𝑇 ) = (0, 0).

2. For any given initial state (𝜌0, 𝑢0) ∈ (𝐿2(0, 2𝜋))2 and boundary control 𝑞 ∈ 𝐿2(0,𝑇 ), a function
(𝜌,𝑢) ∈ 𝐿2(0,𝑇 ;𝐻−1

per(0, 2𝜋) × 𝐿2(0, 2𝜋)) is a solution to the system (3.1)-(3.2)-(3.4) if, for any
given (𝑓 , 𝑔) ∈ 𝐿2(0,𝑇 ;𝐻1

per(0, 2𝜋) × 𝐿2(0, 2𝜋)) the following identity holds true:∫ 𝑇

0

〈
(𝜌 (𝑡, ·), 𝑢 (𝑡, ·))†, (𝑓 (𝑡, ·), 𝑔(𝑡, ·))†

〉
𝐻 −1

per×𝐿2,𝐻1
per×𝐿2

𝑑𝑡

=
〈
(𝜌0(·), 𝑢0(·))†, (𝜎 (0, ·), 𝑣 (0, ·))†

〉
𝐿2×𝐿2 +𝑄0

∫ 𝑇

0

[
𝑏𝜎 (𝑡, 2𝜋) +𝑉0𝑣 (𝑡, 2𝜋) + 𝜇0𝑣𝑥 (𝑡, 2𝜋)

]
𝑞(𝑡)𝑑𝑡,

where (𝜎, 𝑣) is the unique weak solution to the adjoint system (3.21) with (𝜎𝑇 , 𝑣𝑇 ) = (0, 0).

84



3.2. Controllability of the linearized compressible Navier-Stokes system (barotropic case)

Proposition 3.2.1. For any given initial state (𝜌0, 𝑢0) ∈ (𝐿2(0, 2𝜋))2 and boundary control 𝑝 ∈
𝐿2(0,𝑇 ), the system (3.1)-(3.2)-(3.3) admits a unique solution (𝜌,𝑢) in the space

C0( [0,𝑇 ];𝐿2(0, 2𝜋)) × [C0( [0,𝑇 ];𝐿2(0, 2𝜋)) ∩ 𝐿2(0,𝑇 ;𝐻1
per(0, 2𝜋))] .

Proposition 3.2.2. For any given initial state (𝜌0, 𝑢0) ∈ (𝐿2(0, 2𝜋))2 and boundary control 𝑞 ∈
𝐿2(0,𝑇 ), the system (3.1)-(3.2)-(3.4) admits a unique solution (𝜌,𝑢) in the space

C0( [0,𝑇 ];𝐻−1
per(0, 2𝜋)) × [C0( [0,𝑇 ];𝐻−1

per(0, 2𝜋)) ∩ 𝐿2(0,𝑇 ;𝐿2(0, 2𝜋))] .

The proof of the first result (density case) will be similar to that given in the Appendix A.0.2.
For the velocity case, the proof can be done in a standard fashion using the semigroup theory of the
homogeneous system and the properties of the transport and parabolic equations, see for instance
[CR13, Gir08].

3.2.3 Spectral analysis of 𝐴∗

We denote the spectrum of 𝐴∗ by 𝜎 (𝐴∗). The following lemma gives behavior of the spectrum of the
operator 𝐴∗.

Lemma 3.2.3. The following statements hold.

(i) ker(𝐴∗) = span

{(
1

1

)
,

(
1

−1

)}
.

(ii) sup {Re(𝜈) : 𝜈 ∈ 𝜎 (𝐴∗), 𝜈 ≠ 0} < 0.

(iii) The spectrum of 𝐴∗ consists of the eigenvalue 𝜈0 = 0 and pairs of complex eigenvalues {𝜈ℎ𝑛, 𝜈
𝑝
𝑛 }𝑛∈Z∗

given as

𝜈ℎ𝑛 = −1
2

(
𝜇0𝑛

2 −
√︃
𝜇20𝑛

4 − 4𝑏𝑄0𝑛
2 − 2𝑉0𝑖𝑛

)
, (3.22)

𝜈
𝑝
𝑛 = −1

2

(
𝜇0𝑛

2 +
√︃
𝜇20𝑛

4 − 4𝑏𝑄0𝑛
2 − 2𝑉0𝑖𝑛

)
, (3.23)

for all 𝑛 ∈ Z∗.

(iv) The eigenvalues satisfy the following properties
lim |𝑛 |→∞Re(𝜈ℎ𝑛) = −𝜔0, lim |𝑛 |→∞

Re(𝜈𝑝𝑛 )
𝑛2 = −𝜇0

lim |𝑛 |→∞
Im(𝜈ℎ𝑛 )

𝑛
= 𝑉0, lim |𝑛 |→∞

Im(𝜈𝑝𝑛 )
𝑛

= 𝑉0

with 𝜔0 =
𝑏𝑄0

𝜇0
.

(v) The eigenfunctions of 𝐴∗ corresponding to 𝜈ℎ𝑛 and 𝜈
𝑝
𝑛 are respectively

Φℎ
𝑛 =

(
𝜉ℎ𝑛

𝜂ℎ𝑛

)
=

(
𝑄0

𝜈𝑛2 −𝑉0

)
𝑒𝑖𝑛𝑥 , Φ

𝑝
𝑛 =

(
𝜉
𝑝
𝑛

𝜂
𝑝
𝑛

)
=

(
𝑄0

𝜈𝑛1 −𝑉0

1

)
𝑒𝑖𝑛𝑥 , (3.24)

for 𝑛 ∈ Z∗, where 𝜈𝑛1 = 1
𝑖𝑛
𝜈
𝑝
𝑛 and 𝜈𝑛2 = 1

𝑖𝑛
𝜈ℎ𝑛 for 𝑛 ∈ Z∗.

Proof. We prove each part separately.

Part-(i). Let Φ = (𝜉, 𝜂)† ∈ D(𝐴∗) be such that 𝐴∗Φ = 0. This gives 𝑉0𝜉𝑥 +𝑄0𝜂𝑥 = 0 and 𝜇0𝜂𝑥𝑥 +𝑉0𝜂𝑥 +𝑏𝜉𝑥 = 0
and therefore we have 𝜇0𝑉0𝜂𝑥𝑥 + (𝑉 2

0 − 𝑏𝑄0)𝜂𝑥 = 0. The boundary conditions 𝜂 (0) = 𝜂 (2𝜋) and
𝜂𝑥 (0) = 𝜂𝑥 (2𝜋) implies 𝜂 = constant and consequently 𝜉 = constant.
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Part-(ii). Let Φ = (𝜉, 𝜂)† ∈ D(𝐴∗) be the eigenfunction of 𝐴∗ corresponding to the eigenvalue 𝜈 ≠ 0. Then,
we have 〈

𝐴∗

(
𝜉

𝜂

)
,

(
𝜉

𝜂

)〉
𝐿2×𝐿2

=

〈
𝜈

(
𝜉

𝜂

)
,

(
𝜉

𝜂

)〉
𝐿2×𝐿2

,

that is,

𝑏𝑉0

∫ 2𝜋

0
𝜉 (𝑥)𝜉𝑥 (𝑥)𝑑𝑥 + 𝑏𝑄0

∫ 2𝜋

0
𝜉 (𝑥)𝜂𝑥 (𝑥)𝑑𝑥 + 𝜇0𝑄0

∫ 2𝜋

0
𝜂 (𝑥)𝜂𝑥𝑥 (𝑥)𝑑𝑥

+𝑄0𝑉0

∫ 2𝜋

0
𝜂 (𝑥)𝜂𝑥 (𝑥)𝑑𝑥 + 𝑏𝑄0

∫ 2𝜋

0
𝜉𝑥 (𝑥)𝜂 (𝑥)𝑑𝑥 = 𝜈𝑏

∫ 2𝜋

0
|𝜉 (𝑥) |2 𝑑𝑥 + 𝜈𝑄0

∫ 2𝜋

0
|𝜂 (𝑥) |2 𝑑𝑥.

An integration by parts yields

Re(𝜈) = −
𝜇0𝑄0 ∥𝜂𝑥 ∥2𝐿2 (0,2𝜋 )

𝑏 ∥𝜉 ∥2
𝐿2 (0,2𝜋 ) +𝑄0 ∥𝜂∥2𝐿2 (0,2𝜋 )

< 0,

which proves part (ii), since 𝜂 cannot be constant for 𝑛𝑢 ≠ 0, thanks to the first part.

Parts-(iii),(v). We denote

𝜑𝑛 (𝑥) := 𝑒𝑖𝑛𝑥 , 𝑛 ∈ Z.

Then the set

{(
𝜑𝑛

0

)
,

(
0

𝜑𝑛

)
; 𝑛 ∈ Z

}
forms an orthogonal basis of (𝐿2(0, 2𝜋))2. Let us define

𝐸𝑛 :=

(
𝜑𝑛 0

0 𝜑𝑛

)
, and Φ𝑛 := (𝜉𝑛, 𝜂𝑛)†,

for all 𝑛 ∈ Z. Then, we have the following relation

𝐴∗𝐸𝑛Φ𝑛 = 𝐸𝑛𝑅𝑛Φ𝑛, 𝑛 ∈ Z, (3.25)

where the matrix 𝑅𝑛 for 𝑛 ∈ Z is given by

𝑅𝑛 :=

(
𝑉0𝑖𝑛 𝑄0𝑖𝑛

𝑏𝑖𝑛 −𝜇0𝑛2 +𝑉0𝑖𝑛

)
, 𝑛 ∈ Z. (3.26)

Thus, if (𝛼𝑛, 𝜈𝑛) is an eigenpair of 𝑅𝑛, then (𝐸𝑛𝛼𝑛, 𝜈𝑛) will be an eigenpair of 𝐴∗. Therefore, it
remains to find the eigenvalues and eigenvectors of the matrix 𝑅𝑛 for 𝑛 ∈ Z. The characteristics
equation of 𝑅𝑛 is

𝜈2 − (−𝜇0𝑛2 + 2𝑉0𝑖𝑛)𝜈 − 𝜇0𝑉0𝑖𝑛3 −𝑉 2
0 𝑛

2 + 𝑏𝑄0𝑛
2 = 0, (3.27)

for all 𝑛 ∈ Z. Therefore, the eigenvalues of the matrix 𝑅𝑛 are

𝜈ℎ𝑛 :=
1

2

(
−𝜇0𝑛2 + 2𝑉0𝑖𝑛 +

√︃
𝜇20𝑛

4 − 4𝑏𝑄0𝑛
2

)
, 𝜈

𝑝
𝑛 :=

1

2

(
−𝜇0𝑛2 + 2𝑉0𝑖𝑛 −

√︃
𝜇20𝑛

4 − 4𝑏𝑄0𝑛
2

)
,

for all 𝑛 ∈ Z. Note that, 0 cannot be an eigenvalue of the matrix 𝑅𝑛 for all 𝑛 ∈ Z∗ and 𝑉0 cannot
be an eigenvalue of 𝑅𝑛 for all 𝑛 ∈ Z, because 𝑏,𝑄0, 𝜇0,𝑉0 > 0. Let us denote 𝜈𝑛1 := 1

𝑖𝑛
𝜈
𝑝
𝑛 and

𝜈𝑛2 := 1
𝑖𝑛
𝜈ℎ𝑛 . To find the eigenvectors of the matrix 𝑅𝑛, we first consider the equation

𝑅𝑛𝛼
ℎ
𝑛 = 𝜈ℎ𝑛𝛼

ℎ
𝑛 , for 𝑛 ∈ Z,

where 𝛼ℎ𝑛 := (𝛼𝑛1 , 𝛼𝑛2 )†, that is,

(𝑉0𝑖𝑛 − 𝜈ℎ𝑛)𝛼𝑛1 +𝑄0𝑖𝑛𝛼
𝑛
2 = 0, 𝑏𝑖𝑛𝛼𝑛1 + (−𝜇0𝑛2 +𝑉0𝑖𝑛 − 𝜈ℎ𝑛)𝛼𝑛2 = 0, (3.28)
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for all 𝑛 ∈ Z. One solution is given by

𝛼ℎ𝑛 =

(
𝛼𝑛1

𝛼𝑛2

)
:=

(
𝑄0

𝜈𝑛2 −𝑉0

)
, 𝑛 ∈ Z. (3.29)

We next consider the equation
𝑅𝑛𝛼

𝑝
𝑛 = 𝜈

𝑝
𝑛𝛼

𝑝
𝑛 , for 𝑛 ∈ Z,

where 𝛼
𝑝
𝑛 := (𝛽𝑛1 , 𝛽𝑛2 )†, that is,

(𝑉0𝑖𝑛 − 𝜈𝑝𝑛 )𝛽𝑛1 +𝑄0𝑖𝑛𝛽
𝑛
2 = 0, 𝑏𝑖𝑛𝛽𝑛1 + (−𝜇0𝑛2 +𝑉0𝑖𝑛 − 𝜈𝑝𝑛 )𝛽𝑛2 = 0, (3.30)

for all 𝑛 ∈ Z. One solution is given by

𝛼
𝑝
𝑛 =

(
𝛽𝑛1

𝛽𝑛2

)
:=

(
𝑄0

𝜈𝑛1 −𝑉0

1

)
, 𝑛 ∈ Z. (3.31)

Thus, the eigenvectors of 𝑅𝑛 corresponding to the eigenvalues 𝜈ℎ𝑛 and 𝜈
𝑝
𝑛 are respectively

𝛼ℎ𝑛 =

(
𝛼𝑛1

𝛼𝑛2

)
=

(
𝑄0

𝜈𝑛2 −𝑉0

)
, 𝛼

𝑝
𝑛 =

(
𝛽𝑛1

𝛽𝑛2

)
=

(
𝑄0

𝜈𝑛1 −𝑉0

1

)
, 𝑛 ∈ Z.

Hence, the eigenvalues of the operator 𝐴∗ are 𝜈0 := 0 and

𝜈ℎ𝑛 :=
1

2

(
−𝜇0𝑛2 + 2𝑉0𝑖𝑛 +

√︃
𝜇20𝑛

4 − 4𝑏𝑄0𝑛
2

)
, 𝜈

𝑝
𝑛 :=

1

2

(
−𝜇0𝑛2 + 2𝑉0𝑖𝑛 −

√︃
𝜇20𝑛

4 − 4𝑏𝑄0𝑛
2

)
,

for 𝑛 ∈ Z∗ and the corresponding eigenfunctions are respectively

Φℎ
𝑛 :=

(
𝜉ℎ𝑛

𝜂ℎ𝑛

)
= 𝐸𝑛𝛼

ℎ
𝑛 = 𝛼ℎ𝑛𝑒

𝑖𝑛𝑥 , Φ
𝑝
𝑛 :=

(
𝜉
𝑝
𝑛

𝜂
𝑝
𝑛

)
= 𝐸𝑛𝛼

𝑝
𝑛 = 𝛼

𝑝
𝑛𝑒

𝑖𝑛𝑥 ,

for all 𝑛 ∈ Z∗ and 𝑥 ∈ (0, 2𝜋). This proves parts (iii) and (v).

Part-(iv). Follows immediately from the expression of the eigenvalues 𝜈ℎ𝑛 and 𝜈
𝑝
𝑛 , given by (3.22)-(3.23).

Indeed, we can write

𝜈ℎ𝑛 = − 2𝑏𝑄0

𝜇0 +
√︃
𝜇20 −

4𝑏𝑄0

𝑛2

+𝑉0𝑖𝑛, and 𝜈
𝑝
𝑛 = −𝑛

2

2

(
𝜇0 +

√︂
𝜇20 −

4𝑏𝑄0

𝑛2

)
+𝑉0𝑖𝑛

for 𝑛 ∈ Z∗.

From the expression of the eigenvalues given by (3.22)-(3.23), we can further deduce several im-
portant properties, which are given by the following Lemma:

Lemma 3.2.4 (Properties of the eigenvalues). Let 𝑛, 𝑙 ∈ Z∗. Then,

(i) 𝜈ℎ𝑛 = 𝜈ℎ
𝑙
if and only if 𝑛 = 𝑙.

(ii) if 𝑛1 :=
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∈ N, then 𝜈𝑝𝑛1

= 𝜈
𝑝
−𝑛1

and 𝜈
𝑝
𝑛 ≠ 𝜈

𝑝

𝑙
for remaining 𝑛, 𝑙 ∈ Z∗ with 𝑛 ≠ 𝑙.

(iii) if 𝑛0 :=
2
√
𝑏𝑄0

𝜇0
∈ N, then 𝜈ℎ𝑗 = 𝜈

𝑝

𝑗
for 𝑗 = ±𝑛0 and 𝜈ℎ𝑛 ≠ 𝜈

𝑝

𝑙
for all 𝑛, 𝑙 ∈ Z∗ \ {±𝑛0}.

(iv) if
2
√
𝑏𝑄0

𝜇0
,
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∉ N, then all the eigenvalues of 𝐴∗ are simple.
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Proof. We prove each part separately.

Part-(i). Let us denote 𝑛0 :=
2
√
𝑏𝑄0

𝜇0
. Then, Im(𝜈ℎ𝑛) = 𝑉0𝑛 for all |𝑛 | ≥ 𝑛0 and therefore 𝜈ℎ𝑛 ≠ 𝜈ℎ

𝑙
for all

|𝑛 | , |𝑙 | ≥ 𝑛0 with 𝑛 ≠ 𝑙 . For 1 ≤ |𝑛 | < 𝑛0, we have 𝜈ℎ𝑛 = − 𝜇0
2 𝑛

2 + 𝑖 (𝑉0𝑛 + 1
2

√︃
4𝑏𝑄0𝑛

2 − 𝜇20𝑛4). Since

Im(𝜈ℎ𝑛) ≠ Im(𝜈ℎ−𝑛) for all 1 ≤ |𝑛 | < 𝑛0, we readily have 𝜈ℎ𝑛 ≠ 𝜈ℎ
𝑙
for all 1 ≤ |𝑛 | , |𝑙 | < 𝑛0.

Part-(ii). Note that Im(𝜈𝑝𝑛 ) = 𝑉0𝑛 for all |𝑛 | ≥ 𝑛0 and therefore 𝜈
𝑝
𝑛 ≠ 𝜈

𝑝

𝑙
for all |𝑛 | , |𝑙 | ≥ 𝑛0 with 𝑛 ≠ 𝑙 .

For 1 ≤ |𝑛 | < 𝑛0, we have 𝜈
𝑝
𝑛 = − 𝜇0

2 𝑛
2 + 𝑖 (𝑉0𝑛 − 1

2

√︃
4𝑏𝑄0𝑛

2 − 𝜇20𝑛4). Then, Im(𝜈𝑝𝑛 ) = −Im(𝜈𝑝−𝑛)

for all 1 ≤ |𝑛 | < 𝑛0, which implies 𝜈
𝑝
𝑛 = 𝜈

𝑝
−𝑛 holds only if 𝑉0𝑛 − 1

2

√︃
4𝑏𝑄0𝑛

2 − 𝜇20𝑛4 = 0, that is,

when 𝑛 =
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
. Moreover, Re(𝜈𝑝𝑛 ) ≠ Re(𝜈𝑝

𝑙
) for remaining values of 𝑛, 𝑙 ∈ Z∗(𝑛 ≠ 𝑙), implying

𝜈
𝑝
𝑛 ≠ 𝜈

𝑝

𝑙
.

Part-(iii). Let 𝑛, 𝑙 ∈ Z∗ with |𝑛 | , |𝑙 | > 𝑛0. Since Im(𝜈ℎ𝑛) = Im(𝜈𝑝𝑛 ) = 𝑉0𝑛, therefore Im(𝜈ℎ𝑛) = Im(𝜈𝑝
𝑙
) is

true if and only if 𝑛 = 𝑙 and Re(𝜈ℎ𝑛) ≠ Re(𝜈𝑝𝑛 ). This proves that 𝜈ℎ𝑛 ≠ 𝜈
𝑝

𝑙
for all |𝑛 | , |𝑙 | > 𝑛0.

For 1 ≤ |𝑛 | , |𝑙 | < 𝑛0, Re(𝜈ℎ𝑛) = Re(𝜈𝑝𝑛 ) = − 𝜇0
2 𝑛

2 and therefore Re(𝜈ℎ𝑛) = Re(𝜈𝑝
𝑙
) holds if and

only if 𝑛 = ±𝑙 . On the other hand, Im(𝜈ℎ𝑛) ≠ Im(𝜈𝑝
𝑙
) for 𝑛 = ±𝑙 , which implies 𝜈ℎ𝑛 ≠ 𝜈

𝑝

𝑙
for all

1 ≤ |𝑛 | , |𝑙 | < 𝑛0. Let 1 ≤ |𝑛 | ≤ 𝑛0 and |𝑙 | > 𝑛0. Then, 𝜈ℎ𝑛 = − 𝜇0
2 𝑛

2 + 𝑖 (𝑉0𝑛 + 1
2

√︃
4𝑏𝑄0𝑛

2 − 𝜇20𝑛4) and

𝜈
𝑝

𝑙
= − 𝜇0

2 𝑙
2 − 1

2

√︃
𝜇20𝑙

4 − 4𝑏𝑄0𝑙
2 + 𝑉0𝑖𝑙 . Thus 𝜈ℎ𝑛 = 𝜈

𝑝

𝑙
implies 1

2

√︃
𝜇20𝑙

4 − 4𝑏𝑄0𝑙
2 = − 𝜇0

2 (𝑙2 − 𝑛2) < 0,

which is not possible. Therefore, the only possible case is |𝑛 | = |𝑙 | = 𝑛0 and in this case, we have
𝜈ℎ𝑛 = 𝜈

𝑝

𝑙
, which proves part (iii)

Part-(iv). Follows from parts (i), (ii) and (iii).

This completes the proof.

From this Lemma, we note that when 𝑛0 =
2
√
𝑏𝑄0

𝜇0
∈ N, the matrix 𝑅 𝑗 admits an eigenvalue

𝜈 𝑗 := − 𝜇0 𝑗
2

2 + 𝑖𝑉0 𝑗 of multiplicity 2 with the eigenvectors 𝛼 𝑗 :=

(
𝑄0

𝜈
𝑗

2 −𝑉0

)
for 𝑗 = ±𝑛0. Let 𝛼 𝑗 = (𝛼 𝑗

1, 𝛼
𝑗

2) be

the generalized eigenvector corresponding to 𝜈 𝑗 for 𝑗 = ±𝑛0, then we have the following set of relations:{
(𝑖𝑉0 𝑗 − 𝜈 𝑗 )𝛼 𝑗

1 + 𝑖𝑄0 𝑗𝛼
𝑗

2 = 𝑄0,

𝑖𝑏 𝑗𝛼
𝑗

1 + (−𝜇0 𝑗2 + 𝑖𝑉0 𝑗 − 𝜈 𝑗 )𝛼 𝑗

2 = 𝜈
𝑗

2 −𝑉0,
(3.32)

for 𝑗 = ±𝑛0. Thus, if
2
√
𝑏𝑄0

𝜇0
∈ N, the operator 𝐴∗ admits generalized eigenfunction corresponding to

the eigenvalue 𝜈ℎ𝑗 = 𝜈
𝑝

𝑗
= 𝜈 𝑗 for 𝑗 = ±𝑛0. We denote the generalized eigenfunction corresponding to 𝜈 𝑗

by Φ̃𝑗 := 𝛼 𝑗𝑒
𝑖 𝑗𝑥 for 𝑗 = ±𝑛0. Also, recall that the set of eigenfunctions corresponding to the eigenvalue

𝜈0 = 0 is

{
Φ0 :=

(
1

1

)
, Φ̃0 :=

(
1

−1

)}
. Then, with the above mentioned properties of the eigenvalues, we

can prove that the set of (generalized) eigenfunctions of 𝐴∗ form a Riesz basis of (𝐿2(0, 2𝜋))2.

Proposition 3.2.3. If
2
√
𝑏𝑄0

𝜇0
∈ N, the set of (generalized) eigenfunctions

E(𝐴∗) :=
{
Φℎ
𝑛, Φ

𝑝
𝑛 : 𝑛 ∈ Z∗ \ {±𝑛0}; Φ𝑗 , Φ̃𝑗 : 𝑗 = 0,±𝑛0

}
form a Riesz basis in (𝐿2(0, 2𝜋))2. In particular, when

2
√
𝑏𝑄0

𝜇0
∉ N, the set of eigenfunctions{

Φℎ
𝑛, Φ

𝑝
𝑛 : 𝑛 ∈ Z∗

}
of 𝐴∗ form a Riesz basis in ( ¤𝐿2(0, 2𝜋))2.
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Proof. Denote Ψ𝑛 (𝑥) :=
(
𝑄0

0

)
𝑒𝑖𝑛𝑥 , Ψ̃𝑛 (𝑥) :=

(
0

1

)
𝑒𝑖𝑛𝑥 for 𝑛 ∈ Z. Then, the set of generalized eigenfunc-

tions
{
Φℎ
𝑛, Φ

𝑝
𝑛 : 𝑛 ∈ Z∗ \ {±𝑛0}; Φ𝑗 , Φ̃𝑗 : 𝑗 = 0,±𝑛0

}
of 𝐴∗ is quadratically close to the orthogonal

basis
{
Ψ𝑛, Ψ̃𝑛; 𝑛 ∈ Z

}
in (𝐿2(0, 2𝜋))2. Indeed, we have for a large 𝑁 ∈ N∑︁

|𝑛 |>𝑁

(


Φℎ
𝑛 − Ψ𝑛




2
(𝐿2 (0,2𝜋 ) )2

+


Φ𝑝

𝑛 − Ψ̃𝑛


2
(𝐿2 (0,2𝜋 ) )2

)
≤ 𝐶

∑︁
|𝑛 |>𝑁

1

|𝑛 |2
< ∞,

thanks to the fact that
��𝜈𝑛2 −𝑉0�� ≤ 𝐶

|𝑛 | and
��𝜈𝑛1 −𝑉0�� ≥ 𝐶 |𝑛 | for large 𝑛. Since the set

{
Ψ𝑛, Ψ̃𝑛 ; 𝑛 ∈ Z

}
is

an orthogonal basis of (𝐿2(0, 2𝜋))2, this Proposition is now an immediate consequence of the result of
Bao-Zhu Guo [Guo01, Theorem 6.3].

3.2.4 Observation estimates

As mentioned in the introduction, we need to prove certain observability inequalities to achieve null
controllability of the system (3.1) and to do so, we need lower bound estimates of the corresponding
observation terms (when the control is acting in density or velocity). Looking at the Definition 3.2.1
of the solution to (3.1) (in the sense of transposition), let us first define the observation operators
associated to the system (3.1) as follows:

• The observation operator B∗
𝜌 : D(𝐴∗) → C to the system (3.1)-(3.2)-(3.3) is defined by

B∗
𝜌Φ := 𝑉0𝜉 (2𝜋) +𝑄0𝜂 (2𝜋), for Φ := (𝜉, 𝜂) ∈ D(𝐴∗) . (3.33)

• The observation operator B∗
𝑢 : D(𝐴∗) → C to the system (3.1)-(3.2)-(3.4) is defined by

B∗
𝑢Φ := 𝑏𝜉 (2𝜋) +𝑉0𝜂 (2𝜋) + 𝜇0𝜂𝑥 (2𝜋), for Φ := (𝜉, 𝜂) ∈ D(𝐴∗) . (3.34)

Recall that E(𝐴∗) denotes the set of all (generalized) eigenfunctions of 𝐴∗. The following result proves
that these observation terms are non-zero for all Φ ∈ E(𝐴∗) \ {Φ0, Φ̃𝑗 , 𝑗 = 0,±𝑛0}, and have positive
lower bounds for all 𝑛 ∈ Z∗.

Lemma 3.2.5. For all Φ𝜈 ∈ E(𝐴∗) \ {Φ0, Φ̃𝑗 , 𝑗 = 0,±𝑛0}, the observation operators satisfy B∗
𝜌Φ𝜈 ≠ 0

and B∗
𝑢Φ𝜈 ≠ 0. Moreover, we have the following estimates���B∗

𝜌Φ
ℎ
𝑛

��� ≥ 𝐶, ���B∗
𝜌Φ

𝑝
𝑛

��� ≥ 𝐶, (3.35)���B∗
𝑢Φ

ℎ
𝑛

��� ≥ 𝐶

|𝑛 | ,
��B∗

𝑢Φ
𝑝
𝑛

�� ≥ 𝐶 |𝑛 | , (3.36)

for some 𝐶 > 0 and all 𝑛 ∈ Z∗.

Proof. Recall from the proof of Lemma 3.2.3 that eigenvectors (𝛼𝑛1 , 𝛼𝑛2 )† and (𝛽𝑛1 , 𝛽𝑛2 )† of the matrix 𝑅𝑛
satisfies the following equations:

(𝑉0𝑖𝑛 − 𝜈ℎ𝑛)𝛼𝑛1 +𝑄0𝑖𝑛𝛼
𝑛
2 = 0, 𝑏𝑖𝑛𝛼𝑛1 + (−𝜇0𝑛2 +𝑉0𝑖𝑛 − 𝜈ℎ𝑛)𝛼𝑛2 = 0, (3.37)

(𝑉0𝑖𝑛 − 𝜈𝑝𝑛 )𝛽𝑛1 +𝑄0𝑖𝑛𝛽
𝑛
2 = 0, 𝑏𝑖𝑛𝛽𝑛1 + (−𝜇0𝑛2 +𝑉0𝑖𝑛 − 𝜈𝑝𝑛 )𝛽𝑛2 = 0, (3.38)

for 𝑛 ∈ Z. Also, recall the expressions of 𝜈𝑛1 = 1
𝑖𝑛
𝜈
𝑝
𝑛 and 𝜈𝑛2 = 1

𝑖𝑛
𝜈ℎ𝑛 . We will use these equation to

conclude the proof of this result. Note that

B∗
𝜌Φ

ℎ
𝑛 = 𝑉0𝜉

ℎ
𝑛 (2𝜋) +𝑄0𝜂

ℎ
𝑛 (2𝜋) = 𝑉0𝛼𝑛1 +𝑄0𝛼

𝑛
2 = 𝜈𝑛2𝛼

𝑛
1 ≠ 0,

B∗
𝜌Φ

𝑝
𝑛 = 𝑉0𝜉

𝑝
𝑛 (2𝜋) +𝑄0𝜂

𝑝
𝑛 (2𝜋) = 𝑉0𝛽𝑛1 +𝑄0𝛽

𝑛
2 = 𝜈𝑛1𝛽

𝑛
1 ≠ 0,

for all 𝑛 ∈ Z∗, thanks to the first equations of (3.37)-(3.38). The estimates on B∗
𝜌Φ

ℎ
𝑛 and B∗

𝜌Φ
𝑝
𝑛 follows

directly from the above expressions.
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For the parabolic frequencies, we have

B∗
𝑢Φ

ℎ
𝑛 = 𝑏𝜉ℎ𝑛 (2𝜋) +𝑉0𝜂ℎ𝑛 (2𝜋) + 𝜇0(𝜂ℎ𝑛)𝑥 (2𝜋) = 𝑏𝛼𝑛1 + (𝑉0 + 𝜇0𝑖𝑛)𝛼𝑛2 = 𝜈𝑛2𝛼

𝑛
2 ≠ 0,

B∗
𝑢Φ

𝑝
𝑛 = 𝑏𝜉

𝑝
𝑛 (2𝜋) +𝑉0𝜂

𝑝
𝑛 (2𝜋) + 𝜇0(𝜂

𝑝
𝑛 )𝑥 (2𝜋) = 𝑏𝛽𝑛1 + (𝑉0 + 𝜇0𝑖𝑛)𝛽𝑛2 = 𝜈𝑛1𝛽

𝑛
2 ≠ 0,

for all 𝑛 ∈ Z∗, thanks to the second equations in (3.37)-(3.38). Since
��𝛼𝑛2 �� ≥ 𝐶

|𝑛 | and 𝜈𝑛2 is bounded

(away from zero) for all 𝑛 ∈ Z∗, the estimate on B∗
𝑢Φ

ℎ
𝑛 and B∗Φ

𝑝
𝑛 follows directly from the above

expressions.

Remark 3.2.1. For the generalized eigenfunction Φ̃𝑗 ∈ E(𝐴∗) ( 𝑗 = ±𝑛0), we can choose 𝛼 𝑗

1 and 𝛼 𝑗

2

accordingly so that B∗
𝜌 Φ̃𝑗 = 𝑉0𝛼

𝑗

1 +𝑄0𝛼
𝑗

2 ≠ 0 and B∗
𝑢Φ̃𝑗 = 𝑏𝛼

𝑗

1 + (𝑉0 + 𝜇0𝑖 𝑗)𝛼 𝑗

2 ≠ 0 for 𝑗 = ±𝑛0.

3.2.5 Observability inequalities

In this section, we prove our main null controllability results of the system (3.1), namely Theorem
3.1.1 and Theorem 3.1.2. We first state two results which are equivalent to null controllability of the
system (3.1) using controls acting in density and velocity respectively. The proofs are standard (see
for instance [MZ04, Section 2.3.4],[Zua07, Section 4.3]), so we skip the details.

Theorem 3.2.1. Let 𝑇 > 0 be given. Then, the system (3.1)-(3.2)-(3.3) is null controllable at time 𝑇
in the space ( ¤𝐿2(0, 2𝜋))2 if and only if the inequality

(𝜎 (0), 𝑣 (0))†

2( ¤𝐿2 (0,2𝜋 ) )2 ≤ 𝐶

∫ 𝑇

0
|𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋) |2 𝑑𝑡 (3.39)

holds for all solutions (𝜎, 𝑣)† of the adjoint system (3.20) with terminal data (𝜎𝑇 , 𝑣𝑇 )† ∈ D(𝐴∗).

Theorem 3.2.2. Let 𝑇 > 0 be given. Then, the system (3.1)-(3.2)-(3.4) is null controllable at time 𝑇
in the space ¤𝐻1

per(0, 2𝜋) × ¤𝐿2(0, 2𝜋) if and only if the inequality



(𝜎 (0), 𝑣 (0))†

2¤𝐻 −1
per (0,2𝜋 )× ¤𝐿2 (0,2𝜋 ) ≤ 𝐶

∫ 𝑇

0
|𝑏𝜎 (𝑡, 2𝜋) +𝑉0𝑣 (𝑡, 2𝜋) + 𝜇0𝑣𝑥 (𝑡, 2𝜋) |2 𝑑𝑡 (3.40)

holds for all solutions (𝜎, 𝑣)† of the adjoint system (3.20) with terminal data (𝜎𝑇 , 𝑣𝑇 )† ∈ D(𝐴∗).

The inequalities (3.39) and (3.40) are referred as observability inequalities for the systems (3.1)-
(3.2)-(3.3) and (3.1)-(3.2)-(3.4) respectively. To prove these inequalities, we will use the Ingham-type
inequality (3.14) to obtain a lower bound of the observation terms (given in the right hand sides of
(3.39) and (3.40)) together with the upper bounds of norms of (𝜎 (0), 𝑣 (0))† in the respective spaces.

Let
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∉ N. We first assume that

2
√
𝑏𝑄0

𝜇0
∉ N, that is, all the eigenvalues of 𝐴∗ are simple

(Lemma 3.2.4-(iv)), and prove null controllability of the system (3.1) (Theorem 3.1.1-Part(i) and

Theorem 3.1.2-Part(i)). In the case of multiple eigenvalues (when
2
√
𝑏𝑄0

𝜇0
∈ N), we give a detailed

proof of Theorem 3.1.1-Part(i) at the end of this section. The proof of Theorem 3.1.2-Part(i) in the
presence of multiple eigenvalues will be similar to that of Theorem 3.1.1-Part(i) and so we give some
comments at the end of this section.

3.2.5.1 The case of simple eigenvalues

Let us assume that
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
,
2
√
𝑏𝑄0

𝜇0
∉ N and let (𝜎𝑇 , 𝑣𝑇 )† ∈ ( ¤𝐿2(0, 2𝜋))2. Since the set of eigenfunctions

{Φℎ
𝑛,Φ

𝑝
𝑛 ; 𝑛 ∈ Z∗} forms a Riesz basis in ( ¤𝐿2(0, 2𝜋))2 (thanks to Proposition 3.2.3), therefore any

(𝜎𝑇 , 𝑣𝑇 )† ∈ ( ¤𝐿2(0, 2𝜋))2 can be written as

(𝜎𝑇 , 𝑣𝑇 )† =
∑︁
𝑛∈Z∗

(
𝑎ℎ𝑛Φ

ℎ
𝑛 + 𝑎

𝑝
𝑛Φ

𝑝
𝑛

)
,
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for some (𝑎ℎ𝑛)𝑛∈Z∗, (𝑎
𝑝
𝑛)𝑛∈Z∗ ∈ ℓ2. Then the solution to the adjoint system (3.20) is

(𝜎 (𝑡, 𝑥), 𝑣 (𝑡, 𝑥))† =
∑︁
𝑛∈Z∗

𝑎ℎ𝑛𝑒
𝜈ℎ𝑛 (𝑇−𝑡 )Φℎ

𝑛 +
∑︁
𝑛∈Z∗

𝑎
𝑝
𝑛𝑒

𝜈
𝑝
𝑛 (𝑇−𝑡 )Φ

𝑝
𝑛,

for (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 2𝜋). Thus, we get

𝜎 (𝑡, 𝑥) = 𝑄0

∑︁
𝑛∈Z∗

𝑎ℎ𝑛𝑒
𝜈ℎ𝑛 (𝑇−𝑡 )𝑒𝑖𝑛𝑥 +

∑︁
𝑛∈Z∗

𝑎
𝑝
𝑛𝑒

𝜈
𝑝
𝑛 (𝑇−𝑡 ) 𝑄0

𝜈𝑛1 −𝑉0
𝑒𝑖𝑛𝑥 ,

and
𝑣 (𝑡, 𝑥) =

∑︁
𝑛∈Z∗

𝑎ℎ𝑛𝑒
𝜈ℎ𝑛 (𝑇−𝑡 ) (𝜈𝑛2 −𝑉0)𝑒𝑖𝑛𝑥 +

∑︁
𝑛∈Z∗

𝑎
𝑝
𝑛𝑒

𝜈
𝑝
𝑛 (𝑇−𝑡 )𝑒𝑖𝑛𝑥 ,

for all (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 2𝜋).
Estimates on the norms of (𝜎 (0), 𝑣 (0))†: We have



(𝜎 (0), 𝑣 (0))†

2( ¤𝐿2 (0,2𝜋 ) )2 ≤ 𝐶
[∑︁
𝑛∈Z∗

���𝑎ℎ𝑛 ���2 (
1 +

��𝜈𝑛2 −𝑉0��2) 𝑒2Re(𝜈ℎ𝑛 )𝑇 

𝑒𝑖𝑛𝑥

2¤𝐿2 (0,2𝜋 ) (3.41)

+
∑︁
𝑛∈Z∗

��𝑎𝑝𝑛 ��2 (
1��𝜈𝑛1 −𝑉0��2 + 1

)
𝑒2Re(𝜈𝑝𝑛 )𝑇 

𝑒𝑖𝑛𝑥

2¤𝐿2 (0,2𝜋 ) ]

≤ 𝐶
[∑︁
𝑛∈Z∗

���𝑎ℎ𝑛 ���2 + ∑︁
𝑛∈Z∗

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 )𝑇

]
,

since the sequences 1 +
��𝜈𝑛2 −𝑉0��2 and 1 + 1

|𝜈𝑛1 −𝑉0 |2
are bounded for all 𝑛 ∈ Z∗. We similarly have



(𝜎 (0), 𝑣 (0))†

2¤𝐻 −1
per (0,2𝜋 )× ¤𝐿2 (0,2𝜋 ) ≤ 𝐶

[∑︁
𝑛∈Z∗

���𝑎ℎ𝑛 ���2 1

|𝑛 |2
+

∑︁
𝑛∈Z∗

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 )𝑇

]
, (3.42)

since the sequences 𝜈𝑛2 −𝑉0,
1

𝜈𝑛1 −𝑉0
∼+∞

1
𝑛
. We now find the lower bounds of the respective observation

terms and prove our main null controllability results for the barotropic case. We use the Ingham-type
inequality (Lemma 3.1.1) to obtain these bounds. First, we show that the eigenvalues (𝜈ℎ𝑛)𝑛∈Z∗ and
(𝜈𝑝𝑛 )𝑛∈Z∗ satisfy all the hypotheses of Lemma 3.1.1. Recall the set of eigenvalues (𝜈ℎ𝑛)𝑛∈Z∗ and (𝜈𝑝𝑛 )𝑛∈Z∗
of the operator 𝐴∗:

𝜈ℎ𝑛 = −1
2

(
𝜇0𝑛

2 −
√︃
𝜇20𝑛

4 − 4𝑏𝑄0𝑛
2 − 2𝑉0𝑖𝑛

)
,

𝜈
𝑝
𝑛 = −1

2

(
𝜇0𝑛

2 +
√︃
𝜇20𝑛

4 − 4𝑏𝑄0𝑛
2 − 2𝑉0𝑖𝑛

)
,

for 𝑛 ∈ Z∗.

• Due to the assumption on the coefficients (
2
√
𝑏𝑄0

𝜇0
,
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∉ N), we have 𝜈ℎ𝑛 ≠ 𝜈ℎ

𝑙
, 𝜈

𝑝
𝑛 ≠ 𝜈

𝑝

𝑙
for

all 𝑛, 𝑙 ∈ Z∗ with 𝑛 ≠ 𝑙 and the families are disjoint, that is, {𝜈ℎ𝑛, 𝑛 ∈ Z∗} ∩ {𝜈𝑝𝑛 , 𝑛 ∈ Z∗} = ∅, thanks
to Lemma 3.2.4.

• We now rewrite 𝜈ℎ𝑛 as

𝜈ℎ𝑛 = −𝜔0 +𝑉0𝑖𝑛 − 𝜔0

𝜇0𝑛
2 −

√︃
𝜇20𝑛

4 − 4𝑏𝑄0𝑛
2

𝜇0𝑛
2 +

√︃
𝜇20𝑛

4 − 4𝑏𝑄0𝑛
2

, |𝑛 | ≥ 𝑛0.

This shows that the family (𝜈ℎ𝑛)𝑛∈Z∗ satisfies hypothesis (H2) of Lemma 3.1.1 with 𝛽 = −𝜔0, 𝜏 = 𝑉0

and 𝑒𝑛 = −𝜔0
𝜇0𝑛

2−
√
𝜇20𝑛

4−4𝑏𝑄0𝑛
2

𝜇0𝑛
2+
√
𝜇20𝑛

4−4𝑏𝑄0𝑛
2
for |𝑛 | ≥ 𝑛0. Note that |𝑒𝑛 | ≤ 𝐶

|𝑛 |2 and therefore (𝑒𝑛) |𝑛 | ≥𝑛0
∈ ℓ2.
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• On the other hand, we have for all |𝑛 | ≥ 𝑛0

−Re(𝜈𝑝𝑛 )��Im(𝜈𝑝𝑛 )
�� = 1

2

𝜇0𝑛
2 +

√︃
𝜇20𝑛

4 − 4𝑏𝑄0𝑛
2

𝑉0𝑛
≥ 𝜇0

2𝑉0
,

which verifies hypothesis (P2) of Lemma 3.1.1.

• We now compute for |𝑛 | , |𝑙 | ≥ 𝑛0 with 𝑛 ≠ 𝑙��𝜈𝑝𝑛 − 𝜈𝑝
𝑙

��2 = 1

4

(
𝜇0(𝑛2 − 𝑙2) +

√︃
𝜇20𝑛

4 − 4𝑏𝑄0𝑛
2 −

√︃
𝜇20𝑙

4 − 4𝑏𝑄0𝑙
2

)2
+𝑉 2

0 (𝑛 − 𝑙)2

≥ 1

4

(
𝜇0(𝑛2 − 𝑙2) + 𝜇0𝑛2

√︄
1 − 4𝑏𝑄0

𝜇20𝑛
2
− 𝜇0𝑙2

√︄
1 − 4𝑏𝑄0

𝜇20𝑙
2

)2
.

Let |𝑛 | > |𝑙 |. Then we have 𝜇0𝑛
2

√︂
1 − 4𝑏𝑄0

𝜇20𝑛
2 > 𝜇0𝑙

2

√︂
1 − 4𝑏𝑄0

𝜇20𝑙
2 , and this implies

��𝜈𝑝𝑛 − 𝜈𝑝
𝑙

��2 ≥
𝜇20

4
(𝑛2 − 𝑙2)2 =⇒

��𝜈𝑝𝑛 − 𝜈𝑝
𝑙

�� ≥ 𝜇0

2
(𝑛2 − 𝑙2) .

We similarly have for |𝑛 | < |𝑙 | ��𝜈𝑝𝑛 − 𝜈𝑝
𝑙

�� ≥ 𝜇0

2
(𝑙2 − 𝑛2) .

This proves that (𝜈𝑝𝑛 ) |𝑛 | ≥𝑛0
satisfies hypothesis (P3) of Lemma 3.1.1 with 𝑟 = 2 and 𝛿 =

𝜇0
2 .

• Finally, we have for |𝑛 | ≥ 𝑛0��𝜈𝑝𝑛 ��2 = 1

4

(
𝜇0𝑛

2 +
√︃
𝜇20𝑛

4 − 4𝑏𝑄0𝑛
2

)2
+𝑉 2

0 𝑛
2

=
𝜇20

4
𝑛4

(
1 +

√︄
1 − 4𝑏𝑄0

𝜇20𝑛
2

)2
+𝑉 2

0 𝑛
2,

and therefore

𝜇20

4
𝑛4 ≤

��𝜈𝑝𝑛 ��2 ≤
𝜇20

2
𝑛4, ∀ |𝑛 | ≥ 𝑛0.

This proves that the family (𝜈𝑝𝑛 ) |𝑛 | ≥𝑛0
satisfies hypothesis (P4) of Lemma 3.1.1 with 𝜖 = 1√

2
,

𝐴0 = 0 and 𝐵0 =
𝜇0√
2
> 𝛿.

We are now ready to prove the null controllability results of the system (3.1) in the case of simple
eigenvalues.

Proof of Theorem 3.1.1-Part (i): Let 𝑇 > 2𝜋
𝑉0
. Thanks to Theorem 3.2.1, it is enough to prove the

observability inequality (3.39), that is,∫ 𝑇

0
|𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋) |2 𝑑𝑡 ≥ 𝐶



(𝜎 (0), 𝑣 (0))†

2( ¤𝐿2 (0,2𝜋 ) )2 ,
for all (𝜎𝑇 , 𝑣𝑇 )† ∈ D(𝐴∗). Recall the operator B∗

𝜌 given by (3.33). Then, we can write the observation
term as ∫ 𝑇

0
|𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋) |2 𝑑𝑡 =

∫ 𝑇

0

�����∑︁
𝑛∈Z∗

𝑎ℎ𝑛𝑒
𝜈ℎ𝑛 (𝑇−𝑡 )B∗

𝜌Φ
ℎ
𝑛 +

∑︁
𝑛∈Z∗

𝑎
𝑝
𝑛𝑒

𝜈
𝑝
𝑛 (𝑇−𝑡 )B∗

𝜌Φ
𝑝
𝑛

�����2 𝑑𝑡 .
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Using the combined parabolic-hyperbolic Ingham type inequality (3.14) (Lemma 3.1.1) and the ob-
servation estimates (3.35), we obtain∫ 𝑇

0
|𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋) |2 𝑑𝑡 ≥ 𝐶

[∑︁
𝑛∈Z∗

���𝑎ℎ𝑛 ���2 𝑒2Re(𝜈ℎ𝑛 )𝑇
���B∗

𝜌Φ
ℎ
𝑛

���2 + ∑︁
𝑛∈Z∗

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 )𝑇
���B∗

𝜌Φ
𝑝
𝑛

���2]
≥ 𝐶

[∑︁
𝑛∈Z∗

���𝑎ℎ𝑛 ���2 + ∑︁
𝑛∈Z∗

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 )𝑇

]
This estimate together with the norm estimate (3.41), the observability inequality (3.39) follows. This
completes the proof in the case of simple eigenvalues.

Proof of Theorem 3.1.2-Part (i): Let 𝑇 > 2𝜋
𝑉0
. Similar to the density case, it is enough to prove the

observability inequality (3.40), that is,∫ 𝑇

0
|𝑏𝜎 (𝑡, 2𝜋) +𝑉0𝑣 (𝑡, 2𝜋) + 𝜇0𝑣𝑥 (𝑡, 2𝜋) |2 𝑑𝑡 ≥ 𝐶



(𝜎 (0), 𝑣 (0))†

2¤𝐻 −1
per (0,2𝜋 )× ¤𝐿2 (0,2𝜋 ) ,

for all (𝜎𝑇 , 𝑣𝑇 )† ∈ D(𝐴∗). We have∫ 𝑇

0
|𝑏𝜎 (𝑡, 2𝜋) +𝑉0𝑣 (𝑡, 2𝜋) + 𝜇0𝑣𝑥 (𝑡, 2𝜋) |2 𝑑𝑡 =

∫ 𝑇

0

�����∑︁
𝑛∈Z∗

𝑎ℎ𝑛𝑒
𝜈ℎ𝑛 (𝑇−𝑡 )B∗

𝑢Φ
ℎ
𝑛 +

∑︁
𝑛∈Z∗

𝑎
𝑝
𝑛𝑒

𝜈
𝑝
𝑛 (𝑇−𝑡 )B∗

𝑢Φ
𝑝
𝑛

�����2 𝑑𝑡,
where B∗

𝑢 is defined in (3.34). Using the combined parabolic-hyperbolic Ingham type inequality (3.14)
(Lemma 3.1.1), we obtain∫ 𝑇

0
|𝑏𝜎 (𝑡, 2𝜋) +𝑉0𝑣 (𝑡, 2𝜋) + 𝜇0𝑣𝑥 (𝑡, 2𝜋) |2 𝑑𝑡

≥ 𝐶
[∑︁
𝑛∈Z∗

���𝑎ℎ𝑛 ���2 𝑒2Re(𝜈ℎ𝑛 )𝑇
���B∗

𝑢Φ
ℎ
𝑛

���2 + ∑︁
𝑛∈Z∗

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 )𝑇 ��B∗
𝑢Φ

𝑝
𝑛

��2]
≥ 𝐶

[∑︁
𝑛∈Z∗

���𝑎ℎ𝑛 ���2 1

|𝑛 |2
+

∑︁
𝑛∈Z∗

��𝑎𝑝𝑛 ��2 |𝑛 |2 𝑒2Re(𝜈𝑝𝑛 )𝑇

]
,

thanks to the estimate (3.36). Combining this estimate and (3.42), we deduce that∫ 𝑇

0
|𝑏𝜎 (𝑡, 2𝜋) +𝑉0𝑣 (𝑡, 2𝜋) + 𝜇0𝑣𝑥 (𝑡, 2𝜋) |2 𝑑𝑡 ≥ 𝐶



(𝜎 (0), 𝑣 (0))†

 ¤𝐻 −1
per (0,2𝜋 )× ¤𝐿2 (0,2𝜋 ) .

This proves the observability inequality (3.40) and hence the proof is complete for simple eigenvalues.

3.2.5.2 The case of multiple eigenvalues

In this section, we prove null controllability of the system (3.1) in the presence of multiple eigenvalues.
The proof will be similar in both cases (control acting in density or velocity), so we present a detailed
proof for the density case and give brief details for the velocity case. The proof is inspired from
[KL05, Section 4.4] and [CMRR14, Section 4.2] and throughout the proof, we assume the conditions

𝑛0 =
2
√
𝑏𝑄0

𝜇0
∈ N and

2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∉ N. Then, we only have two multiple eigenvalues 𝜈ℎ𝑛0

= 𝜈
𝑝
𝑛0

=: 𝜈𝑛0 and

𝜈ℎ−𝑛0
= 𝜈

𝑝
−𝑛0

=: 𝜈−𝑛0 with the generalized eigenfunctions
{
Φ𝑛0, Φ̃𝑛0

}
and

{
Φ−𝑛0, Φ̃−𝑛0

}
respectively, where

Φ𝑗 := (𝜉 𝑗 , 𝜂 𝑗 )† and Φ̃𝑗 := (𝜉 𝑗 , 𝜂 𝑗 )† for 𝑗 = ±𝑛0.

Control in density. Let (𝜎𝑇 , 𝑣𝑇 )† ∈ ( ¤𝐿2(0, 2𝜋))2. We decompose it as

(𝜎𝑇 , 𝑣𝑇 )† = (𝜎𝑇,1, 𝑣𝑇,1)† + (𝜎𝑇,2, 𝑣𝑇,2)†, (3.43)
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where

(𝜎𝑇,1, 𝑣𝑇,1)† =
∑︁
𝑗=±𝑛0

(𝑎 𝑗Φ𝑗 + 𝑎 𝑗 Φ̃𝑗 )

and

(𝜎𝑇,2, 𝑣𝑇,2)† =
∑︁

𝑛∈Z∗\{±𝑛0}
(𝑎ℎ𝑛Φℎ

𝑛 + 𝑎
𝑝
𝑛Φ

𝑝
𝑛).

Let (𝜎1, 𝑣1)† and (𝜎2, 𝑣2)† be the solutions of the adjoint system (3.20) with the terminal data (𝜎𝑇,1, 𝑣𝑇,1)†
and (𝜎𝑇,2, 𝑣𝑇,2)† respectively. Then, we have

(𝜎1, 𝑣1)† =
∑︁
𝑗=±𝑛0

𝑒𝜈𝑗 (𝑇−𝑡 )
(
𝑎 𝑗Φ𝑗 + (𝑇 − 𝑡)𝑎 𝑗 Φ̃𝑗

)
(3.44)

and

(𝜎2, 𝑣2)† =
∑︁

𝑛∈Z∗\{±𝑛0}

(
𝑎ℎ𝑛𝑒

𝜈ℎ𝑛 (𝑇−𝑡 )Φℎ
𝑛 + 𝑎

𝑝
𝑛𝑒

𝜈
𝑝
𝑛 (𝑇−𝑡 )Φ

𝑝
𝑛

)
(3.45)

In the expression of (𝜎2, 𝑣2)†, all eigenvalues are simple, so we have the following observability inequality∫ 𝑇

0
|𝑉0𝜎2(𝑡, 2𝜋) +𝑄0𝑣2(𝑡, 2𝜋) |2 𝑑𝑡 ≥ 𝐶



(𝜎2(0), 𝑣2(0))†

2( ¤𝐿2 (0,2𝜋 ) )2 . (3.46)

Note that 𝑉0𝜎1(𝑡, 2𝜋) + 𝑄0𝑣1(𝑡, 2𝜋) =
∑

𝑗=±𝑛0
𝑒𝜈𝑗 (𝑇−𝑡 )

(
𝑎 𝑗B∗

𝜌Φ𝑗 + (𝑇 − 𝑡)𝑎 𝑗B∗
𝜌 Φ̃𝑗

)
. We first add the term

𝑒𝜈𝑛0 (𝑇−𝑡 )
(
𝑎𝑛0B∗

𝜌Φ𝑛0 + (𝑇 − 𝑡)𝑎𝑛0B∗
𝜌 Φ̃𝑛0

)
in the above inequality. Denote

Y(𝑡) := 𝑉0𝜎2(𝑡, 2𝜋) +𝑄0𝑣2(𝑡, 2𝜋) + 𝑒𝜈𝑛0 (𝑇−𝑡 )
(
𝑎𝑛0B∗

𝜌Φ𝑛0 + (𝑇 − 𝑡)𝑎𝑛0B∗
𝜌 Φ̃𝑛0

)
and

Z(𝑡) := Y(𝑡) − 1

2𝛿

∫ 𝛿

−𝛿
𝑒𝜈𝑛0𝑠Y(𝑡 + 𝑠)𝑑𝑠

for 𝑡 ∈ (𝛿,𝑇 − 𝛿) with 𝛿 > 0 (chosen later accordingly). Then, we have the following estimate (see
[KL05, Section 4.4] for details). ∫ 𝑇−𝛿

𝛿

|Z(𝑡) |2 𝑑𝑡 ≤ 𝐶
∫ 𝑇

0
|Y(𝑡) |2 𝑑𝑡 . (3.47)

We now prove that ∫ 𝑇−𝛿

𝛿

|Z(𝑡) |2 𝑑𝑡 ≥ 𝐶


(𝜎2(0), 𝑣2(0))†

2( ¤𝐿2 (0,2𝜋 ) )2 . (3.48)

From the expression of Y(𝑡), we can get

Z(𝑡) =
∑︁

𝑛∈Z∗\{±𝑛0}
𝑎ℎ𝑛𝑒

𝜈ℎ𝑛 (𝑇−𝑡 )B∗
𝜌Φ

ℎ
𝑛

(
1 −

sinh((𝜈ℎ𝑛 − 𝜈𝑛0)𝛿)
(𝜈ℎ𝑛 − 𝜈𝑛0)𝛿

)
+

∑︁
𝑛∈Z∗\{±𝑛0}

𝑎
𝑝
𝑛𝑒

𝜈
𝑝
𝑛 (𝑇−𝑡 )B∗

𝜌Φ
𝑝
𝑛

(
1 −

sinh((𝜈𝑝𝑛 − 𝜈𝑛0)𝛿)
(𝜈𝑝𝑛 − 𝜈𝑛0)𝛿

)
Since inf𝑛∈Z∗\{±𝑛0}

��𝜈ℎ𝑛 − 𝜈𝑛0

�� > 0 and inf𝑛∈Z∗\{±𝑛0}
��𝜈𝑝𝑛 − 𝜈𝑛0

�� > 0, we have (for appropriate 𝛿 > 0)

inf
𝑛∈Z∗\{±𝑛0}

�����1 − sinh((𝜈ℎ𝑛 − 𝜈𝑛0)𝛿)
(𝜈ℎ𝑛 − 𝜈𝑛0)𝛿

����� > 0, and inf
𝑛∈Z∗\{±𝑛0}

�����1 − sinh((𝜈𝑝𝑛 − 𝜈𝑛0)𝛿)
(𝜈𝑝𝑛 − 𝜈𝑛0)𝛿

����� > 0.
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Since 𝑇 > 2𝜋
𝑉0
, we can choose 𝛿 small enough such that 𝑇 − 2𝛿 > 2𝜋

𝑉0
. Applying Ingham-type inequality

(3.14) (for simple eigenvalues), we obtain∫ 𝑇−𝛿

𝛿

|Z(𝑡) |2 𝑑𝑡 ≥ 𝐶


∑︁
𝑛∈Z∗\{±𝑛0}

���𝑎ℎ𝑛 ���2 𝑒2Re(𝜈ℎ𝑛 )𝑇
���B∗

𝜌Φ
ℎ
𝑛

���2 + ∑︁
𝑛∈Z∗\{±𝑛0}

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 )𝑇
���B∗

𝜌Φ
𝑝
𝑛

���2
≥ 𝐶



(𝜎2(0), 𝑣2(0))†

2( ¤𝐿2 (0,2𝜋 ) )2 .
Therefore, using the estimate (3.47), we obtain∫ 𝑇

0
|Y(𝑡) |2 𝑑𝑡 ≥ 𝐶



(𝜎2(0), 𝑣2(0))†

2( ¤𝐿2 (0,2𝜋 ) )2 . (3.49)

Since 𝑇 > 2𝜋
𝑉0
, we can choose 𝜖 > 0 such that 𝑇 − 𝜖 > 2𝜋

𝑉0
. Therefore we can write∫ 𝑇

𝜖

|Y(𝑡) |2 𝑑𝑡 ≥ 𝐶


(𝜎2(𝜖), 𝑣2(𝜖))†

2( ¤𝐿2 (0,2𝜋 ) )2

and thus ∫ 𝑇

0
|Y(𝑡) |2 𝑑𝑡 ≥ 𝐶

∫ 𝑇

𝜖

|Y(𝑡) |2 𝑑𝑡 ≥ 𝐶


(𝜎2(𝜖), 𝑣2(𝜖))†

2( ¤𝐿2 (0,2𝜋 ) )2 . (3.50)

Thanks to the well-posedness result (Lemma 3.2.2) of the adjoint system (3.20), we have∫ 𝜖

0
|𝑉0𝜎2(𝑡, 2𝜋) +𝑄0𝑣2(𝑡, 2𝜋) |2 𝑑𝑡 ≤ 𝐶



(𝜎2(𝜖), 𝑣2(𝜖))†

2( ¤𝐿2 (0,2𝜋 ) )2 . (3.51)

From equations (3.50) and (3.51), we deduce that∫ 𝑇

0
|Y(𝑡) |2 𝑑𝑡 ≥ 𝐶

∫ 𝜖

0
|𝑉0𝜎2(𝑡, 2𝜋) +𝑄0𝑣2(𝑡, 2𝜋) |2 𝑑𝑡 (3.52)

Using this inequality, we obtain∫ 𝜖

0

���𝑒𝜈𝑛0 (𝑇−𝑡 )
(
𝑎𝑛0B∗

𝜌Φ𝑛0 + (𝑇 − 𝑡)𝑎𝑛0B∗
𝜌 Φ̃𝑛0

)���2 𝑑𝑡 (3.53)

≤ 𝐶
∫ 𝜖

0
|Y(𝑡) |2 𝑑𝑡 +𝐶

∫ 𝜖

0
|𝑉0𝜎2(𝑡, 2𝜋) +𝑄0𝑣2(𝑡, 2𝜋) |2 𝑑𝑡

≤ 𝐶
∫ 𝑇

0
|Y(𝑡) |2 𝑑𝑡

We now prove that∫ 𝜖

0

���𝑒𝜈𝑛0 (𝑇−𝑡 )
(
𝑎𝑛0B∗

𝜌Φ𝑛0 + (𝑇 − 𝑡)𝑎𝑛0B∗
𝜌 Φ̃𝑛0

)���2 𝑑𝑡 ≥ 𝐶 (��𝑎𝑛0

��2 + ��𝑎𝑛0

��2) (3.54)

Denote the finite dimensional space

X := span
{
Φ𝑛0, Φ̃𝑛0

}
and define norms on X:

(𝜎𝑇,1, 𝑣𝑇,1)†

21 : = ∫ 𝜖

0

���𝑒𝜈𝑛0 (𝑇−𝑡 )
(
𝑎𝑛0B∗

𝜌Φ𝑛0 + (𝑇 − 𝑡)𝑎𝑛0B∗
𝜌 Φ̃𝑛0

)���2 𝑑𝑡,

(𝜎𝑇,1, 𝑣𝑇,1)†

22 : = 

(𝜎1(0), 𝑣1(0))†

2( ¤𝐿2 (0,2𝜋 ) )2 ,
where (𝜎1(𝑡), 𝑣1(𝑡))† = 𝑒𝜈𝑛0 (𝑇−𝑡 )

(
𝑎𝑛0Φ𝑛0 + (𝑇 − 𝑡)𝑎𝑛0Φ̃𝑛0

)
for 𝑡 ∈ (0,𝑇 ) is the solution of the adjoint

system with terminal data (𝜎𝑇,1, 𝑣𝑇,1)† ∈ X. In fact,


(𝜎𝑇,1, 𝑣𝑇,1)†

1 = 0 implies B∗

𝜌Φ𝑛0 = B∗
𝜌 Φ̃𝑛0 = 0.
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This gives Φ𝑛0 = Φ̃𝑛0 = 0 (thanks to Lemma 3.2.5 - Remark 3.2.1) and hence (𝜎𝑇,1, 𝑣𝑇,1) = (0, 0). Also,
(𝜎1(0), 𝑣1(0)) = (0, 0) implies Φ𝑛0 = Φ̃𝑛0 = 0 and consequently (𝜎1, 𝑣1) = (0, 0).
Since any two norms in a finite dimensional space are equivalent, we can write∫ 𝜖

0

���𝑒𝜈𝑛0 (𝑇−𝑡 )
(
𝑎𝑛0B∗

𝜌Φ𝑛0 + (𝑇 − 𝑡)𝑎𝑛0B∗
𝜌 Φ̃𝑛0

)���2 𝑑𝑡 ≥ 𝐶 

(𝜎1(0), 𝑣1(0))†

2( ¤𝐿2 (0,2𝜋 ) )2 ,
proving the inequality (3.54). Hence, using (3.53), we finally obtain∫ 𝑇

0
|Y(𝑡) |2 𝑑𝑡 ≥ 𝐶



(𝜎1(0), 𝑣1(0))†

2( ¤𝐿2 (0,2𝜋 ) )2 . (3.55)

This inequality, together with (3.49) implies∫ 𝑇

0
|Y(𝑡) |2 𝑑𝑡 ≥ 𝐶

[

(𝜎1(0), 𝑣1(0))†

2( ¤𝐿2 (0,2𝜋 ) )2 + 

(𝜎2(0), 𝑣2(0))†

2( ¤𝐿2 (0,2𝜋 ) )2 ]
≥ 𝐶



(𝜎2(0) + 𝜎1(0), 𝑣2(0) + 𝑣1(0))†

2( ¤𝐿2 (0,2𝜋 ) )2 .
Proceeding in a similar way, we can add the term 𝑒𝜈−𝑛0 (𝑇−𝑡 )

(
𝑎−𝑛0B∗

𝜌Φ−𝑛0 + (𝑇 − 𝑡)𝑎−𝑛0B∗
𝜌 Φ̃−𝑛0

)
and

obtain the desired observability inequality∫ 𝑇

0
|𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋) |2 𝑑𝑡 ≥ 𝐶



(𝜎 (0), 𝑣 (0))†

2( ¤𝐿2 (0,2𝜋 ) )2 .
This completes the proof of Theorem 3.1.1-Part (i) in the case of multiple eigenvalues.

Control in velocity. The proof of Theorem 3.1.2-Part (i) (control acting in the velocity component) in
the case of multiple eigenvalues can be done in a similar way as above. The only missing part is the
following admissibility condition (see the inequality (3.51))∫ 𝜖

0
|𝑏𝜎2(𝑡, 2𝜋) +𝑉0𝑣2(𝑡, 2𝜋) + 𝜇0(𝑣2)𝑥 (𝑡, 2𝜋) |2 𝑑𝑡 ≤ 𝐶



(𝜎2(𝜖), 𝑣2(𝜖))†

 ¤𝐻 −1
per (0,2𝜋 )× ¤𝐿2 (0,2𝜋 ) . (3.56)

The terminal data (𝜎2, 𝑣2) ∈ ¤𝐻−1
per(0, 2𝜋) × ¤𝐿2(0, 2𝜋) is less regular and so one cannot expect that

the observation term 𝑏𝜎2(·, 2𝜋) + 𝑉0𝑣2(·, 2𝜋) + 𝜇0(𝑣2)𝑥 (·, 2𝜋) ∈ 𝐿2(0, 𝜖) for some 𝜖 > 0. This is the
main difficulty of boundary controllability in comparison with the distributed controllability. In this
context, we refer to [CMRR14, Equation (4.43)], where one can easily have the admissibility condition
due to the internal control. However, in our setup, we can obtain a slightly modified estimate (weak
admissibility) to (3.56) as follows:∫ 𝜖

2

0
|𝑏𝜎2(𝑡, 2𝜋) +𝑉0𝑣2(𝑡, 2𝜋) + 𝜇0(𝑣2)𝑥 (𝑡, 2𝜋) |2 𝑑𝑡 ≤ 𝐶



(𝜎2(𝜖), 𝑣2(𝜖))†

2¤𝐻 −1
per (0,2𝜋 )× ¤𝐿2 (0,2𝜋 ) . (3.57)

Using this inequality (3.57) and proceeding similarly as before, we can obtain the required observability
inequality (3.40) in the presence of multiple eigenvalues. Thus, the only technical part is to prove the
inequality (3.57), which we prove below:

Recall the expression of (𝜎2, 𝑣2)† given by (3.45). We compute∫ 𝜖
2

0
|𝑏𝜎2(𝑡, 2𝜋) +𝑉0𝑣2(𝑡, 2𝜋) + 𝜇0(𝑣2)𝑥 (𝑡, 2𝜋) |2 𝑑𝑡

≤
∫ 𝜖

2

0

������ ∑︁
𝑛∈Z∗\{±𝑛0}

(
𝑎ℎ𝑛𝑒

𝜈ℎ𝑛 (𝑇−𝑡 )B∗
𝑢Φ

ℎ
𝑛 + 𝑎

𝑝
𝑛𝑒

𝜈
𝑝
𝑛 (𝑇−𝑡 )B∗

𝑢Φ
𝑝
𝑛

)������
2

𝑑𝑡

≤
∫ 𝜖

2

0

������ ∑︁
𝑛∈Z∗\{±𝑛0}

𝑎ℎ𝑛𝑒
𝜈ℎ𝑛 (𝑇−𝑡 )B∗

𝑢Φ
ℎ
𝑛

������
2

𝑑𝑡 +
∫ 𝜖

2

0

������ ∑︁
𝑛∈Z∗\{±𝑛0}

𝑎
𝑝
𝑛𝑒

𝜈
𝑝
𝑛 (𝑇−𝑡 )B∗

𝑢Φ
𝑝
𝑛

������
2

𝑑𝑡
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Note that ∫ 𝜖
2

0

������ ∑︁
𝑛∈Z∗\{±𝑛0}

𝑎ℎ𝑛𝑒
𝜈ℎ𝑛 (𝑇−𝑡 )B∗

𝑢Φ
ℎ
𝑛

������
2

𝑑𝑡 ≤ 𝐶
∑︁

𝑛∈Z∗\{±𝑛0}

���𝑎ℎ𝑛B∗
𝑢Φ

ℎ
𝑛

���2 ≤ 𝐶
∑︁

𝑛∈Z∗\{±𝑛0}

��𝑎ℎ𝑛 ��2
|𝑛 |2

, (3.58)

thanks to the inequality (3.16) (right side). Note that the estimate
��B∗

𝑢Φ
ℎ
𝑛

�� ≤ 𝐶
|𝑛 | follows due to the

fact that B∗
𝑢Φ

ℎ
𝑛 = 𝜈𝑛2𝛼

𝑛
2 for all 𝑛 ∈ Z∗ (see the proof of Lemma 3.2.5). For the parabolic part, we apply

Hölder’s inequality to obtain

∫ 𝜖
2

0

������ ∑︁
𝑛∈Z∗\{±𝑛0}

𝑎
𝑝
𝑛𝑒

𝜈
𝑝
𝑛 (𝑇−𝑡 )B∗

𝑢Φ
𝑝
𝑛

������
2

𝑑𝑡

≤
∑︁

𝑛∈Z∗\{±𝑛0}

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 ) (𝑇−𝜖 )
∑︁

𝑛∈Z∗\{±𝑛0}

��B∗
𝑢Φ

𝑝
𝑛

��2 𝑒−2Re(𝜈𝑝𝑛 ) (𝑇−𝜖 )
∫ 𝜖

2

0
𝑒2Re(𝜈𝑝𝑛 ) (𝑇−𝑡 )𝑑𝑡

≤
∑︁

𝑛∈Z∗\{±𝑛0}

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 ) (𝑇−𝜖 )
∑︁

𝑛∈Z∗\{±𝑛0}

��B∗
𝑢Φ

𝑝
𝑛

��2 𝑒Re(𝜈𝑝𝑛 )𝜖

≤ 𝐶
∑︁

𝑛∈Z∗\{±𝑛0}

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 ) (𝑇−𝜖 ) ,

as we have Re(𝜈𝑝𝑛 ) < 0 for all 𝑛 ∈ Z∗. Combining these two estimates, we obtain∫ 𝜖
2

0
|𝑏𝜎2(𝑡, 2𝜋) +𝑉0𝑣2(𝑡, 2𝜋) + 𝜇0(𝑣2)𝑥 (𝑡, 2𝜋) |2 𝑑𝑡 (3.59)

≤ 𝐶
∑︁

𝑛∈Z∗\{±𝑛0}

��𝑎ℎ𝑛 ��2
|𝑛 |2

+𝐶
∑︁

𝑛∈Z∗\{±𝑛0}

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 ) (𝑇−𝜖 )

On the other hand (recall the expression given by (3.45) and (3.24)), we have

(𝜎2(𝜖), 𝑣2(𝜖))†

2¤𝐻 −1
per (0,2𝜋 )× ¤𝐿2 (0,2𝜋 )

=
∑︁

𝑛∈Z∗\{±𝑛0}

(
𝑏

|𝑛 |2

����𝑎ℎ𝑛𝑒𝜈ℎ𝑛 (𝑇−𝜖 )𝑄0 + 𝑎𝑝𝑛𝑒𝜈
𝑝
𝑛 (𝑇−𝜖 ) 𝑄0

𝜈𝑛1 −𝑉0

����2 +𝑄0

���𝑎ℎ𝑛𝑒𝜈ℎ𝑛 (𝑇−𝜖 ) (𝜈𝑛2 −𝑉0) + 𝑎
𝑝
𝑛𝑒

𝜈
𝑝
𝑛 (𝑇−𝜖 )

���2)
Since 𝜈𝑛1 −𝑉0 ∼+∞ 𝑛 and 𝜈𝑛2 −𝑉0 ∼+∞

1
𝑛
, we deduce that for 𝑁 large enough

∑︁
|𝑛 |>𝑁

(
𝑏

|𝑛 |2

����𝑎ℎ𝑛𝑒𝜈ℎ𝑛 (𝑇−𝜖 )𝑄0 + 𝑎𝑝𝑛𝑒𝜈
𝑝
𝑛 (𝑇−𝜖 ) 𝑄0

𝜈𝑛1 −𝑉0

����2 +𝑄0

���𝑎ℎ𝑛𝑒𝜈ℎ𝑛 (𝑇−𝜖 ) (𝜈𝑛2 −𝑉0) + 𝑎
𝑝
𝑛𝑒

𝜈
𝑝
𝑛 (𝑇−𝜖 )

���2) (3.60)

≥ 𝐶
∑︁
|𝑛 |>𝑁

��𝑎ℎ𝑛 ��2
|𝑛 |2

+𝐶
∑︁
|𝑛 |>𝑁

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 ) (𝑇−𝜖 ) .

This can be seen from the following inequality:

1

|𝑛 |2
���𝑧𝑛 + 𝑤𝑛

𝑛

���2 + ���𝑧𝑛
𝑛

+𝑤𝑛

���2 ≥ 𝐶
(
|𝑧𝑛 |2

|𝑛 |2
+ |𝑤𝑛 |2

)
, (3.61)

for all complex sequences (𝑧𝑛) |𝑛 |>𝑁 and (𝑤𝑛) |𝑛 |>𝑁 , where 𝑁 ∈ N is arbitrarily large number. Indeed, if
𝑧𝑛,𝑤𝑛 ≠ 0 for all |𝑛 | > 𝑁 , then we can write

1

|𝑛 |2
���𝑧𝑛 + 𝑤𝑛

𝑛

���2 + ���𝑧𝑛
𝑛

+𝑤𝑛

���2 = |𝑧𝑛 |2

|𝑛 |2

����1 + 𝑤𝑛

𝑛𝑧𝑛

����2 + |𝑤𝑛 |2
���� 𝑧𝑛𝑛𝑤𝑛

+ 1

����2 , |𝑛 | > 𝑁 .
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If inf |𝑛 |>𝑁

���1 + 𝑤𝑛

𝑛𝑧𝑛

��� > 0 and inf |𝑛 |>𝑁

��� 𝑧𝑛
𝑛𝑤𝑛

+ 1
��� > 0, the inequality (3.61) is obvious. Let us assume

inf |𝑛 |>𝑁

���1 + 𝑤𝑛

𝑛𝑧𝑛

��� = 0, then we can write (up to a subsequence) 1 + 𝑤𝑛

𝑛𝑧𝑛
= 𝛿𝑛 where 𝛿𝑛 → 0 as 𝑛 → ∞.

This implies 𝑤𝑛

𝑧𝑛
= 𝑛(−1 + 𝛿𝑛) for all 𝑛 ∈ N and therefore���𝑧𝑛

𝑛
+𝑤𝑛

���2 = |𝑧𝑛 |2
����1𝑛 + 𝑤𝑛

𝑧𝑛

����2 = |𝑧𝑛 |2
����1𝑛 − 𝑛(−1 + 𝛿𝑛)

����2 ≥ 𝐶 |𝑛 |2 |𝑧𝑛 |2 .

On the other hand, we have |𝑛 |2 |𝑧𝑛 |2 = |𝑛 |2
2 |𝑧𝑛 |2 + |𝑛 |2

2 |𝑧𝑛 |2 ≥ |𝑛 |2
2 |𝑧𝑛 |2 +𝐶 |𝑤𝑛 |2, proving the inequality

(3.61). Similarly, we can prove (3.61) in the case inf |𝑛 |>𝑁

��� 𝑧𝑛
𝑛𝑤𝑛

+ 1
��� = 0.

Now, adding finitely many terms in the estimate (3.60) (or, one can include these finitely many
terms in (𝜎1, 𝑣1)† part), we get that

(𝜎2(𝜖), 𝑣2(𝜖))†

2¤𝐻 −1

per (0,2𝜋 )× ¤𝐿2 (0,2𝜋 ) ≥ 𝐶
©­«

∑︁
𝑛∈Z∗\{±𝑛0}

��𝑎ℎ𝑛 ��2
|𝑛 |2

+
∑︁

𝑛∈Z∗\{±𝑛0}

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 ) (𝑇−𝜖 )ª®¬ . (3.62)

With this, the inequality (3.57) follows.

3.2.6 Lack of null controllability for less regular initial states

We first write the following result, the proof of which is standard and so we skip the details (see
Theorem 3.2.2).

Proposition 3.2.4. Let 0 ≤ 𝑠 < 1 and 𝑇 > 0 be given. Then, the system (3.1)-(3.2)-(3.4) is null
controllable at time 𝑇 in the space ¤𝐻𝑠

per(0, 2𝜋) × ¤𝐿2(0, 2𝜋) if and only if the inequality

(𝜎 (0), 𝑣 (0))†

2¤𝐻 −𝑠
per (0,2𝜋 )× ¤𝐿2 (0,2𝜋 ) ≤ 𝐶

∫ 𝑇

0
|𝑏𝜎 (𝑡, 2𝜋) +𝑉0𝑣 (𝑡, 2𝜋) + 𝜇0𝑣𝑥 (𝑡, 2𝜋) |2 𝑑𝑡 (3.63)

holds for all solutions (𝜎, 𝑣)† of the adjoint system (3.20) with terminal data (𝜎𝑇 , 𝑣𝑇 )† ∈ D(𝐴∗).

To prove Theorem 3.1.2-Part (ii), it is enough to find a sequence of terminal data (𝜎𝑛
𝑇
, 𝑣𝑛

𝑇
)𝑛∈Z∗ ∈

D(𝐴∗) for which the observability inequality (3.63) fails. We will show below that the eigenfunctions
corresponding to the hyperbolic branch of eigenvalues helps us disprove this observability inequality.

3.2.6.1 Proof of Theorem 3.1.2-Part (ii)

For (𝜎𝑛
𝑇
, 𝑣𝑛

𝑇
)† = Φℎ

𝑛, the solution to the adjoint system (3.20) is

(𝜎𝑛 (𝑡, 𝑥), 𝑣𝑛 (𝑡, 𝑥))† = 𝑒𝜈ℎ𝑛 (𝑇−𝑡 )Φℎ
𝑛 (𝑥),

for (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 2𝜋) and 𝑛 ∈ Z∗. Recall the expression of Φℎ
𝑛 from (3.24). For all 𝑛 ∈ Z∗, we have

the following estimate 


Φℎ
𝑛




 ¤𝐻 −𝑠
per (0,2𝜋 )× ¤𝐿2 (0,2𝜋 )

≥ 𝐶

|𝑛 |𝑠 ,

and therefore 

(𝜎𝑛 (0), 𝑣𝑛 (0))†

2¤𝐻 −𝑠
per (0,2𝜋 )× ¤𝐿2 (0,2𝜋 ) ≥

𝐶

|𝑛 |2𝑠

for all 𝑛 ∈ Z∗, since Re(𝜈ℎ𝑛) is bounded. On the other hand, we have the upper bound of the observation
term ∫ 𝑇

0

��𝑏𝜎𝑛 (𝑡, 2𝜋) +𝑉0𝑣𝑛 (𝑡, 2𝜋) + 𝜇0𝑣𝑛𝑥 (𝑡, 2𝜋)��2 𝑑𝑡 ≤ 𝐶

|𝑛 |2
,

for all 𝑛 ∈ Z∗ (see (3.58) for instance). Thus, if the observability inequality (3.63) holds, then one
must have

𝐶

|𝑛 |2𝑠
≤ 𝐶

|𝑛 |2
=⇒ |𝑛 |2−2𝑠 ≤ 𝐶,

which is not possible due to our assumption 0 ≤ 𝑠 < 1. This completes the proof.
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3.2.7 Lack of controllability at small time

We prove that the system (3.6) is not null controllable in ¤𝐿2(0, 2𝜋) when the time is small, that
is, Theorem 3.1.1-Part (ii). We construct an approximate solution for the corresponding transport
equation. The idea of constructing an approximate solution for the transport equation was addressed
in [BKLB20], where the authors proved a lack of null controllability result at a small time in the
case of an interior control (acting only on the transport equation). Very recently, in [CDM23, Section
6], this approach has been applied to a coupled transport-elliptic system in the case of a boundary
control (acts in density). We will follow mainly the proof given in [CDM23] to prove our lack of null
controllability result when the time is small.

3.2.7.1 Proof of Theorem 3.1.1-Part (ii)

Let 0 < 𝑇 < 2𝜋
𝑉0
. We first consider the transport equation


𝜎𝑡 (𝑡, 𝑥) +𝑉0𝜎𝑥 (𝑡, 𝑥) −

𝑏𝑄0

𝜇0
𝜎 (𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 2𝜋),

𝜎 (𝑡, 0) = 𝜎 (𝑡, 2𝜋), 𝑡 ∈ (0,𝑇 ),
𝜎 (𝑇, 𝑥) = 𝜎𝑇 (𝑥), 𝑥 ∈ (0, 2𝜋)

(3.64)

with 𝜎𝑇 ∈ ¤𝐿2(0, 2𝜋) . Since 𝑉0𝑇 < 2𝜋 , there exists a nontrivial function 𝜎𝑇 ∈ 𝐶∞(0, 2𝜋) with supp(𝜎𝑇 ) ⊂
(𝑉0𝑇, 2𝜋) such that the solution 𝜎 of (3.64) satisfies 𝜎 (𝑡, 0) = 𝜎 (𝑡, 2𝜋) = 0 for all 𝑡 ∈ (0,𝑇 ), but 𝜎 is not
identically zero in (0,𝑇 ) × (0, 2𝜋). Let 𝑁 > 0 be a fixed integer. We define the polynomial

𝑃𝑁 (𝑥) :=
𝑁∏

𝑙=−𝑁
𝑙≠0

(𝑥 − 𝑙), 𝑥 ∈ (0, 2𝜋) (3.65)

and the function

𝜎𝑁𝑇 := 𝑃𝑁
(
−𝑖 𝑑
𝑑𝑥

)
𝜎𝑇 . (3.66)

Since 𝜎𝑇 ∈ ¤𝐿2(0, 2𝜋), we can write

𝜎𝑇 (𝑥) :=
∑︁
𝑛∈Z∗

𝑎𝑛𝑒
𝑖𝑛𝑥 , 𝑥 ∈ (0, 2𝜋),

where (𝑎𝑛)𝑛∈Z∗ ∈ ℓ2. Using the definition of 𝑃𝑁 given by (3.65), we get from (3.66) that

𝜎𝑁𝑇 (𝑥) =
∑︁
𝑛∈Z∗

𝑎𝑛

𝑁∏
𝑙=−𝑁
𝑙≠0

(
−𝑖 𝑑
𝑑𝑥

− 𝑙
)
𝑒𝑖𝑛𝑥 =

∑︁
𝑛∈Z∗

𝑎𝑛

𝑁∏
𝑙=−𝑁
𝑙≠0

(𝑛 − 𝑙) 𝑒𝑖𝑛𝑥 =
∑︁
𝑛∈Z∗

𝑎𝑛𝑃
𝑁 (𝑛)𝑒𝑖𝑛𝑥 ,

for 𝑥 ∈ (0, 2𝜋). Note that 𝑃𝑁 (𝑛) = 0 for all 0 < |𝑛 | ≤ 𝑁 and therefore

𝜎𝑁𝑇 (𝑥) =
∑︁

|𝑛 | ≥𝑁+1
𝑎𝑛𝑃

𝑁 (𝑛)𝑒𝑖𝑛𝑥 , 𝑥 ∈ (0, 2𝜋).

With this 𝜎𝑁
𝑇
, let us now consider the following system


𝜎𝑡 +𝑉0𝜎𝑥 =

𝑏𝑄0

𝜇0
𝜎, in (0,𝑇 ) × (0, 2𝜋),

𝜎 (𝑡, 0) = 𝜎 (𝑡, 2𝜋), for 𝑡 ∈ (0,𝑇 ),
𝜎 (𝑇, 𝑥) = 𝜎𝑁𝑇 (𝑥), in (0, 2𝜋) .

(3.67)
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Since supp(𝜎𝑁
𝑇
) ⊂ supp(𝜎𝑇 ) ⊂ (𝑉0𝑇, 2𝜋), the solution 𝜎𝑁 of (3.67) satisfies 𝜎𝑁 (𝑡, 0) = 𝜎𝑁 (𝑡, 2𝜋) = 0 for

all 𝑡 ∈ (0,𝑇 ). We now consider the following adjoint system

𝜎𝑡 +𝑉0𝜎𝑥 +𝑄0𝑣𝑥 = 0, in (0,𝑇 ) × (0, 2𝜋),
𝑣𝑡 − 𝜇0𝑣𝑥𝑥 +𝑉0𝑣𝑥 + 𝑏𝜎𝑥 = 0, in (0,𝑇 ) × (0, 2𝜋),
𝜎 (𝑡, 0) = 𝜎 (𝑡, 2𝜋), for 𝑡 ∈ (0,𝑇 ),
𝑣 (𝑡, 0) = 𝑣 (𝑡, 2𝜋), 𝑣𝑥 (𝑡, 0) = 𝑣𝑥 (𝑡, 2𝜋), for 𝑡 ∈ (0,𝑇 ),
𝜎 (𝑇, 𝑥) = 𝜎𝑁𝑇 (𝑥), 𝑣 (𝑇, 𝑥) = 𝑣𝑁𝑇 (𝑥), in (0, 2𝜋),

(3.68)

where we choose 𝑣𝑁
𝑇

such that

(𝜎𝑁𝑇 , 𝑣
𝑁
𝑇 )† =

∑︁
|𝑛 | ≥𝑁+1

𝑎ℎ𝑛Φ
ℎ
𝑛

with 𝑎ℎ𝑛𝑄0 := 𝑎𝑛𝑃
𝑁 (𝑛) for all |𝑛 | ≥ 𝑁 + 1. We write the solutions to the systems (3.67) and (3.68)

respectively as

𝜎𝑁 (𝑡, 𝑥) =
∑︁

|𝑛 | ≥𝑁+1
𝑎𝑛𝑃

𝑁 (𝑛)𝑒 (𝑉0𝑖𝑛− 𝑏𝑄0
𝜇0

) (𝑇−𝑡 )
𝑒𝑖𝑛𝑥 , (3.69)

𝜎𝑁 (𝑡, 𝑥) =
∑︁

|𝑛 | ≥𝑁+1
𝑎𝑛𝑃

𝑁 (𝑛)𝑒𝜈ℎ𝑛 (𝑇−𝑡 )𝑒𝑖𝑛𝑥 , (3.70)

𝑣𝑁 (𝑡, 𝑥) =
∑︁

|𝑛 | ≥𝑁+1
𝑎𝑛𝑃

𝑁 (𝑛)
𝜈𝑛2 −𝑉0
𝑄0

𝑒𝜈
ℎ
𝑛 (𝑇−𝑡 )𝑒𝑖𝑛𝑥 , (3.71)

for (𝑡, 𝑥) ∈ [0,𝑇 ] × [0, 2𝜋]. We prove that the solution component 𝜎𝑁 of (3.68) approximates the
solution 𝜎𝑁 of (3.67). Indeed,

𝜎𝑁 (·, 𝑥) − 𝜎𝑁 (·, 𝑥)



2
𝐿2 (0,𝑇 )

≤
∑︁

|𝑛 | ≥𝑁+1
|𝑎𝑛 |2

��𝑃𝑁 (𝑛)
��2 



𝑒𝜈ℎ𝑛 (𝑇−𝑡 ) − 𝑒

(
𝑉0𝑖𝑛− 𝑏𝑄0

𝜇0

)
(𝑇−𝑡 )





2
𝐿2 (0,𝑇 )

≤
∑︁

|𝑛 | ≥𝑁+1
|𝑎𝑛 |2

��𝑃𝑁 (𝑛)
��2 




𝑒𝑉0𝑖𝑛 (𝑇−𝑡 )𝑒

− 𝜇0𝑛
2 (𝑛−

√︂
𝑛2− 4𝑏𝑄0

𝜇2
0

) (𝑇−𝑡 )
− 𝑒 (𝑉0𝑖𝑛− 𝑏𝑄0

𝜇0
) (𝑇−𝑡 )







2

𝐿2 (0,𝑇 )

≤
∑︁

|𝑛 | ≥𝑁+1
|𝑎𝑛 |2

��𝑃𝑁 (𝑛)
��2 






𝑒

− 𝜇0𝑛
2

(
𝑛−

√︂
𝑛2− 4𝑏𝑄0

𝜇2
0

)
(𝑇−𝑡 )

− 𝑒−
𝑏𝑄0
𝜇0

(𝑇−𝑡 )









2

𝐿2 (0,𝑇 )

≤
∑︁

|𝑛 | ≥𝑁+1

1

|𝑛 |2
|𝑎𝑛 |2

��𝑃𝑁 (𝑛)
��2 ,

for all 𝑥 ∈ [0, 2𝜋] and therefore

𝜎𝑁 (·, 𝑥) − 𝜎𝑁 (·, 𝑥)


2
𝐿2 (0,𝑇 ) ≤

𝐶

|𝑁 |2
∑︁

|𝑛 | ≥𝑁+1
|𝑎𝑛 |2

��𝑃𝑁 (𝑛)
��2 ,

for all 𝑥 ∈ [0, 2𝜋]. We also find 𝐿2- estimate of the solution component 𝑣𝑁 . We have for all 𝑥 ∈ [0, 2𝜋]

𝑣𝑁 (·, 𝑥)


2
𝐿2 (0,𝑇 ) ≤

∑︁
|𝑛 | ≥𝑁+1

|𝑎𝑛 |2
��𝑃𝑁 (𝑛)

��2 ��𝜈𝑛2 −𝑉0��2
𝑄2
0




𝑒𝜈ℎ𝑛 (𝑇−𝑡 )



2¤𝐿2 (0,𝑇 )

≤ 𝐶
∑︁

|𝑛 | ≥𝑁+1
|𝑎𝑛 |2

��𝑃𝑁 (𝑛)
��2 1

|𝑛 |2

≤ 𝐶

|𝑁 |2
∑︁

|𝑛 | ≥𝑁+1
|𝑎𝑛 |2

��𝑃𝑁 (𝑛)
��2 .
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Let us now suppose that the following observability inequality holds∫ 𝑇

0

��𝑉0𝜎𝑁 (𝑡, 2𝜋) +𝑄0𝑣
𝑁 (𝑡, 2𝜋)

��2 𝑑𝑡 ≥ 𝐶 

(𝜎𝑁 (0), 𝑣𝑁 (0))


2
( ¤𝐿2 (0,2𝜋 ) )2 . (3.72)

Then, we have

(𝜎𝑁 (0), 𝑣𝑁 (0))


2
( ¤𝐿2 (0,2𝜋 ) )2

≤ 𝐶
∫ 𝑇

0

��𝑉0𝜎𝑁 (𝑡, 2𝜋) +𝑄0𝑣
𝑁 (𝑡, 2𝜋)

��2 𝑑𝑡
≤ 𝐶

∫ 𝑇

0

(
𝑉 2
0

��(𝜎𝑁 (𝑡, 2𝜋) − 𝜎𝑁 (𝑡, 2𝜋))
��2 +𝑉 2

0

��𝜎𝑁 (𝑡, 2𝜋)
��2 +𝑄2

0

��𝑣𝑁 (𝑡, 2𝜋)
��2) 𝑑𝑡

≤ 𝐶

𝑁 2

∑︁
|𝑛 | ≥𝑁+1

|𝑎𝑛 |2
��𝑃𝑁 (𝑛)

��2 ,
as we have 𝜎𝑁 (𝑡, 0) = 0 = 𝜎𝑁 (𝑡, 2𝜋) for all 𝑡 ∈ (0,𝑇 ). Thus we get

𝜎𝑁 (0)



2¤𝐿2 (0,2𝜋 ) ≤ 

(𝜎𝑁 (0), 𝑣𝑁 (0))†


2
( ¤𝐿2 (0,2𝜋 ) )2 ≤ 𝐶

𝑁 2

∑︁
|𝑛 | ≥𝑁+1

|𝑎𝑛 |2
��𝑃𝑁 (𝑛)

��2 ≤ 𝐶

𝑁 2



𝜎𝑁 (0)


2¤𝐿2 (0,2𝜋 ) ,

since Re(𝜈ℎ𝑛) is bounded. Therefore, 1 ≤ 𝐶
𝑁 2 for all 𝑁 and hence the above inequality cannot hold.

This is a contradiction and therefore the observability inequality (3.72) cannot hold. This completes
the proof.

3.2.8 Lack of approximate controllability

In this section, we prove that the system (3.1) is not approximately controllable at any time 𝑇 > 0

in (𝐿2(0, 2𝜋))2 when we have the restriction on the coefficients
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∈ N (that is, Proposition

3.1.1). We present the proof of Proposition 3.1.1 in the case when there is a boundary control acting
in density component. The proof will be similar for the velocity control case and so we omit the
details.

3.2.8.1 Proof of Proposition 3.1.1

Let 𝑇 > 0 be given and
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∈ N. To prove this result (in the density case), it is enough to find

a terminal data (𝜎𝑇 , 𝑣𝑇 ) ∈ D(𝐴∗) such that the associated solution (𝜎, 𝑣) of (3.20) fails to satisfy the
following unique continuation property:

𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋) = 0 implies (𝜎, 𝑣) = (0, 0),

see for instance [Cor07, Theorem 2.43]. Let us denote 𝑛1 :=
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
and the eigenvalue 𝜈

𝑝
𝑛1

= 𝜈
𝑝
−𝑛1

=:

𝜈𝑛1 . The eigenfunctions of 𝐴∗ corresponding to this multiple eigenvalue 𝜈𝑛1 are Φ
𝑝
𝑛1

=

(
𝑄0

𝜈
𝑛1
1 −𝑉0

1

)
𝑒𝑖𝑛1𝑥

and Φ
𝑝
−𝑛1

=

(
𝑄0

𝜈
−𝑛1
1 −𝑉0

1

)
𝑒−𝑖𝑛1𝑥 (see (3.24) in Lemma 3.2.3). We now choose the terminal data as

(𝜎𝑇 , 𝑣𝑇 )† = 𝐶Φ𝑝
𝑛1

+ 𝐷Φ𝑝
−𝑛1

,

where 𝐶, 𝐷 are (complex) constants that will be chosen later. The solution of (3.20) is then given by

(𝜎 (𝑡), 𝑣 (𝑡))† = 𝑒𝜈𝑛1 (𝑇−𝑡 ) (
𝐶Φ

𝑝
𝑛1

+ 𝐷Φ𝑝
−𝑛1

)
, 𝑡 ∈ (0,𝑇 ).

Recall the operator B∗
𝜌 given by (3.33). We get

𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋) = 𝑒𝜈𝑛1 (𝑇−𝑡 )
(
𝐶B∗

𝜌Φ
𝑝
𝑛1

+ 𝐷B∗
𝜌Φ

𝑝
−𝑛1

)
, 𝑡 ∈ (0,𝑇 ) .

If we take 𝐶 = −B∗
𝜌Φ

𝑝
−𝑛1

and 𝐷 = B∗
𝜌Φ

𝑝
𝑛1
, then 𝐶, 𝐷 ≠ 0 (thanks to Lemma 3.2.5) and for these choice

of 𝐶, 𝐷, we have 𝑉0𝜎 (𝑡, 2𝜋) + 𝑄0𝑣 (𝑡, 2𝜋) = 0 for all 𝑡 ∈ (0,𝑇 ) but (𝜎, 𝑣) ≠ (0, 0). This completes the
proof.
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3. Linearized compressible Navier-Stokes system (barotropic and non-barotropic)

3.3 Controllability of the linearized compressible Navier-Stokes
system (non-barotropic case)

3.3.1 Functional setting

Recall the positive constants (equation (3.11))

𝜆0 :=
𝜆 + 2𝜇

𝑄0
, and 𝜅0 :=

𝜅

𝑄0𝑐𝜈
,

and from now on-wards, we re-denote 𝑐𝜈 by 𝑐0 to distinguish it from the eigenvalue 𝜈.

We define the inner product in the space (𝐿2(0, 2𝜋))3 as follows

〈©­­«
𝑓1

𝑔1

ℎ1

ª®®¬ ,
©­­«
𝑓2

𝑔2

ℎ2

ª®®¬
〉
𝐿2×𝐿2×𝐿2

:= 𝑅𝜓0

∫ 2𝜋

0
𝑓1(𝑥) 𝑓2(𝑥)𝑑𝑥 +𝑄2

0

∫ 2𝜋

0
𝑔1(𝑥)𝑔2(𝑥)𝑑𝑥 +

𝑄2
0𝑐0

𝜓0

∫ 2𝜋

0
ℎ1(𝑥)ℎ2(𝑥)𝑑𝑥,

for 𝑓𝑖 , 𝑔𝑖 , ℎ𝑖 ∈ 𝐿2(0, 2𝜋), 𝑖 = 1, 2, 3. From now on-wards, the notation ⟨·, ·⟩𝐿2×𝐿2×𝐿2 means the above inner
product in 𝐿2 × 𝐿2 × 𝐿2. We write the system (3.6) in abstract differential equation

𝑈 ′(𝑡) = 𝐴𝑈 (𝑡), 𝑈 (0) = 𝑈0, 𝑡 ∈ (0,𝑇 ), (3.73)

where 𝑈 := (𝜌,𝑢, 𝜃 )†,𝑈0 := (𝜌0, 𝑢0, 𝜃0)† and the operator 𝐴 is given by

𝐴 :=
©­­­«
−𝑉0𝜕𝑥 −𝑄0𝜕𝑥 0

−𝑅𝜓0

𝑄0
𝜕𝑥 𝜆0𝜕𝑥𝑥 −𝑉0𝜕𝑥 −𝑅𝜕𝑥

0 −𝑅𝜓0

𝑐0
𝜕𝑥 𝜅0𝜕𝑥𝑥 −𝑉0𝜕𝑥

ª®®®¬
with the domain

D(𝐴) := 𝐻1
per(0, 2𝜋) × (𝐻2

per(0, 2𝜋))2. (3.74)

The adjoint of the operator 𝐴 is given by

𝐴∗ :=
©­­­«
𝑉0𝜕𝑥 𝑄0𝜕𝑥 0

𝑅𝜓0

𝑄0
𝜕𝑥 𝜆0𝜕𝑥𝑥 +𝑉0𝜕𝑥 𝑅𝜕𝑥

0
𝑅𝜓0

𝑐0
𝜕𝑥 𝜅0𝜕𝑥𝑥 +𝑉0𝜕𝑥

ª®®®¬ (3.75)

with the same domain D(𝐴∗) = D(𝐴). The adjoint system is given by



−𝜎𝑡 −𝑉0𝜎𝑥 −𝑄0𝑣𝑥 = 0, in (0,𝑇 ) × (0, 2𝜋),

−𝑣𝑡 − 𝜆0𝑣𝑥𝑥 −
𝑅𝜓0

𝑄0
𝜎𝑥 −𝑉0𝑣𝑥 − 𝑅𝜑𝑥 = 0, in (0,𝑇 ) × (0, 2𝜋),

−𝜑𝑡 − 𝜅0𝜑𝑥𝑥 −
𝑅𝜓0

𝑐0
𝑣𝑥 −𝑉0𝜑𝑥 = 0, in (0,𝑇 ) × (0, 2𝜋),

𝜎 (𝑡, 0) = 𝜎 (𝑡, 2𝜋), for 𝑡 ∈ (0,𝑇 ),
𝑣 (𝑡, 0) = 𝑣 (𝑡, 2𝜋), 𝑣𝑥 (𝑡, 0) = 𝑣𝑥 (𝑡, 2𝜋), for 𝑡 ∈ (0,𝑇 ),
𝜑 (𝑡, 0) = 𝜑 (𝑡, 2𝜋), 𝜑𝑥 (𝑡, 0) = 𝜑𝑥 (𝑡, 2𝜋), for 𝑡 ∈ (0,𝑇 ),
𝜎 (𝑇, 𝑥) = 𝜎𝑇 (𝑥), 𝑣 (𝑇, 𝑥) = 𝑣𝑇 (𝑥), 𝜑 (𝑇, 𝑥) = 𝜑𝑇 (𝑥), in (0, 2𝜋),

(3.76)
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3.3. Controllability of the linearized compressible Navier-Stokes system (non-barotropic case)

where (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 ) is a terminal state. We also write the following system with source terms 𝑓 , 𝑔, and
ℎ. 

−𝜎𝑡 −𝑉0𝜎𝑥 −𝑄0𝑣𝑥 = 𝑓 , in (0,𝑇 ) × (0, 2𝜋),

−𝑣𝑡 − 𝜆0𝑣𝑥𝑥 −
𝑅𝜓0

𝑄0
𝜎𝑥 −𝑉0𝑣𝑥 − 𝑅𝜑𝑥 = 𝑔, in (0,𝑇 ) × (0, 2𝜋),

−𝜑𝑡 − 𝜅0𝜑𝑥𝑥 −
𝑅𝜓0

𝑐0
𝑣𝑥 −𝑉0𝜑𝑥 = ℎ, in (0,𝑇 ) × (0, 2𝜋),

𝜎 (𝑡, 0) = 𝜎 (𝑡, 2𝜋), for 𝑡 ∈ (0,𝑇 ),
𝑣 (𝑡, 0) = 𝑣 (𝑡, 2𝜋), 𝑣𝑥 (𝑡, 0) = 𝑣𝑥 (𝑡, 2𝜋), for 𝑡 ∈ (0,𝑇 ),
𝜑 (𝑡, 0) = 𝜑 (𝑡, 2𝜋), 𝜑𝑥 (𝑡, 0) = 𝜑𝑥 (𝑡, 2𝜋), for 𝑡 ∈ (0,𝑇 ),
𝜎 (𝑇, 𝑥) = 𝜎𝑇 (𝑥), 𝑣 (𝑇, 𝑥) = 𝑣𝑇 (𝑥), 𝜑 (𝑇, 𝑥) = 𝜑𝑇 (𝑥), in (0, 2𝜋) .

(3.77)

3.3.2 Well-posedness of the systems

We first state the following well-posedness result of the system (3.6) when there is no control input.

Lemma 3.3.1. The operator 𝐴 (resp. 𝐴∗) generates a C0-semigroup of contractions on (𝐿2(0, 2𝜋))3.
Moreover, for any given 𝑈0 ∈ (𝐿2(0, 2𝜋))3, the system (3.73) admits a unique weak solution 𝑈 in the
space C0( [0,𝑇 ]; (𝐿2(0, 2𝜋))3) and

∥𝑈 (𝑡)∥ (𝐿2 (0,2𝜋 ) )3 ≤ 𝐶 ∥𝑈0∥ (𝐿2 (0,2𝜋 ) )3

for all 𝑡 ≥ 0.

For the sake of completeness, we give a proof of this result in Appendix A.1.1. As a consequence of
this result, we have the following existence results:

Lemma 3.3.2. The following statements hold:

1. For any given (𝑓 , 𝑔, ℎ) ∈ 𝐿2(0,𝑇 ; (𝐿2(0, 2𝜋))3) and (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 ) ∈ (𝐿2(0, 2𝜋))3, the adjoint system
(3.77) has a unique weak solution (𝜎, 𝑣, 𝜑) in the space

C0( [0,𝑇 ];𝐿2(0, 2𝜋)) × [C0( [0,𝑇 ];𝐿2(0, 2𝜋)) ∩ 𝐿2(0,𝑇 ;𝐻1
per(0, 2𝜋))]2.

Moreover, we have the hidden regularity property 𝜎 (·, 2𝜋) ∈ 𝐿2(0,𝑇 ).

2. For any given (𝑓 , 𝑔, ℎ) ∈ 𝐿2(0,𝑇 ;𝐻1
per(0, 2𝜋)×(𝐿2(0, 2𝜋))2) and (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 ) ∈ 𝐻−1

per(0, 2𝜋)×(𝐿2(0, 2𝜋))2,
the adjoint system (3.77) has a unique weak solution (𝜎, 𝑣, 𝜑) in

C0( [0,𝑇 ];𝐻−1
per(0, 2𝜋) × (𝐿2(0, 2𝜋))2) .

In particular, when (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 ) = (0, 0, 0), the solution (𝜎, 𝑣, 𝜑) belong to the space

C0( [0,𝑇 ];𝐻1
per(0, 2𝜋)) × [C0( [0,𝑇 ];𝐻1

per(0, 2𝜋)) ∩ 𝐿2(0,𝑇 ;𝐻2
per(0, 2𝜋))]2.

The proof of this lemma can be proved similarly as in the barotropic case (Lemma 3.2.2), see
for instance [Mai15]. We now define the notion of a solution to the system (3.6) in the sense of
transposition when a boundary control is present in the system.

Definition 3.3.1. We give the following definitions of solutions based on the act of the controls.

• For any given initial state (𝜌0, 𝑢0, 𝜃0) ∈ (𝐿2(0, 2𝜋))3 and boundary control 𝑝 ∈ 𝐿2(0,𝑇 ), we say
(𝜌,𝑢, 𝜃 ) ∈ 𝐿2(0,𝑇 ; (𝐿2(0, 2𝜋))3) is a solution to the system (3.6)-(3.7)-(3.8) if, for every (𝑓 , 𝑔, ℎ) ∈
𝐿2(0,𝑇 ; (𝐿2(0, 2𝜋))3) the following identity holds:∫ 𝑇

0

〈
(𝜌 (𝑡, ·), 𝑢 (𝑡, ·), 𝜃 (𝑡, ·))†, (𝑓 (𝑡, ·), 𝑔(𝑡, ·), ℎ(𝑡, ·))†

〉
𝐿2×𝐿2×𝐿2

=
〈
(𝜌0, 𝑢0, 𝜃0)†, (𝜎 (0, ·), 𝑣 (0, ·), 𝜑 (0, ·))†

〉
𝐿2×𝐿2×𝐿2 + 𝑅𝜓0

∫ 𝑇

0

[
𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋)

]
𝑝 (𝑡)𝑑𝑡,

where (𝜎, 𝑣, 𝜑) is the weak solution to the adjoint system (3.77) with (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 ) = (0, 0, 0).
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3. Linearized compressible Navier-Stokes system (barotropic and non-barotropic)

• For any given initial state (𝜌0, 𝑢0, 𝜃0) ∈ (𝐿2(0, 2𝜋))3 and boundary control 𝑞 ∈ 𝐿2(0,𝑇 ), we say
(𝜌,𝑢, 𝜃 ) ∈ 𝐿2(0,𝑇 ;𝐻−1

per(0, 2𝜋)) × 𝐿2(0,𝑇 ; (𝐿2(0, 2𝜋))2) is a solution to the system (3.6)-(3.7)-(3.9)
if, for any (𝑓 , 𝑔, ℎ) ∈ 𝐿2(0,𝑇 ;𝐻1

per(0, 2𝜋)) × 𝐿2(0,𝑇 ; (𝐿2(0, 2𝜋))2) the following identity holds:∫ 𝑇

0

〈
(𝜌 (𝑡, ·), 𝑢 (𝑡, ·), 𝜃 (𝑡, ·))†, (𝑓 (𝑡, ·), 𝑔(𝑡, ·), ℎ(𝑡, ·))†

〉
𝐻 −1

per×𝐿2×𝐿2,𝐻1
per×𝐿2×𝐿2

𝑑𝑡

=
〈
(𝜌0(·), 𝑢0(·), 𝜃0(·))†, (𝜎 (0, ·), 𝑣 (0, ·), 𝜑 (0, ·))†

〉
𝐿2×𝐿2×𝐿2

+𝑄0

∫ 𝑇

0

[
𝑅𝜓0𝜎 (𝑡, 2𝜋) + 𝜆0𝑄0𝑣𝑥 (𝑡, 2𝜋) +𝑄0𝑉0𝑣 (𝑡, 2𝜋) + 𝑅𝑄0𝜑 (𝑡, 2𝜋)

]
𝑞(𝑡)𝑑𝑡,

where (𝜎, 𝑣, 𝜑) is the weak solution to the adjoint system (3.77) with (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 ) = (0, 0, 0).

• For any given initial state (𝜌0, 𝑢0, 𝜃0) ∈ (𝐿2(0, 2𝜋))3 and boundary control 𝑟 ∈ 𝐿2(0,𝑇 ), we say
(𝜌,𝑢, 𝜃 ) ∈ 𝐿2(0,𝑇 ;𝐻−1

per(0, 2𝜋)) × 𝐿2(0,𝑇 ; (𝐿2(0, 2𝜋))2) is a solution to the system (3.6)-(3.7)-(3.9)
if, for any (𝑓 , 𝑔, ℎ) ∈ 𝐿2(0,𝑇 ;𝐻1

per(0, 2𝜋)) × 𝐿2(0,𝑇 ; (𝐿2(0, 2𝜋))2) the following identity holds:∫ 𝑇

0

〈
(𝜌 (𝑡, ·), 𝑢 (𝑡, ·), 𝜃 (𝑡, ·))†, (𝑓 (𝑡, ·), 𝑔(𝑡, ·), ℎ(𝑡, ·))†

〉
𝐻 −1

per×𝐿2×𝐿2,𝐻1
per×𝐿2×𝐿2

𝑑𝑡

=
〈
(𝜌0(·), 𝑢0(·), 𝜃0(·))†, (𝜎 (0, ·), 𝑣 (0, ·), 𝜑 (0, ·))†

〉
𝐿2×𝐿2×𝐿2

+𝑄2
0

∫ 𝑇

0

[
𝑅𝑣 (𝑡, 2𝜋) + 𝑐0𝑉0

𝜓0
𝜑 (𝑡, 2𝜋) + 𝑐0𝜅0

𝜓0
𝜑𝑥 (𝑡, 2𝜋)

]
𝑟 (𝑡)𝑑𝑡,

where (𝜎, 𝑣, 𝜑) is the weak solution to the adjoint system (3.77) with (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 ) = (0, 0, 0).

We now write the following well-posedness results for the system (3.6) based on the act of the
boundary control.

Proposition 3.3.1. For any given initial state (𝜌0, 𝑢0, 𝜃0) ∈ (𝐿2(0, 2𝜋))3 and boundary control 𝑝 ∈
𝐿2(0,𝑇 ), the system (3.6)-(3.7)-(3.8) admits a unique solution (𝜌,𝑢, 𝜃 ) in the space

C0( [0,𝑇 ];𝐿2(0, 2𝜋)) × [C0( [0,𝑇 ];𝐿2(0, 2𝜋)) ∩ 𝐿2(0,𝑇 ;𝐻1
per(0, 2𝜋))]2.

Proposition 3.3.2. For any given initial state (𝜌0, 𝑢0, 𝜃0) ∈ (𝐿2(0, 2𝜋))3 and boundary control 𝑞 ∈
𝐿2(0,𝑇 ), the system (3.6)-(3.7)-(3.9) admits a unique solution (𝜌,𝑢, 𝜃 ) in the space

C0( [0,𝑇 ];𝐻−1
per(0, 2𝜋)) × [C0( [0,𝑇 ];𝐻−1

per(0, 2𝜋)) ∩ 𝐿2(0,𝑇 ; (𝐿2(0, 2𝜋)))]2.

Proposition 3.3.3. For any given initial state (𝜌0, 𝑢0, 𝜃0) ∈ (𝐿2(0, 2𝜋))3 and boundary control 𝑟 ∈
𝐿2(0,𝑇 ), the system (3.6)-(3.7)-(3.10) admits a unique solution (𝜌,𝑢, 𝜃 ) in the space

C0( [0,𝑇 ];𝐻−1
per(0, 2𝜋)) × [C0( [0,𝑇 ];𝐻−1

per(0, 2𝜋)) ∩ 𝐿2(0,𝑇 ; (𝐿2(0, 2𝜋)))]2.

The proofs of Proposition 3.3.1, Proposition 3.3.2 and Proposition 3.3.3 can be done in a similar
way ([BCDK22, Theorem 2.4] and [CR13, Gir08]) like the barotropic case and so we skip the proofs.

3.3.3 Spectral Analysis of 𝐴∗

Let 𝜎 (𝐴∗) denotes the spectrum of the operator 𝐴∗. We first write the following lemma.

Lemma 3.3.3. The following statements hold:

(i) ker(𝐴∗) = span


©­­«
−1
1

1

ª®®¬ ,
©­­«
1

−1
1

ª®®¬ ,
©­­«
1

1

−1

ª®®¬
.

(ii) sup {Re(𝜈) : 𝜈 ∈ 𝜎 (𝐴∗), 𝜈 ≠ 0} < 0.
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3.3. Controllability of the linearized compressible Navier-Stokes system (non-barotropic case)

(iii) The spectrum of 𝐴∗ consists of the eigenvalue 0 and three branches of complex eigenvalues

{𝜈ℎ𝑛, 𝜈
𝑝1
𝑛 , 𝜈

𝑝2
𝑛 }𝑛∈Z∗

with the asymptotic expressions given as

𝜈ℎ𝑛 = 𝑉0𝑖𝑛 − 𝜔 +𝑂 ( |𝑛 |−2), (3.78)

𝜈
𝑝1
𝑛 = −𝜆0𝑛2 +𝑉0𝑖𝑛 +𝑂 (1), (3.79)

𝜈
𝑝2
𝑛 = −𝜅0𝑛2 +𝑉0𝑖𝑛 +𝑂 (1), (3.80)

for all |𝑛 | large, where 𝜔 =
𝑅𝜓0

𝜆0
.

(iv) The eigenfunctions of 𝐴∗ corresponding to 𝜈ℎ𝑛 and 𝜈
𝑝1
𝑛 , 𝜈

𝑝2
𝑛 are respectively

Φℎ
𝑛 =

©­­«
𝜉ℎ𝑛

𝜂ℎ𝑛

𝜁ℎ𝑛

ª®®¬ =
©­­«
𝛼𝑛1

𝛼𝑛2

𝛼𝑛3

ª®®¬ 𝑒𝑖𝑛𝑥 , Φ
𝑝1
𝑛 =

©­­«
𝜉
𝑝1
𝑛

𝜂
𝑝1
𝑛

𝜁
𝑝1
𝑛

ª®®¬ =
©­­«
𝛽𝑛1

𝛽𝑛2

𝛽𝑛3

ª®®¬ 𝑒𝑖𝑛𝑥 , Φ
𝑝2
𝑛 =

©­­«
𝜉
𝑝2
𝑛

𝜂
𝑝2
𝑛

𝜁
𝑝2
𝑛

ª®®¬ =
©­­«
𝛾𝑛1

𝛾𝑛2

𝛾𝑛3

ª®®¬ 𝑒𝑖𝑛𝑥 , (3.81)

for all 𝑛 ∈ Z∗, with the constants 𝛼𝑛𝑖 , 𝛽
𝑛
𝑖 and 𝛾𝑛𝑖 (𝑖 = 1, 2, 3) given as

𝛼𝑛1 = 𝑅𝑄0, 𝛼𝑛2 = −𝑅(𝑉0 − 𝜈𝑛3), 𝛼𝑛3 = (𝜆0𝑖𝑛 +𝑉0 − 𝜈𝑛3) (𝑉0 − 𝜈𝑛3) − 𝑅𝜓0

𝛽𝑛1 = − 𝑅𝑄0

𝑉0−𝜈𝑛1
, 𝛽𝑛2 = 𝑅, 𝛽𝑛3 = 1

𝑉0−𝜈𝑛1
[𝑅𝜓0 − (𝜆0𝑖𝑛 +𝑉0 − 𝜈𝑛1) (𝑉0 − 𝜈𝑛1)]

𝛾𝑛1 = (𝜆0𝑖𝑛 +𝑉0 − 𝜈𝑛2) (𝜅0𝑖𝑛 +𝑉0 − 𝜈𝑛2) −
𝑅2𝜓0

𝑐0
, 𝛾𝑛2 = −𝑅𝜓0

𝑄0
(𝜅0𝑖𝑛 +𝑉0 − 𝜈𝑛2), 𝛾𝑛3 =

𝑅2𝜓2
0

𝑄0𝑐0
,

(3.82)

for all 𝑛 ∈ Z∗, where 𝜈𝑛1 , 𝜈𝑛2 and 𝜈𝑛3 are roots of the cubic polynomial

𝜈3 − [(𝜆0 + 𝜅0)𝑖𝑛 + 3𝑉0]𝜈2 − [𝜆0𝜅0𝑛2 − 2(𝜆0 + 𝜅0)𝑉0𝑖𝑛 − 3𝑉 2
0 + 𝑅

2𝜓0

𝑐0
+ 𝑅𝜓0]𝜈 (3.83)

+𝜆0𝜅0𝑉0𝑛2 − (𝜆0 + 𝜅0)𝑉 2
0 𝑖𝑛 −𝑉 3

0 + 𝑅
2𝜓0

𝑐0
𝑉0 + 𝑅𝜓0𝜅0𝑖𝑛 + 𝑅𝜓0𝑉0 = 0,

for all 𝑛 ∈ Z∗.

Remark 3.3.1. We have the asymptotic expressions of 𝛼𝑛𝑖 , 𝛽
𝑛
𝑖 , 𝛾

𝑛
𝑖 , 𝑖 = 1, 2, 3 as follows.


𝛼𝑛1 ∼+∞ 1, 𝛼𝑛2 ∼+∞

1
|𝑛 | , 𝛼𝑛3 ∼+∞

1
|𝑛 | ,

𝛽𝑛1 ∼+∞
1
|𝑛 | , 𝛽𝑛2 ∼+∞ 1, 𝛽𝑛3 ∼+∞

1
|𝑛 | ,

𝛾𝑛1 ∼+∞
1
|𝑛 | , 𝛾𝑛2 ∼+∞

1
|𝑛 | , 𝛾𝑛3 ∼+∞ 1.

(3.84)

Proof. We will prove each part separately.

Part-(i). Follows immediately from the fact that 𝐴∗(𝜉, 𝜂, 𝜁 )† = 0 implies (𝜉, 𝜂, 𝜁 ) =constant.

Part-(ii). Let Φ = (𝜉, 𝜂, 𝜁 )† ∈ D(𝐴∗) be the eigenfunction of 𝐴∗ corresponding to the eigenvalue 𝜈 ≠ 0.
Then, we have 〈

𝐴∗ ©­­«
𝜉

𝜂

𝜁

ª®®¬ ,
©­­«
𝜉

𝜂

𝜁

ª®®¬
〉
𝐿2×𝐿2×𝐿2

=

〈
𝜈
©­­«
𝜉

𝜂

𝜁

ª®®¬ ,
©­­«
𝜉

𝜂

𝜁

ª®®¬
〉
𝐿2×𝐿2×𝐿2

,

that is,

𝑅𝜓0𝑉0

∫ 2𝜋

0
𝜉 (𝑥)𝜉𝑥 (𝑥)𝑑𝑥 + 𝑅𝜓0𝑄0

∫ 2𝜋

0
𝜉 (𝑥)𝜂𝑥 (𝑥)𝑑𝑥 + 𝜆0𝑄2

0

∫ 2𝜋

0
𝜂 (𝑥)𝜂𝑥𝑥 (𝑥)𝑑𝑥
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+𝑄2
0𝑉0

∫ 2𝜋

0
𝜂 (𝑥)𝜂𝑥 (𝑥)𝑑𝑥 + 𝑅𝜓0𝑄0

∫ 2𝜋

0
𝜉𝑥 (𝑥)𝜂 (𝑥)𝑑𝑥 + 𝑅𝑄2

0

∫ 2𝜋

0
𝜂 (𝑥)𝜁𝑥 (𝑥)𝑑𝑥

+
𝑄2
0𝑐0

𝜓0
𝜅0

∫ 2𝜋

0
𝜁 (𝑥)𝜁𝑥𝑥 (𝑥)𝑑𝑥 +

𝑄2
0𝑐0

𝜓0
𝑉0

∫ 2𝜋

0
𝜁 (𝑥)𝜁𝑥 (𝑥)𝑑𝑥 + 𝑅𝑄2

0

∫ 2𝜋

0
𝜂𝑥 (𝑥)𝜁 (𝑥)𝑑𝑥

= 𝜈𝑅𝜓0

∫ 2𝜋

0
|𝜉 (𝑥) |2 𝑑𝑥 + 𝜈𝑄2

0

∫ 2𝜋

0
|𝜂 (𝑥) |2 𝑑𝑥 + 𝜈

𝑄2
0𝑐0

𝜓0

∫ 2𝜋

0
|𝜁 (𝑥) |2 𝑑𝑥 .

An integration by parts yields

Re(𝜈) = −
𝜆0𝑄

2
0 ∥𝜂𝑥 ∥

2
𝐿2 (0,2𝜋 ) +

𝑄2
0𝑐0

𝜓0
𝜅0 ∥𝜁𝑥 ∥2𝐿2 (0,2𝜋 )

𝑅𝜓0 ∥𝜉 ∥2𝐿2 (0,2𝜋 ) +𝑄
2
0 ∥𝜂∥

2
𝐿2 (0,2𝜋 ) +

𝑄2
0𝑐0

𝜓0
∥𝜁 ∥2

𝐿2 (0,2𝜋 )

< 0,

which proves part (ii).

Parts (iii)-(iv). We denote

𝜑𝑛 (𝑥) := 𝑒𝑖𝑛𝑥 , 𝑛 ∈ Z.

Then the set


©­­«
𝜑𝑛

0

0

ª®®¬ ,
©­­«
0

𝜑𝑛

0

ª®®¬ ,
©­­«
0

0

𝜑𝑛

ª®®¬
 forms an orthogonal basis of (𝐿2(0, 2𝜋))3. Let us define

𝐸𝑛 :=
©­­«
𝜑𝑛 0 0

0 𝜑𝑛 0
0 0 𝜑𝑛

ª®®¬ , and Φ𝑛 := (𝜉𝑛, 𝜂𝑛, 𝜁𝑛)†,

for all 𝑛 ∈ Z. Then, we have the following relation

𝐴∗𝐸𝑛Φ𝑛 = 𝑖𝑛𝐸𝑛𝑅𝑛Φ𝑛, 𝑛 ∈ Z, (3.85)

where

𝑅𝑛 :=
©­­­«
𝑉0 𝑄0 0

𝑅𝜓0

𝑄0
𝜆0𝑖𝑛 +𝑉0 𝑅

0
𝑅𝜓0

𝑐0
𝜅0𝑖𝑛 +𝑉0

ª®®®¬ , 𝑛 ∈ Z. (3.86)

Thus, if (𝛼𝑛, 𝜈𝑛) is an eigenpair of 𝑅𝑛, then (𝐸𝑛𝛼𝑛, 𝑖𝑛𝜈𝑛) will be an eigenpair of 𝐴∗. Therefore, it
remains to find the eigenvalues and eigenvectors of the matrix 𝑅𝑛 for 𝑛 ∈ Z. The characteristics
equation of 𝑅𝑛 is

𝜈3 − [(𝜆0 + 𝜅0)𝑖𝑛 + 3𝑉0]𝜈2 − [𝜆0𝜅0𝑛2 − 2(𝜆0 + 𝜅0)𝑉0𝑖𝑛 − 3𝑉 2
0 + 𝑅

2𝜓0

𝑐0
+ 𝑅𝜓0]𝜈 (3.87)

+𝜆0𝜅0𝑉0𝑛2 − (𝜆0 + 𝜅0)𝑉 2
0 𝑖𝑛 −𝑉 3

0 + 𝑅
2𝜓0

𝑐0
𝑉0 + 𝑅𝜓0𝜅0𝑖𝑛 + 𝑅𝜓0𝑉0 = 0,

for all 𝑛 ∈ Z.

Claim 1. 0 cannot be a root of the polynomial (3.87) for any 𝑛 ∈ Z.

Proof of Claim 1. Let 𝜈 = 0 be a root of (3.87). Then, there exists some 𝑛 ∈ Z such that

𝜆0𝜅0𝑉0𝑛
2 − (𝜆0 + 𝜅0)𝑉 2

0 𝑖𝑛 −𝑉 3
0 + 𝑅

2𝜓0

𝑐0
𝑉0 + 𝑅𝜓0𝜅0𝑖𝑛 + 𝑅𝜓0𝑉0 = 0,

which implies

𝜆0𝜅0𝑛
2 −𝑉 2

0 + 𝑅
2𝜓0

𝑐0
+ 𝑅𝜓0 = 0, and (𝜆0 + 𝜅0)𝑉 2

0 = 𝑅𝜓0𝜅0.
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3.3. Controllability of the linearized compressible Navier-Stokes system (non-barotropic case)

We then have

𝜆0𝜅0𝑛
2 = 𝑉 2

0 − 𝑅2𝜓0

𝑐0
− 𝑅𝜓0 = 𝑉

2
0 − 𝑅2𝜓0

𝑐0
−

(
𝜆0

𝜅0
+ 1

)
𝑉 2
0 = −𝑅

2𝜓0

𝑐0
− 𝜆0

𝜅0
𝑉 2
0 < 0,

a contradiction. This proves our first claim.

Claim 2. 𝑉0 cannot be a root of the polynomial (3.87) for any 𝑛 ∈ Z∗.

Proof of Claim 2. Observe that 𝑉0 is a root of (3.87) if and only if 𝑅𝜓0𝜅0𝑖𝑛 = 0. Thus, for all
𝑛 ∈ Z∗, 𝑉0 cannot be a root of (3.87), which proves our second claim.

For fixed 𝑛 ∈ Z∗, let 𝜈𝑛1 , 𝜈𝑛2 and 𝜈𝑛3 be the roots of this cubic polynomial. The relation between
roots and coefficients are

𝜈𝑛1 + 𝜈𝑛2 + 𝜈𝑛3 = (𝜆0 + 𝜅0)𝑖𝑛 + 3𝑉0

𝜈𝑛1𝜈
𝑛
2 + 𝜈𝑛2𝜈𝑛3 + 𝜈𝑛3𝜈𝑛1 = −[𝜆0𝜅0𝑛2 − 2(𝜆0 + 𝜅0)𝑉0𝑖𝑛 − 3𝑉 2

0 + 𝑅2𝜓0

𝑐0
+ 𝑅𝜓0]

𝜈𝑛1𝜈
𝑛
2𝜈

𝑛
3 = −[𝜆0𝜅0𝑉0𝑛2 − (𝜆0 + 𝜅0)𝑉 2

0 𝑖𝑛 −𝑉 3
0 + 𝑅2𝜓0

𝑐0
𝑉0 + 𝑅𝜓0𝜅0𝑖𝑛 + 𝑅𝜓0𝑉0] .

We will find the asymptotic expressions of roots of the cubic polynomial (3.87) for large values
of |𝑛 |. The first relation between roots and coefficients tells us that 𝑉0 is present in at least one
of the roots of the cubic polynomial (3.87). Thus, using the transformation

𝜈 = 𝑉0 + 𝜖𝑛, (3.88)

it is enough to find the roots of the transformed cubic equation in 𝜖𝑛

𝜖3𝑛 − (𝜆0 + 𝜅0)𝑖𝑛𝜖2𝑛 −
(
𝜆0𝜅0𝑛

2 + 𝑅
2𝜓0

𝑐0
+ 𝑅𝜓0

)
𝜖𝑛 + 𝑅𝜓0𝜅0𝑖𝑛 = 0 (3.89)

for all 𝑛 ∈ Z∗. We use the transformation 𝜖𝑛 = 𝑖𝑛𝜖𝑛 for 𝑛 ∈ Z∗, to simplify the above equation
and we get

𝜖3𝑛 − (𝜆0 + 𝜅0)𝜖2𝑛 +
(
𝜆0𝑘0 +

1

𝑛2

(
𝑅2𝜓0

𝑐0
+ 𝑅𝜓0

))
𝜖𝑛 −

𝑅𝜓0𝜅0

𝑛2
= 0 (3.90)

for all 𝑛 ∈ Z∗. We now use the Rouche’s Theorem to find the roots of this polynomial. Let us
first state the Rouché’s Theorem, the proof of which can be found in [Con78, Rud87, Ahl78].

Theorem 3.3.1 (Rouché’s Theorem). Let Ω ⊂ C be an open connected set and 𝑓 , 𝑔 : Ω → C be
holomorphic on Ω. Suppose there exists 𝑎 ∈ Ω and 𝑅 > 0 such that 𝐵(𝑎, 𝑅) ⊂ Ω and

|𝑔(𝑧) − 𝑓 (𝑧) | < |𝑔(𝑧) | for all 𝑧 ∈ 𝜕𝐵(𝑎, 𝑅),

then 𝑓 and 𝑔 have the same number of zeros inside 𝐵(𝑎, 𝑅).

Let 𝑛 ∈ Z∗. We define the functions 𝑓 , 𝑔 : C→ C by

𝑓 (𝑧) := 𝑧3 − (𝜆0 + 𝜅0)𝑧2 +
(
𝜆0𝑘0 +

1

𝑛2

(
𝑅2𝜓0

𝑐0
+ 𝑅𝜓0

))
𝑧 − 𝑅𝜓0𝜅0

𝑛2

and

𝑔(𝑧) := 𝑧3 − (𝜆0 + 𝜅0)𝑧2 + 𝜆0𝑘0𝑧

for all 𝑧 ∈ C. The roots of 𝑔 are 0, 𝜆0 and 𝜅0. We choose 𝑅0 := 1
2 min{𝜆0, 𝜅0, |𝜆0 − 𝜅0 |}. Then, we

have the following estimates

|𝑔(𝑧) − 𝑓 (𝑧) | =
���� 1𝑛2 (

𝑅2𝜓0

𝑐0
+ 𝑅𝜓0

)
𝑧 − 𝑅𝜓0𝜅0

𝑛2

����
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≤ 𝐶

𝑛2
( |𝑧 | + 1)


= 𝐶

𝑛2 (𝑅0 + 1), for all 𝑧 ∈ 𝜕𝐵(0, 𝑅0),

≤ 𝐶
𝑛2 (𝜆0 + 𝑅0 + 1), for all 𝑧 ∈ 𝜕𝐵(𝜆0, 𝑅0),

≤ 𝐶
𝑛2 (𝜅0 + 𝑅0 + 1), for all 𝑧 ∈ 𝜕𝐵(𝜅0, 𝑅0),

for all 𝑛 ∈ Z∗. On the other hand, the choice of 𝑅0 tells us that the function 𝑔 does not have
any root on the sets 𝜕𝐵(0, 𝑅0), 𝜕𝐵(𝜆0, 𝑅0) and 𝜕𝐵(𝜅0, 𝑅0). This shows that inf |𝑧 |=𝑅0

|𝑔(𝑧) | > 0,
inf |𝑧−𝜆0 |=𝑅0

|𝑔(𝑧) | > 0 and inf |𝑧−𝜅0 |=𝑅0
|𝑔(𝑧) | > 0. Therefore, for |𝑛 | large enough, we have

|𝑔(𝑧) − 𝑓 (𝑧) | < |𝑔(𝑧) | for all 𝑧 ∈ 𝜕𝐵(0, 𝑅0) ∪ 𝜕𝐵(𝜆0, 𝑅0) ∪ 𝜕𝐵(𝜅0, 𝑅0) .

Thus, for each 𝑛 ∈ Z∗, the function 𝑓 has a unique root inside each of the sets 𝐵(0, 𝑅0), 𝐵(𝜆0, 𝑅0)
and 𝐵(𝜅0, 𝑅0). We denote these roots by 𝑧𝑛1 , 𝑧

𝑛
2 and 𝑧𝑛3 respectively. We now find asymptotic

expressions of these roots.

Asymptotic expression of 𝑧𝑛1. Since 𝑧
𝑛
1 ∈ 𝐵(0, 𝑅0), we have

𝑧𝑛1 =
1

(𝑧𝑛1 − 𝜆0) (𝑧𝑛1 − 𝜅0)

(
𝑅𝜓0𝜅0

𝑛2
− 1

𝑛2

(
𝑅2𝜓0

𝑐0
+ 𝑅𝜓0

)
𝑧𝑛1

)
and therefore ��𝑧𝑛1 �� ≤ 1��𝑧𝑛1 − 𝜆0�� ��𝑧𝑛1 − 𝜅0��

(����𝑅𝜓0𝜅0

𝑛2

���� + ���� 1𝑛2 (
𝑅2𝜓0

𝑐0
+ 𝑅𝜓0

)
𝑧𝑛1

����) ≤ 𝐶

|𝑛 |2

for |𝑛 | large enough. To find the asymptotic expression of 𝑧𝑛1 , we write 𝑓 (𝑧𝑛1) = 0 in the following
way

𝑧𝑛1 =
𝑅𝜓0𝜅0

𝑛2

(
𝜆0𝜅0 − (𝜆0 + 𝜅0)𝑧𝑛1 + (𝑧𝑛1)2 +

1

𝑛2

(
𝑅𝜓0

𝑐0
+ 𝑅𝜓0

))−1
=
𝑅𝜓0𝜅0

𝑛2
1

𝜆0𝜅0

(
1 − (𝜆0 + 𝜅0)

𝜆0𝜅0
𝑧𝑛1 +

1

𝜆0𝜅0𝑛
2

(
𝑅𝜓0

𝑐0
+ 𝑅𝜓0

)
+𝑂 ( |𝑛 |−4)

)−1
=
𝜔

𝑛2

(
1 + (𝜆0 + 𝜅0)

𝜆0𝜅0
𝑧𝑛1 −

1

𝜆0𝜅0𝑛
2

(
𝑅𝜓0

𝑐0
+ 𝑅𝜓0

)
+𝑂 ( |𝑛 |−4)

)
=
𝜔

𝑛2
+𝑂 ( |𝑛 |−4),

since
��𝑧𝑛1 �� ≤ 𝐶

𝑛2 for all |𝑛 | large, where 𝜔 =
𝑅𝜓0

𝜆0
.

Asymptotic expression of 𝑧𝑛2. Since 𝑧
𝑛
2 ∈ 𝐵(𝜆0, 𝑅0), we have

𝑧𝑛2 − 𝜆0 =
1

𝑧𝑛2 (𝑧𝑛2 − 𝜅0)

(
𝑅𝜓0𝜅0

𝑛2
− 1

𝑛2

(
𝑅2𝜓0

𝑐0
+ 𝑅𝜓0

)
𝑧𝑛1

)
and therefore ��𝑧𝑛2 − 𝜆0�� ≤ 1��𝑧𝑛2 �� ��𝑧𝑛2 − 𝜅0��

(����𝑅𝜓0𝜅0

𝑛2

���� + ���� 1𝑛2 (
𝑅2𝜓0

𝑐0
+ 𝑅𝜓0

)
𝑧𝑛1

����) ≤ 𝐶

|𝑛 |2

for |𝑛 | large enough. Thus, we can write

𝑧𝑛2 = 𝜆0 +𝑂 ( |𝑛 |−2)

for all |𝑛 | large.

Asymptotic expression of 𝑧𝑛3. Following the similar approach as mentioned above, we can
get

𝑧𝑛3 = 𝜅0 +𝑂 ( |𝑛 |−2)
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for all |𝑛 | large.

Combining all of the above, we obtain the asymptotic expressions of the roots of (3.89) as
𝜖𝑛1 := 𝜆0𝑖𝑛 +𝑂 ( |𝑛 |−1),
𝜖𝑛2 := 𝜅0𝑖𝑛 +𝑂 ( |𝑛 |−1),

𝜖𝑛3 := −𝜔
𝑖𝑛

+𝑂 ( |𝑛 |−3)

for all |𝑛 | large. Therefore, for 𝑛 ∈ Z∗, eigenvalues of the matrix 𝑅𝑛 are 𝜈𝑛1 , 𝜈
𝑛
2 and 𝜈𝑛3 with the

asymptotic expressions

𝜈𝑛1 = 𝜆0𝑖𝑛 +𝑉0 +𝑂 ( |𝑛 |−1), (3.91)

𝜈𝑛2 = 𝜅0𝑖𝑛 +𝑉0 +𝑂 ( |𝑛 |−1), (3.92)

𝜈𝑛3 = 𝑉0 −
𝜔

𝑖𝑛
+𝑂 ( |𝑛 |−3), (3.93)

for all |𝑛 | large.

To find the eigenvectors of the matrix 𝑅𝑛, we now consider the equation

𝑅𝑛𝛼𝑛 = 𝜈𝑛3𝛼𝑛, for 𝑛 ∈ Z∗,

where 𝛼𝑛 = (𝛼𝑛1 , 𝛼𝑛2 , 𝛼𝑛3 )†, 𝑛 ∈ Z∗, that is,

(𝑉0 − 𝜈𝑛3)𝛼𝑛1 +𝑄0𝛼
𝑛
2 = 0, (3.94)

𝑅𝜓0

𝑄0
𝛼𝑛1 + (𝜆0𝑖𝑛 +𝑉0 − 𝜈𝑛3)𝛼𝑛2 + 𝑅𝛼𝑛3 = 0, (3.95)

𝑅𝜓0

𝑐0
𝛼𝑛2 + (𝜅0𝑖𝑛 +𝑉0 − 𝜈𝑛3)𝛼𝑛3 = 0, (3.96)

for all 𝑛 ∈ Z∗. One solution is given by

𝛼𝑛1 = 𝑅𝑄0, 𝛼𝑛2 = −𝑅(𝑉0 − 𝜈𝑛3), 𝛼𝑛3 = (𝜆0𝑖𝑛 +𝑉0 − 𝜈𝑛3) (𝑉0 − 𝜈𝑛3) − 𝑅𝜓0, 𝑛 ∈ Z∗.

We next consider the equation
𝑅𝑛𝛽𝑛 = 𝜈𝑛1𝛽𝑛, for 𝑛 ∈ Z∗,

where 𝛽𝑛 = (𝛽𝑛1 , 𝛽𝑛2 , 𝛽𝑛3 )†, 𝑛 ∈ Z∗, that is,

(𝑉0 − 𝜈𝑛1)𝛽𝑛1 +𝑄0𝛽
𝑛
2 = 0, (3.97)

𝑅𝜓0

𝑄0
𝛽𝑛1 + (𝜆0𝑖𝑛 +𝑉0 − 𝜈𝑛1)𝛽𝑛2 + 𝑅𝛽𝑛3 = 0, (3.98)

𝑅𝜓0

𝑐0
𝛽𝑛2 + (𝜅0𝑖𝑛 +𝑉0 − 𝜈𝑛1)𝛽𝑛3 = 0, (3.99)

for all 𝑛 ∈ Z∗. One solution is given by

𝛽𝑛1 = − 𝑅𝑄0

𝑉0 − 𝜈𝑛1
, 𝛽𝑛2 = 𝑅, 𝛽𝑛3 =

1

𝑉0 − 𝜈𝑛1
[𝑅𝜓0 − (𝜆0𝑖𝑛 +𝑉0 − 𝜈𝑛1) (𝑉0 − 𝜈𝑛1)], 𝑛 ∈ Z∗.

We finally consider the equation

𝑅𝑛𝛾𝑛 = 𝜈𝑛2𝛾𝑛, for 𝑛 ∈ Z∗,

where 𝛾𝑛 = (𝛾𝑛1 , 𝛾𝑛2 , 𝛾𝑛3 )†, 𝑛 ∈ Z∗, that is,

(𝑉0 − 𝜈𝑛2)𝛾𝑛1 +𝑄0𝛾
𝑛
2 = 0, (3.100)
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𝑅𝜓0

𝑄0
𝛾𝑛1 + (𝜆0𝑖𝑛 +𝑉0 − 𝜈𝑛2)𝛾𝑛2 + 𝑅𝛾𝑛3 = 0, (3.101)

𝑅𝜓0

𝑐0
𝛾𝑛2 + (𝜅0𝑖𝑛 +𝑉0 − 𝜈𝑛2)𝛾𝑛3 = 0, (3.102)

for all 𝑛 ∈ Z∗. One solution is given by

𝛾𝑛1 = (𝜆0𝑖𝑛 +𝑉0 − 𝜈𝑛2) (𝜅0𝑖𝑛 +𝑉0 − 𝜈𝑛2) −
𝑅2𝜓0

𝑐0
, 𝛾𝑛2 = −𝑅𝜓0

𝑄0
(𝜅0𝑖𝑛 +𝑉0 − 𝜈𝑛2), 𝛾𝑛3 =

𝑅2𝜓2
0

𝑄0𝑐0
,

for 𝑛 ∈ Z∗. Therefore, the eigenvectors of 𝑅𝑛 corresponding to the eigenvalues 𝜈𝑛3 , 𝜈
𝑛
1 and 𝜈𝑛2 are

respectively 𝛼𝑛, 𝛽𝑛 and 𝛾𝑛, where

𝛼𝑛 =
©­­«
𝛼𝑛1

𝛼𝑛2

𝛼𝑛3

ª®®¬ , 𝛽𝑛 =
©­­«
𝛽𝑛1

𝛽𝑛2

𝛽𝑛3

ª®®¬ , 𝛾𝑛 =
©­­«
𝛾𝑛1

𝛾𝑛2

𝛾𝑛3

ª®®¬ ,
for all 𝑛 ∈ Z∗. Hence, the eigenvalues of the operator 𝐴∗ are 𝜈ℎ𝑛 := 𝑖𝑛𝜈3𝑛, 𝜈

𝑝1
𝑛 := 𝑖𝑛𝜈2𝑛 and 𝜈

𝑝2
𝑛 := 𝑖𝑛𝜈1𝑛

for all 𝑛 ∈ Z∗ with the asymptotic expressions

𝜈ℎ𝑛 = 𝑉0𝑖𝑛 − 𝜔 +𝑂 ( |𝑛 |−1),
𝜈
𝑝1
𝑛 = −𝜆0𝑛2 +𝑉0𝑖𝑛 +𝑂 (1),
𝜈
𝑝2
𝑛 = −𝜅0𝑛2 +𝑉0𝑖𝑛 +𝑂 (1),

for |𝑛 | large enough and the corresponding eigenfunctions are

Φℎ
𝑛 (𝑥) := 𝐸𝑛 (𝑥)𝛼𝑛 = 𝛼𝑛𝑒

𝑖𝑛𝑥 , Φ
𝑝1
𝑛 (𝑥) := 𝐸𝑛 (𝑥)𝛽𝑛 = 𝛽𝑛𝑒

𝑖𝑛𝑥 , Φ
𝑝2
𝑛 (𝑥) := 𝐸𝑛 (𝑥)𝛾𝑛 = 𝛾𝑛𝑒

𝑖𝑛𝑥 ,

for all 𝑛 ∈ Z∗ and 𝑥 ∈ (0, 2𝜋).

This completes the proof.

Remark 3.3.2. Note that, all the eigenvalues of 𝐴∗ are simple at least for |𝑛 | large enough. Depending
on the constants 𝑄0,𝑉0,𝜓0, 𝜆0, 𝜅0, 𝑅 and 𝑐0, there may be multiple eigenvalues, but that would be only

finitely many of them. For example, if we take 𝑄0 = 𝑉0 = 𝜆0 = 1 and 𝑅𝜓0 =
𝑅2𝜓0

𝑐0
= 1

2 , 𝜅0 = 2, then the
characteristics equation (3.87) of 𝑅𝑛 (with 𝑛 = 1) becomes

𝜈3 − (3𝑖 + 3)𝜈2 + 6𝑖𝑛𝜈 + 2 − 2𝑖 = 0

and therefore 𝜈 = 1 + 𝑖 is a root of multiplicity 3, and consequently −1 + 𝑖 is an eigenvalue of 𝐴∗ with
algebraic multiplicity 3. In this case, the proof of null controllability of the system (3.6) will be similar
to the barotropic case (Section 3.2.5.2) and for the sake of completeness, we will give a brief proof in
this (non-barotropic) case also.

Furthermore, there can exist (finitely many) multiple eigenvalues for different values of 𝑛. For

example, if we take 𝑄0 = 𝑉0 = 𝜆0 = 1 = 𝑅𝜓0 =
𝑅2𝜓0

𝑐0
= 1 and 𝜅0 = 2, then 𝜈 = −1 is an eigenvalue of 𝐴∗

with 𝑛 = 1 and 𝑛 = −1, that is, 𝜈1 = 𝜈−1 = −1. Indeed, the polynomial equation (3.87) for 𝑛 = 1 and
𝑛 = −1 becomes

𝜈3 − (3𝑖 + 3)𝜈2 − (1 − 6𝑖)𝜈 + 3 − 𝑖 = 0,

𝜈3 − (−3𝑖 + 3)𝜈2 − (1 + 6𝑖)𝜈 + 3 + 𝑖 = 0,

and the root of which are 𝑖 and −𝑖 respectively. In this case, as mentioned in the barotropic case, we
have two independent eigenfunctions corresponding to this eigenvalue; as a consequence, the adjoint
system (3.76) fails to satisfy the unique continuation property; see Section 3.3.8 for more details.
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Let us assume that there exists a 𝑛0 ∈ N such that all the eigenvalues 𝜈𝑛 of 𝐴∗ are algebraically
simple for all |𝑛 | ≥ 𝑛0. There can exist only finitely many multiple eigenvalues, which we re-denote
as 𝜈 𝑗 for 1 ≤ 𝑗 ≤ 𝑗0 (for some 𝑗0 ∈ N). Let 𝑁 𝑗 be the algebraic multiplicity of the eigenvalue 𝜈 𝑗 and
let Φ𝑗 denote the corresponding eigenfunction of 𝐴∗ for each 𝑗 = 1, . . . , 𝑗0. We also denote the set of
generalized eigenfunctions of 𝐴∗ by

{
Φ̃𝑙, 𝑗 : 𝑙 = 1, . . . , 𝑁 𝑗 − 1

}
corresponding to the eigenvalue 𝜈 𝑗 . Also,

recall from Lemma 3.3.3–Part (i) that the set of (generalized) eigenfunctions of 𝐴∗ corresponding to

the eigenvalue 𝜈0 = 0 is

Φ0 :=
©­­«
−1
1

1

ª®®¬ , Φ̃1,0 :=
©­­«
1

−1
1

ª®®¬ , Φ̃2,0 :=
©­­«
1

1

−1

ª®®¬
. Then, one can have the following

result:

Proposition 3.3.4. The set of (generalized) eigenfunctions

E(𝐴∗) :=
{
Φℎ
𝑛, Φ

𝑝1
𝑛 , Φ

𝑝2
𝑛 : |𝑛 | ≥ 𝑛0; Φ𝑗 , Φ̃𝑙, 𝑗 : 1 ≤ 𝑙 < 𝑁 𝑗 , 0 ≤ 𝑗 ≤ 𝑗0

}
forms a Riesz basis in (𝐿2(0, 2𝜋))3. In particular, if all the eigenvalues of 𝐴∗ are simple, then the set
of eigenfunctions {

Φℎ
𝑛, Φ

𝑝1
𝑛 , Φ

𝑝2
𝑛 : 𝑛 ∈ Z∗

}
forms a Riesz basis in ( ¤𝐿2(0, 2𝜋))3.

Proof. In view of the proof of Proposition 3.2.3, it is enough to find an orthogonal basis of (𝐿2(0, 2𝜋))3
that is quadratically close to the set of generalized eigenfunctions of 𝐴∗. One obvious choice is the
following orthogonal basisΨ𝑛 (𝑥) :=

©­­«
𝑅𝑄0

0

0

ª®®¬ 𝑒𝑖𝑛𝑥 , Ψ̃𝑛 (𝑥) :=
©­­«
0

𝑅

0

ª®®¬ 𝑒𝑖𝑛𝑥 ,
˜̃Ψ𝑛 (𝑥) :=

©­­­«
0

0

𝑅2𝜓2
0

𝑄0𝑐0

ª®®®¬ 𝑒
𝑖𝑛𝑥 : 𝑛 ∈ Z

 .
Indeed, we have∑︁

|𝑛 | ≥𝑛0

(


Φℎ
𝑛 − Ψ𝑛





(𝐿2 (0,2𝜋 ) )3

+


Φ𝑝1

𝑛 − Ψ̃𝑛



(𝐿2 (0,2𝜋 ) )3 +




Φ𝑝2
𝑛 − ˜̃Ψ𝑛





(𝐿2 (0,2𝜋 ) )3

)
≤ 𝐶

∑︁
|𝑛 | ≥𝑛0

1

|𝑛 |2
< ∞,

thanks to Remark 3.3.1. This completes the proof.

3.3.4 Observation estimates

As mentioned in the barotropic case (Section 3.2.4), we need lower bound estimates of certain obser-
vation terms associated to the system (3.6). First, we define the observation operator corresponding
to the system (3.6) as follows (see the Definition 3.3.1):

• The observation operator B∗
𝜌 : D(𝐴∗) → C to the system (3.6)-(3.7)-(3.8) is defined by

B∗
𝜌Φ := 𝑉0𝜉 (2𝜋) +𝑄0𝜂 (2𝜋), for Φ = (𝜉, 𝜂) ∈ D(𝐴∗) . (3.103)

• The observation operator B∗
𝑢 : D(𝐴∗) → C to the system (3.6)-(3.7)-(3.8) is defined by

B∗
𝑢Φ := 𝑅𝜓0𝜉 (2𝜋) +𝑄0𝑉0𝜂 (2𝜋) + 𝜆0𝑄0𝜂𝑥 (2𝜋) + 𝑅𝑄0𝜁 (2𝜋), for Φ = (𝜉, 𝜂) ∈ D(𝐴∗) . (3.104)

• The observation operator B∗
𝜃
: D(𝐴∗) → C to the system (3.6)-(3.7)-(3.8) is defined by

B∗
𝜃
Φ := 𝑅𝜂 (2𝜋) + 𝑐0𝑉0

𝜓0
𝜁 (2𝜋) + 𝑐0𝜅0

𝜓0
𝜁𝑥 (2𝜋), for Φ = (𝜉, 𝜂) ∈ D(𝐴∗) . (3.105)
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3. Linearized compressible Navier-Stokes system (barotropic and non-barotropic)

Recall that E(𝐴∗) denotes the set of all (generalized) eigenfunctions of 𝐴∗. Then, we write the following
observation estimates under the assumption that all the eigenvalues of 𝐴∗ are algebraically simple.

Lemma 3.3.4. For all eigenfunction Φ𝜈 ∈ E(𝐴∗) \ {Φ0}, the observation operators satisfies B∗
𝜌Φ𝜈 ≠

0,B∗
𝑢Φ𝜈 ≠ 0 and B∗

𝜃
Φ𝜈 ≠ 0. Moreover, we have the following estimates:���B∗

𝜌Φ
ℎ
𝑛

��� ≥ 𝐶, ���B∗
𝜌Φ

𝑝1
𝑛

��� ≥ 𝐶, ���B∗
𝜌Φ

𝑝2
𝑛

��� ≥ 𝐶, (3.106)���B∗
𝑢Φ

ℎ
𝑛

��� ≥ 𝐶

|𝑛 | ,
��B∗

𝑢Φ
𝑝1
𝑛

�� ≥ 𝐶 |𝑛 | ,
��B∗

𝑢Φ
𝑝2
𝑛

�� ≥ 𝐶, (3.107)���B∗
𝜃
Φℎ
𝑛

��� ≥ 𝐶

|𝑛 | ,
��B∗

𝜃
Φ
𝑝2
𝑛

�� ≥ 𝐶 ��B∗
𝜃
Φ
𝑝2
𝑛

�� ≥ 𝐶 |𝑛 | , (3.108)

for some 𝐶 > 0 and all 𝑛 ∈ Z∗.

Proof. Recall from the proof of Lemma 3.3.3 that 𝜈𝑛1 , 𝜈
𝑛
2 , 𝜈

𝑛
3 ≠ 0 (Claim 1) for all 𝑛 ∈ Z∗ and the

eigenvectors (𝛼𝑛1 , 𝛼𝑛2 , 𝛼𝑛3 )†, (𝛽𝑛1 , 𝛽𝑛2 , 𝛽𝑛3 )† and (𝛾𝑛1 , 𝛾𝑛2 , 𝛾𝑛3 )† of 𝑅𝑛 satisfies the following relations:

(𝑉0 − 𝜈𝑛3)𝛼𝑛1 +𝑄0𝛼
𝑛
2 = 0, (𝑉0 − 𝜈𝑛1)𝛽𝑛1 +𝑄0𝛽

𝑛
2 = 0, (𝑉0 − 𝜈𝑛2)𝛾𝑛1 +𝑄0𝛾

𝑛
2 = 0; (3.109)

𝑅𝜓0

𝑄0
𝛼𝑛1 + (𝜆0𝑖𝑛 +𝑉0 − 𝜈𝑛3)𝛼𝑛2 + 𝑅𝛼𝑛3 = 0,

𝑅𝜓0

𝑄0
𝛽𝑛1 + (𝜆0𝑖𝑛 +𝑉0 − 𝜈𝑛1)𝛽𝑛2 + 𝑅𝛽𝑛3 = 0, (3.110)

𝑅𝜓0

𝑄0
𝛾𝑛1 + (𝜆0𝑖𝑛 +𝑉0 − 𝜈𝑛2)𝛾𝑛2 + 𝑅𝛾𝑛3 = 0;

𝑅𝜓0

𝑐0
𝛼𝑛2 + (𝜅0𝑖𝑛 +𝑉0 − 𝜈𝑛3)𝛼𝑛3 = 0,

𝑅𝜓0

𝑐0
𝛽𝑛2 + (𝜅0𝑖𝑛 +𝑉0 − 𝜈𝑛1)𝛽𝑛3 = 0, (3.111)

𝑅𝜓0

𝑐0
𝛾𝑛2 + (𝜅0𝑖𝑛 +𝑉0 − 𝜈𝑛2)𝛾𝑛3 = 0,

for all 𝑛 ∈ Z∗.
We now consider the following cases:

Case 1. (Control acts in density) We have

B∗
𝜌Φ

ℎ
𝑛 = 𝑉0𝜉

ℎ
𝑛 (2𝜋) +𝑄0𝜂

ℎ
𝑛 (2𝜋) = 𝑉0𝛼𝑛1 +𝑄0𝛼

𝑛
2 = 𝜈𝑛3𝛼

𝑛
1 ≠ 0,

B∗
𝜌Φ

𝑝1
𝑛 = 𝑉0𝜉

𝑝1
𝑛 (2𝜋) +𝑄0𝜂

𝑝1
𝑛 (2𝜋) = 𝑉0𝛽𝑛1 +𝑄0𝛽

𝑛
2 = 𝜈𝑛1𝛽

𝑛
1 ≠ 0,

B∗
𝜌Φ

𝑝2
𝑛 = 𝑉0𝜉

𝑝2
𝑛 (2𝜋) +𝑄0𝜂

𝑝2
𝑛 (2𝜋) = 𝑉0𝛾𝑛1 +𝑄0𝛾

𝑛
2 = 𝜈𝑛2𝛾

𝑛
1 ≠ 0,

for all 𝑛 ∈ Z∗, thanks to the equation (3.109).

Case 2. (Control acts in velocity) We have

B∗
𝑢Φ

ℎ
𝑛 = 𝑅𝜓0𝜉

ℎ
𝑛 (2𝜋) + 𝜆0𝑄0(𝜂ℎ𝑛)𝑥 (2𝜋) +𝑄0𝑉0𝜂

ℎ
𝑛 (2𝜋) + 𝑅𝑄0𝜁

ℎ
𝑛 (2𝜋)

= 𝑅𝜓0𝛼
𝑛
1 + 𝜆0𝑄0𝑖𝑛𝛼

𝑛
2 +𝑄0𝑉0𝛼

𝑛
2 + 𝑅𝑄0𝛼

𝑛
3 = 𝑄0𝜈

𝑛
3𝛼

𝑛
2 ≠ 0,

B∗
𝑢Φ

𝑝1
𝑛 = 𝑅𝜓0𝜉

𝑝1
𝑛 (2𝜋) + 𝜆0𝑄0(𝜂𝑝1𝑛 )𝑥 (2𝜋) +𝑄0𝑉0𝜂

𝑝1
𝑛 (2𝜋) + 𝑅𝑄0𝜁

𝑝1
𝑛 (2𝜋)

= 𝑅𝜓0𝛽
𝑛
1 + 𝜆0𝑄0𝑖𝑛𝛽

𝑛
2 +𝑄0𝑉0𝛽

𝑛
2 + 𝑅𝑄0𝛽

𝑛
3 = 𝑄0𝜈

𝑛
1𝛽

𝑛
2 ≠ 0,

B∗
𝑢Φ

𝑝2
𝑛 = 𝑅𝜓0𝜉

𝑝2
𝑛 (2𝜋) + 𝜆0𝑄0(𝜂𝑝2𝑛 )𝑥 (2𝜋) +𝑄0𝑉0𝜂

𝑝2
𝑛 (2𝜋) + 𝑅𝑄0𝜁

𝑝2
𝑛 (2𝜋)

= 𝑅𝜓0𝛾
𝑛
1 + 𝜆0𝑄0𝑖𝑛𝛾

𝑛
2 +𝑄0𝑉0𝛾

𝑛
2 + 𝑅𝑄0𝛾

𝑛
3 = 𝑄0𝜈

𝑛
2𝛾

𝑛
2 ≠ 0,

for all 𝑛 ∈ Z∗, thanks to the equation (3.110).

Case 3. (Control acts in temperature) We have

B∗
𝜃
Φℎ
𝑛 = 𝑅𝜂ℎ𝑛 (2𝜋) +

𝑐0𝑉0

𝜓0
𝜁ℎ𝑛 (2𝜋) +

𝑐0𝜅0

𝜓0
(𝜁ℎ𝑛 )𝑥 (2𝜋)

= 𝑅𝛼𝑛2 + 𝑐0
𝜓0

(𝑉0 + 𝜅0𝑖𝑛)𝛼𝑛3 =
𝑐0

𝜓0
𝜈𝑛3𝛼

𝑛
3 ≠ 0,
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B∗
𝜃
Φ
𝑝1
𝑛 = 𝑅𝜂

𝑝1
𝑛 (2𝜋) + 𝑐0𝑉0

𝜓0
𝜁
𝑝1
𝑛 (2𝜋) + 𝑐0𝜅0

𝜓0
(𝜁 𝑝1𝑛 )𝑥 (2𝜋)

= 𝑅𝛽𝑛2 + 𝑐0
𝜓0

(𝑉0 + 𝜅0𝑖𝑛)𝛽𝑛3 =
𝑐0

𝜓0
𝜈𝑛1𝛽

𝑛
3 ≠ 0,

B∗
𝜃
Φ
𝑝2
𝑛 = 𝑅𝜂

𝑝2
𝑛 (2𝜋) + 𝑐0𝑉0

𝜓0
𝜁
𝑝2
𝑛 (2𝜋) + 𝑐0𝜅0

𝜓0
(𝜁 𝑝2𝑛 )𝑥 (2𝜋)

= 𝑅𝛾𝑛2 + 𝑐0
𝜓0

(𝑉0 + 𝜅0𝑖𝑛)𝛾𝑛3 =
𝑐0

𝜓0
𝜈𝑛2𝛾

𝑛
3 ≠ 0,

for all 𝑛 ∈ Z∗, thanks to the equation (3.111).

The estimates on the observation terms follows directly from the asymptotic expressions (3.91)-(3.92)-
(3.93) and Remark 3.3.1.

Remark 3.3.3. Similar to the barotropic case, we can choose the (finitely many) generalized eigen-
functions Φ̃𝑙, 𝑗 ∈ E(𝐴∗) for 1 ≤ 𝑙 < 𝑁 𝑗 , 1 ≤ 𝑗 ≤ 𝑗0, in such a way that B∗

𝜌 Φ̃𝑙, 𝑗 ≠ 0,B∗
𝑢Φ̃𝑙, 𝑗 ≠ 0 and

B∗
𝜃
Φ̃𝑙, 𝑗 ≠ 0. This can be ensured by choosing a suitable multiple of the finitely many generalized eigen-

functions.

3.3.5 Observability inequalities

As mentioned in the barotropic case, we will write the observability inequalities in this case also, which
will help us prove the null controllability results for the system (3.6). The proof is similar and so we
skip the details.

Theorem 3.3.2. Let 𝑇 > 0 be given. Then, the system (3.6)-(3.7)-(3.8) is null controllable at time 𝑇
in the space ( ¤𝐿2(0, 2𝜋))3 if and only if the observability inequality

(𝜎 (0), 𝑣 (0), 𝜑 (0))†

2( ¤𝐿2 (0,2𝜋 ) )3 ≤ 𝐶

∫ 𝑇

0
|𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋) |2 𝑑𝑡 (3.112)

holds for all solutions (𝜎, 𝑣, 𝜑)† of the adjoint system (3.76) with terminal data (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 )† ∈ D(𝐴∗).

Theorem 3.3.3. Let 𝑇 > 0 be given. Then, the system (3.6)-(3.7)-(3.9) is null controllable at time 𝑇
in the space ¤𝐻1

per(0, 2𝜋) × ( ¤𝐿2(0, 2𝜋))2 if and only if the observability inequality

(𝜎 (0), 𝑣 (0), 𝜑 (0))†

2¤𝐻 −1
per (0,2𝜋 )×( ¤𝐿2 (0,2𝜋 ) )2 (3.113)

≤ 𝐶
∫ 𝑇

0
|𝑅𝜓0𝜎 (𝑡, 2𝜋) + 𝜆0𝑄0𝑣𝑥 (𝑡, 2𝜋) +𝑄0𝑉0𝑣 (𝑡, 2𝜋) + 𝑅𝑄0𝜑 (𝑡, 2𝜋) |2 𝑑𝑡

holds for all solutions (𝜎, 𝑣, 𝜑)† of the adjoint system (3.76) with terminal data (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 )† ∈ D(𝐴∗).

Theorem 3.3.4. Let 𝑇 > 0 be given. Then, the system (3.6)-(3.7)-(3.10) is null controllable at time
𝑇 in the space ¤𝐻1

per(0, 2𝜋) × ( ¤𝐿2(0, 2𝜋))2 if and only if the observability inequality

(𝜎 (0), 𝑣 (0), 𝜑 (0))†

2¤𝐻 −1
per (0,2𝜋 )×( ¤𝐿2 (0,2𝜋 ) )2 ≤ 𝐶

∫ 𝑇

0

����𝑅𝑣 (𝑡, 2𝜋) + 𝑐0𝑉0𝜓0
𝜑 (𝑡, 2𝜋) + 𝑐0𝜅0

𝜓0
𝜑𝑥 (𝑡, 2𝜋)

����2 𝑑𝑡 (3.114)

holds for all solutions (𝜎, 𝑣, 𝜑)† of the adjoint system (3.76) with terminal data (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 )† ∈ D(𝐴∗).

To prove these inequalities, we require lower bound estimates of the corresponding observation
terms (given in the right hand side of (3.112),(3.113) and (3.114)) and to obtain these bounds, we
will use the Ingham-type inequality (3.14). Similar to the barotropic case, we first prove the null
controllability results (Theorem 3.1.3) when all the eigenvalues of 𝐴∗ are simple. The case when
there exist generalized eigenfunctions corresponding to the finitely many multiple eigenvalues will be
presented at the end of this section. Throughout the proof of null controllability of the system (3.6), we
will assume that all the eigenvalues of 𝐴∗ have geometric multiplicity 1, as mentioned in the hypothesis
of Theorem 3.1.3.
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3. Linearized compressible Navier-Stokes system (barotropic and non-barotropic)

3.3.5.1 The case of simple eigenvalues

Let (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 )† ∈ ( ¤𝐿2(0, 2𝜋))3. Since the set of eigenfunctions
{
Φℎ
𝑛,Φ

𝑝1
𝑛 ,Φ

𝑝2
𝑛 : 𝑛 ∈ Z∗

}
of 𝐴∗ forms

a Riesz basis of ( ¤𝐿2(0, 2𝜋))3 (see Proposition 3.3.4), therefore any (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 )† ∈ ( ¤𝐿2(0, 2𝜋))3 can be
written as

(𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 )† =
∑︁
𝑛∈Z∗

𝑎ℎ𝑛Φ
ℎ
𝑛 +

∑︁
𝑛∈Z∗

𝑎
𝑝1
𝑛 Φ

𝑝1
𝑛 +

∑︁
𝑛∈Z∗

𝑎
𝑝2
𝑛 Φ

𝑝2
𝑛 ,

for some (𝑎ℎ𝑛)𝑛∈Z∗, (𝑎
𝑝1
𝑛 )𝑛∈Z∗, (𝑎𝑝2𝑛 )𝑛∈Z∗ ∈ ℓ2. Then, the solution to the adjoint system (3.76) is

(𝜎 (𝑡, 𝑥), 𝑣 (𝑡, 𝑥), 𝜑 (𝑡, 𝑥))† =
∑︁
𝑛∈Z∗

𝑎ℎ𝑛𝑒
𝜈ℎ𝑛 (𝑇−𝑡 )Φℎ

𝑛 (𝑥) +
∑︁
𝑛∈Z∗

𝑎
𝑝1
𝑛 𝑒

𝜈
𝑝1
𝑛 (𝑇−𝑡 )Φ

𝑝1
𝑛 (𝑥) +

∑︁
𝑛∈Z∗

𝑎
𝑝2
𝑛 𝑒

𝜈
𝑝2
𝑛 (𝑇−𝑡 )Φ

𝑝2
𝑛 (𝑥),

for (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 2𝜋), that is,

𝜎 (𝑡, 𝑥) =
∑︁
𝑛∈Z∗

𝑎ℎ𝑛𝑒
𝜈ℎ𝑛 (𝑇−𝑡 )𝛼𝑛1𝑒

𝑖𝑛𝑥 +
∑︁
𝑛∈Z∗

𝑎
𝑝1
𝑛 𝑒

𝜈
𝑝1
𝑛 (𝑇−𝑡 )𝛽𝑛1𝑒

𝑖𝑛𝑥 +
∑︁
𝑛∈Z∗

𝑎
𝑝2
𝑛 𝑒

𝜈
𝑝2
𝑛 (𝑇−𝑡 )𝛾𝑛1𝑒

𝑖𝑛𝑥 ,

𝑣 (𝑡, 𝑥) =
∑︁
𝑛∈Z∗

𝑎ℎ𝑛𝑒
𝜈ℎ𝑛 (𝑇−𝑡 )𝛼𝑛2𝑒

𝑖𝑛𝑥 +
∑︁
𝑛∈Z∗

𝑎
𝑝1
𝑛 𝑒

𝜈
𝑝1
𝑛 (𝑇−𝑡 )𝛽𝑛2𝑒

𝑖𝑛𝑥 +
∑︁
𝑛∈Z∗

𝑎
𝑝2
𝑛 𝑒

𝜈
𝑝2
𝑛 (𝑇−𝑡 )𝛾𝑛2𝑒

𝑖𝑛𝑥 ,

𝜑 (𝑡, 𝑥) =
∑︁
𝑛∈Z∗

𝑎ℎ𝑛𝑒
𝜈ℎ𝑛 (𝑇−𝑡 )𝛼𝑛3𝑒

𝑖𝑛𝑥 +
∑︁
𝑛∈Z∗

𝑎
𝑝1
𝑛 𝑒

𝜈
𝑝1
𝑛 (𝑇−𝑡 )𝛽𝑛3𝑒

𝑖𝑛𝑥 +
∑︁
𝑛∈Z∗

𝑎
𝑝2
𝑛 𝑒

𝜈
𝑝2
𝑛 (𝑇−𝑡 )𝛾𝑛3𝑒

𝑖𝑛𝑥 ,

for (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 2𝜋). We first rewrite the eigenvalues as {𝜈ℎ𝑛, 𝜈
𝑝
𝑛 }𝑛∈Z∗ , where

𝜈
𝑝
𝑛 =

{
𝜈
𝑝1

𝑘
, if 𝑛 = 2𝑘 − 1, 𝑘 ∈ Z

𝜈
𝑝2

𝑘
, if 𝑛 = 2𝑘, 𝑘 ∈ Z∗,

for all 𝑛 ∈ Z∗ and 𝜈ℎ𝑛 is as defined earlier (see Lemma 3.3.3). We also denote the eigenfunction

Φ
𝑝
𝑛 =

{
Φ
𝑝1

𝑘
, if 𝑛 = 2𝑘 − 1, 𝑘 ∈ Z,

Φ
𝑝2

𝑘
, if 𝑛 = 2𝑘, 𝑘 ∈ Z∗,

and the observation term

B∗Φ
𝑝
𝑛 =

{
B∗Φ

𝑝1

𝑘
, if 𝑛 = 2𝑘 − 1, 𝑘 ∈ Z,

B∗Φ
𝑝2

𝑘
, if 𝑛 = 2𝑘, 𝑘 ∈ Z∗,

for all 𝑛 ∈ Z∗. Also, recall that we have defined the set

S :=

(𝜆0, 𝜅0) :

√︄
𝜆0

𝜅0
∉ Q

 .
We further denote

𝑎
𝑝
𝑛 =

{
𝑎
𝑝1

𝑘
, if 𝑛 = 2𝑘 − 1, 𝑘 ∈ Z,

𝑎
𝑝2

𝑘
, if 𝑛 = 2𝑘, 𝑘 ∈ Z∗.

Then, we can write

(𝜎 (𝑡, 𝑥), 𝑣 (𝑡, 𝑥), 𝜑 (𝑡, 𝑥))† =
∑︁
𝑛∈Z∗

𝑎ℎ𝑛𝑒
𝜈ℎ𝑛 (𝑇−𝑡 )Φℎ

𝑛 (𝑥) +
∑︁
𝑛∈Z∗

𝑎
𝑝
𝑛𝑒

𝜈
𝑝
𝑛 (𝑇−𝑡 )Φ

𝑝
𝑛 (𝑥),

for (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 2𝜋).
Estimates on the norms of (𝜎 (0), 𝑣 (0), 𝜑 (0))†: We have



(𝜎 (0), 𝑣 (0), 𝜑 (0))†

2( ¤𝐿2 (0,2𝜋 ) )3 ≤ 𝐶
[∑︁
𝑛∈Z∗

���𝑎ℎ𝑛 ���2 + ∑︁
𝑛∈Z∗

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 )𝑇

]
, (3.115)
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thanks to the asymptotic expressions (3.84). We also have



(𝜎 (0), 𝑣 (0), 𝜑 (0))†

2¤𝐻 −1
per (0,2𝜋 )×( ¤𝐿2 (0,2𝜋 ) )2 ≤ 𝐶

[∑︁
𝑛∈Z∗

���𝑎ℎ𝑛 ���2 1

|𝑛 |2
+

∑︁
𝑛∈Z∗

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 )𝑇

]
, (3.116)

thanks to the asymptotic expressions (3.84).

To prove our null controllability results (Theorem 3.1.3), we will use the Ingham-type inequality (3.14)
and for that, we need to prove that the eigenvalues (𝜈ℎ𝑛)𝑛∈Z∗ and (𝜈𝑝𝑛 )𝑛∈Z∗ satisfy all the hypotheses of
Lemma 3.1.1. Recall the asymptotic expressions of the eigenvalues, given by Lemma 3.3.3:

𝜈ℎ𝑛 = 𝑉0𝑖𝑛 − 𝜔 +𝑂 ( |𝑛 |−2),
𝜈
𝑝1
𝑛 = −𝜆0𝑛2 +𝑉0𝑖𝑛 +𝑂 (1),
𝜈
𝑝2
𝑛 = −𝜅0𝑛2 +𝑉0𝑖𝑛 +𝑂 (1) .

• Due to our assumption on the eigenvalues, we have 𝜈ℎ𝑛 ≠ 𝜈ℎ
𝑙
, 𝜈

𝑝
𝑛 ≠ 𝜈

𝑝

𝑙
for all 𝑛, 𝑙 ∈ Z∗ with 𝑛 ≠ 𝑙

and {𝜈ℎ𝑛 ; 𝑛 ∈ Z∗} ∩ {𝜈𝑝𝑛 ; 𝑛 ∈ Z∗} = ∅.

• From the expression of 𝜈ℎ𝑛 , it is easy to see that the family (𝜈ℎ𝑛)𝑛∈Z∗ satisfies hypothesis (H2) of
Lemma 3.1.1 with 𝛽 = −𝜔, 𝜏 = 𝑉0 and 𝑒𝑛 = 𝑂 ( |𝑛 |−2) for |𝑛 | large enough.

• On the other hand, we have

−Re(𝜈𝑝𝑛 )��Im(𝜈𝑝𝑛 )
�� =

{
𝜆0𝑘

2+𝑂 (1)
𝑉0 |𝑘 | , if 𝑛 = 2𝑘 − 1, 𝑘 ∈ Z,

𝜅0𝑘
2+𝑂 (1)
𝑉0 |𝑘 | , if 𝑛 = 2𝑘, 𝑘 ∈ Z∗,

and therefore −Re(𝜈𝑝𝑛 )
|Im(𝜈𝑝𝑛 ) | ≥ min( 𝜆0

𝑉0
,
𝜅0
𝑉0
) for |𝑛 | large enough, which verifies hypothesis (P2) of Lemma

3.1.1.

• We also have for |𝑛 | large

𝜆0𝑛
2 ≤

��𝜈𝑝1𝑛 �� ≤ (𝜆0 +𝑉0)𝑛2, and 𝜅0𝑛2 ≤
��𝜈𝑝1𝑛 �� ≤ (𝜅0 +𝑉0)𝑛2,

and therefore (𝜈𝑝𝑛 ) satisfies hypothesis (P4) of Lemma 3.1.1 for large enough |𝑛 |.

The family (𝜈ℎ𝑛) satisfy hypotheses (H1)-(H2) of Lemma 3.1.1 for |𝑛 | large enough, and therefore one
can have the hyperbolic Ingham inequality (3.16). On the other hand, the parabolic branch (𝜈𝑝𝑛 )𝑛∈Z∗
satisfy hypotheses (P1)-(P2) and (P4), but does not necessarily satisfy the gap condition (Hypothesis
(P3) of Lemma 3.1.1) when |𝑛 | is large enough. However, we can prove the existence of a biorthogonal

family to (𝑒𝜈
𝑝
𝑛 𝑡 )𝑛∈Z∗ under the stronger assumption (3.13) on the coefficients 𝜆0 and 𝜅0; as a consequence

we have the parabolic Ingham inequality (3.15) (thanks to Remark 3.1.4).

Lemma 3.3.5. Let us assume that all eigenvalues (𝜈𝑝𝑛 )𝑛∈Z∗ of 𝐴∗ are distinct. Then, under the
assumption of Theorem 3.1.3 and given 𝜖 > 0, there exists a sequence (𝑞𝑛)𝑛∈Z∗ ⊂ 𝐿2(0,∞) biorthogonal
to the family (𝑒𝜈

𝑝
𝑛 𝑡 )𝑛∈Z∗ with the following estimate

∥𝑞𝑛 ∥𝐿2 (0,∞) ≤ 𝐾 (𝜖)𝑒Re(𝜈𝑝𝑛 )𝜖 (3.117)

for all 𝑛 ∈ Z∗.

The proof of this Lemma can be done in a similar way as [FCGBdT10, Lemma 3.1] and [LdT13,
Lemma 2], so we omit the details. Indeed, an easy calculation yields that���𝜈𝑝1𝑛 − 𝜈𝑝1

𝑗

��� ≥ 𝐶 ��𝑛2 − 𝑗2
�� , ���𝜈𝑝1𝑛 − 𝜈𝑝2

𝑗

��� ≥ 𝐶 ��𝜆0𝑛2 − 𝜅0 𝑗2�� ,���𝜈𝑝2𝑛 − 𝜈𝑝1
𝑗

��� ≥ 𝐶 ��𝜅0𝑛2 − 𝜆0 𝑗2�� , ���𝜈𝑝2𝑛 − 𝜈𝑝2
𝑗

��� ≥ 𝐶 ��𝑛2 − 𝑗2
�� ,
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for some 𝐶 > 0. With the help of this Lemma and the hyperbolic Ingham inequality (3.16), we can
have the combined Ingham-type inequality (3.14) (as mentioned in Remark 3.1.4). With this, we are
now ready to prove null controllability results of the system (3.6) in the case of simple eigenvalues.

Proof of Theorem 3.1.3-Part (i). Let 𝑇 > 2𝜋
𝑉0
. Recall from Theorem 3.3.2 that it is enough to

prove the observability inequality (3.112), that is,∫ 𝑇

0
|𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋) |2 𝑑𝑡 ≥ 𝐶



(𝜎 (0), 𝑣 (0), 𝜑 (0))†

2( ¤𝐿2 (0,2𝜋 ) )3 ,
for all (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 )† ∈ D(𝐴∗). Also, recall the observation operator B∗

𝜌 given by (3.103). Then, we have
the observation term∫ 𝑇

0
|𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋) |2 𝑑𝑡

=

∫ 𝑇

0

�����∑︁
𝑛∈Z∗

𝑎ℎ𝑛B∗
𝜌Φ

ℎ
𝑛𝑒

𝜈ℎ𝑛 (𝑇−𝑡 ) +
∑︁
𝑛∈Z∗

𝑎
𝑝1
𝑛 B∗

𝜌Φ
𝑝1
𝑛 𝑒

𝜈
𝑝1
𝑛 (𝑇−𝑡 ) +

∑︁
𝑛∈Z∗

𝑎
𝑝2
𝑛 B∗

𝜌Φ
𝑝2
𝑛 𝑒

𝜈
𝑝2
𝑛 (𝑇−𝑡 )

�����2 𝑑𝑡
=

∫ 𝑇

0

�����∑︁
𝑛∈Z∗

𝑎ℎ𝑛B∗
𝜌Φ

ℎ
𝑛𝑒

𝜈ℎ𝑛 (𝑇−𝑡 ) +
∑︁
𝑛∈Z∗

𝑎
𝑝
𝑛B∗

𝜌Φ
𝑝
𝑛𝑒

𝜈
𝑝
𝑛 (𝑇−𝑡 )

�����2 𝑑𝑡 .
Using the combined parabolic-hyperbolic Ingham type inequality (3.14) (Lemma 3.1.1), we have∫ 𝑇

0
|𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋) |2 𝑑𝑡 ≥ 𝐶

(∑︁
𝑛∈Z∗

���𝑎ℎ𝑛 ���2 ���B∗
𝜌Φ

ℎ
𝑛

���2 𝑒2Re(𝜈ℎ𝑛 ) (𝑇−𝑡 ) +
∑︁
𝑛∈Z∗

��𝑎𝑝𝑛 ��2 ���B∗
𝜌Φ

𝑝
𝑛

���2 𝑒2Re(𝜈𝑝𝑛 )𝑇

)
≥ 𝐶

(∑︁
𝑛∈Z∗

���𝑎ℎ𝑛 ���2 + ∑︁
𝑛∈Z∗

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 )𝑇

)
,

thanks to the estimate (3.106). This estimate together with the norm estimate (3.115), the observ-
ability inequality (3.112) follows. This completes the proof in the case of simple eigenvalues.

Proof of Theorem 3.1.3-Part (ii). Let 𝑇 > 2𝜋
𝑉0
. We will consider only the velocity control case.

The case when a control acts in temperature (3.10), the proof will be similar (as we have similar lower
bounds on the observation term B∗

𝑢Φ
ℎ
𝑛 and B∗

𝜃
Φℎ
𝑛, see Lemma 3.3.4 for instance), and so we omit the

details. Thanks to Theorem 3.3.3, it is enough to prove the observability inequality (3.113), that is,∫ 𝑇

0
|𝑅𝜓0𝜎 (𝑡, 2𝜋) + 𝜆0𝑄0𝑣𝑥 (𝑡, 2𝜋) +𝑄0𝑉0𝑣 (𝑡, 2𝜋) + 𝑅𝑄0𝜑 (𝑡, 2𝜋) |2𝑑𝑡 ≥ 𝐶



(𝜎 (0), 𝑣 (0), 𝜑 (0))†

2¤𝐻 −1
per×( ¤𝐿2 )2

for all (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 )† ∈ D(𝐴∗). We have∫ 𝑇

0
|𝑅𝜓0𝜎 (𝑡, 2𝜋) + 𝜆0𝑄0𝑣𝑥 (𝑡, 2𝜋) +𝑄0𝑉0𝑣 (𝑡, 2𝜋) + 𝑅𝑄0𝜑 (𝑡, 2𝜋) |2 𝑑𝑡

=

∫ 𝑇

0

�����∑︁
𝑛∈Z∗

𝑎ℎ𝑛B∗
𝑢Φ

ℎ
𝑛𝑒

𝜈ℎ𝑛 (𝑇−𝑡 ) +
∑︁
𝑛∈Z∗

𝑎
𝑝1
𝑛 B∗

𝑢Φ
𝑝1
𝑛 𝑒

𝜈
𝑝1
𝑛 (𝑇−𝑡 ) +

∑︁
𝑛∈Z∗

𝑎
𝑝2
𝑛 B∗

𝑢Φ
𝑝2
𝑛 𝑒

𝜈
𝑝2
𝑛 (𝑇−𝑡 )

�����2 𝑑𝑡
=

∫ 𝑇

0

�����∑︁
𝑛∈Z∗

𝑎ℎ𝑛B∗
𝑢Φ

ℎ
𝑛𝑒

𝜈ℎ𝑛 (𝑇−𝑡 ) +
∑︁
𝑛∈Z∗

𝑎
𝑝
𝑛B∗

𝑢Φ
𝑝
𝑛𝑒

𝜈
𝑝
𝑛 (𝑇−𝑡 )

�����2 𝑑𝑡
where B∗

𝑢 is defined in (3.104). Using the combined parabolic-hyperbolic Ingham type inequality (3.14)
(see Lemma 3.1.1) and the observation estimates (3.107), we obtain∫ 𝑇

0
|𝑅𝜓0𝜎 (𝑡, 2𝜋) + 𝜆0𝑄0𝑣𝑥 (𝑡, 2𝜋) +𝑄0𝑉0𝑣 (𝑡, 2𝜋) + 𝑅𝑄0𝜑 (𝑡, 2𝜋) |2 𝑑𝑡
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≥ 𝐶
(∑︁
𝑛∈Z∗

���𝑎ℎ𝑛 ���2 ���B∗
𝑢Φ

ℎ
𝑛

���2 𝑒2Re(𝜈ℎ𝑛 ) (𝑇−𝑡 ) +
∑︁
𝑛∈Z∗

��𝑎𝑝𝑛 ��2 ��B∗
𝑢Φ

𝑝
𝑛

��2 𝑒2Re(𝜈𝑝𝑛 )𝑇

)
≥ 𝐶

(∑︁
𝑛∈Z∗

���𝑎ℎ𝑛 ���2 1

|𝑛 |2
+

∑︁
𝑛∈Z∗

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 )𝑇

)
.

Thus, we obtain that∫ 𝑇

0
|𝑅𝜓0𝜎 (𝑡, 2𝜋) + 𝜆0𝑄0𝑣𝑥 (𝑡, 2𝜋) +𝑄0𝑉0𝑣 (𝑡, 2𝜋) + 𝑅𝑄0𝜑 (𝑡, 2𝜋) |2 𝑑𝑡

≥ 𝐶


(𝜎 (0), 𝑣 (0), 𝜑 (0))†

2¤𝐻 −1

per (0,2𝜋 )×( ¤𝐿2 (0,2𝜋 ) )2 ,

thanks to the estimate (3.115). This proves the observability inequality (3.113) and the proof is
complete for simple eigenvalues.

3.3.5.2 The case of multiple eigenvalues

Throughout the proof, we assume that all the eigenvalues of 𝐴∗ have geometric multiplicity 1. Recall
that 𝜈 𝑗 is the eigenvalues of𝐴

∗ with multiplicity 𝑁 𝑗 for 𝑗 = 1, 2, . . . , 𝑗0, and for all |𝑛 | > 𝑛0, the eigenvalues
𝜈𝑛 of 𝐴∗ are algebraically simple. Also, recall the set of (generalized) eigenfunctions corresponding to
𝜈 𝑗 (for 1 ≤ 𝑗 ≤ 𝑗0) as{

Φ𝑗 = (𝜉 𝑗 , 𝜂 𝑗 , 𝜁 𝑗 ) ; Φ̃𝑙, 𝑗 = (𝜉𝑙, 𝑗 , 𝜂𝑙, 𝑗 , 𝜁𝑙, 𝑗 ) : 𝑙 = 1, . . . , 𝑁 𝑗 − 1, 𝑗 = 1, . . . , 𝑗0

}
.

The proof of null controllability of the system (3.6) in the presence of multiple eigenvalue will be
similar to the barotropic case, so we give a brief proof of Theorem 3.1.3 in each cases (control acting
in density, velocity and temperature).

Control in density. Let (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 )† ∈ ( ¤𝐿2(0, 2𝜋))3. We decompose it as follows:

(𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 )† = (𝜎𝑇,1, 𝑣𝑇,1, 𝜑𝑇,1)† + (𝜎𝑇,2, 𝑣𝑇,2, 𝜑𝑇,2)†, (3.118)

with

(𝜎𝑇,1, 𝑣𝑇,1, 𝜑𝑇,1)† =
𝑗0∑︁
𝑗=1

©­«𝑎 𝑗Φ𝑗 +
𝑁 𝑗−1∑︁
𝑙=1

𝑎𝑙, 𝑗 Φ̃𝑙, 𝑗
ª®¬

and
(𝜎𝑇,2, 𝑣𝑇,2, 𝜑𝑇,2)† =

∑︁
|𝑛 | ≥𝑛0

(
𝑎ℎ𝑛Φ

ℎ
𝑛 + 𝑎

𝑝1
𝑛 Φ

𝑝1
𝑛 + 𝑎𝑝2𝑛 Φ

𝑝2
𝑛

)
.

Let (𝜎1, 𝑣1, 𝜑1) and (𝜎2, 𝑣2, 𝜑2) denote the solutions of the adjoint system (3.76) associated to the
terminal data (𝜎𝑇,1, 𝑣𝑇,1, 𝜑𝑇,1) and (𝜎𝑇,2, 𝑣𝑇,2, 𝜑𝑇,2) respectively. Then, we can write these solutions as

(𝜎1(𝑡), 𝑣1(𝑡), 𝜑1(𝑡))† =
𝑗0∑︁
𝑗=1

𝑒𝜈𝑗 (𝑇−𝑡 ) ©­«𝑎 𝑗Φ𝑗 +
𝑁 𝑗−1∑︁
𝑙=1

(𝑇 − 𝑡)𝑙𝑎𝑙, 𝑗 Φ̃𝑙, 𝑗
ª®¬ , (3.119)

(𝜎2(𝑡), 𝑣2(𝑡), 𝜑2(𝑡))† =
∑︁

|𝑛 | ≥𝑛0

(
𝑎ℎ𝑛𝑒

𝜈ℎ𝑛 (𝑇−𝑡 )Φℎ
𝑛 + 𝑎

𝑝1
𝑛 𝑒

𝜈
𝑝1
𝑛 (𝑇−𝑡 )Φ

𝑝1
𝑛 + 𝑎𝑝2𝑛 𝑒𝜈

𝑝2
𝑛 (𝑇−𝑡 )Φ

𝑝2
𝑛

)
, (3.120)

for 𝑡 ∈ [0,𝑇 ]. Using the observability inequality (3.112) in the case of simple eigenvalues, we get∫ 𝑇

0
|𝑉0𝜎2(𝑡, 2𝜋) +𝑄0𝑣2(𝑡, 2𝜋) |2 𝑑𝑡 ≥ 𝐶



(𝜎2(0), 𝑣2(0), 𝜑2(0))†

( ¤𝐿2 (0,2𝜋 ) )3 . (3.121)

Note that

𝑉0𝜎1(𝑡, 2𝜋) +𝑄0𝑣1(𝑡, 2𝜋) =
𝑗0∑︁
𝑗=1

𝑒𝜈𝑗 (𝑇−𝑡 ) ©­«𝑎 𝑗B∗
𝜌Φ𝑗 +

𝑁 𝑗−1∑︁
𝑙=1

𝑎𝑙, 𝑗 (𝑇 − 𝑡)𝑙B∗
𝜌 Φ̃𝑙, 𝑗

ª®¬ (3.122)
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for 𝑡 ∈ (0,𝑇 ). Proceeding similarly as in the barotropic case and using the well-posedness result
(Lemma 3.3.2) ∫ 𝜖

0
|𝑉0𝜎2(𝑡, 2𝜋) +𝑄0𝑣2(𝑡, 2𝜋) |2 𝑑𝑡 ≤ 𝐶



(𝜎2(𝜖), 𝑣2(𝜖), 𝜑2(𝜖))†

2( ¤𝐿2 (0,2𝜋 ) )3 ,
(for 𝜖 > 0 small enough) and finite dimensional norm equivalence (thanks to Lemma 3.3.4-Remark
3.3.3), we can add these finitely many terms in the above observability inequality to obtain∫ 𝑇

0
|𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋) |2 𝑑𝑡 ≥ 𝐶



(𝜎2(0), 𝑣2(0), 𝜑2(0))†

2( ¤𝐿2 (0,2𝜋 ) )3 . (3.123)

and ∫ 𝑇

0
|𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋) |2 𝑑𝑡 ≥ 𝐶



(𝜎1(0), 𝑣1(0), 𝜑1(0))†

2( ¤𝐿2 (0,2𝜋 ) )3 . (3.124)

Combining these two inequalities (3.123) and (3.124), we obtain the desired observability inequality
(3.112), proving Theorem 3.1.3-Part (i) in the case of multiple eigenvalues.

Control in velocity. As mentioned in the barotropic case, it is enough to prove the following in-
equality: ∫ 𝜖

2

0
|𝑅𝜓0𝜎 (𝑡, 2𝜋) + 𝜆0𝑄0𝑣𝑥 (𝑡, 2𝜋) +𝑄0𝑉0𝑣 (𝑡, 2𝜋) + 𝑅𝑄0𝜑 (𝑡, 2𝜋) |2 𝑑𝑡 (3.125)

≤ 𝐶


(𝜎2(𝜖), 𝑣2(𝜖), 𝜑2(𝜖))†

2¤𝐻 −1

per (0,2𝜋 )×( ¤𝐿2 (0,2𝜋 ) )2 .

Recall that (equation (3.120))

(𝜎2(𝑡), 𝑣2(𝑡), 𝜑2(𝑡))† =
∑︁

|𝑛 | ≥𝑛0

(
𝑎ℎ𝑛𝑒

𝜈ℎ𝑛 (𝑇−𝑡 )Φℎ
𝑛 + 𝑎

𝑝1
𝑛 𝑒

𝜈
𝑝1
𝑛 (𝑇−𝑡 )Φ

𝑝1
𝑛 + 𝑎𝑝2𝑛 𝑒𝜈

𝑝2
𝑛 (𝑇−𝑡 )Φ

𝑝2
𝑛

)
for 𝑡 ∈ (0,𝑇 ). Since the observation term B∗

𝑢Φ
ℎ
𝑛 have similar upper bound (of order 1

𝑛
), proceeding

similarly as in the barotropic case, we can obtain∫ 𝜖
2

0
|𝑅𝜓0𝜎 (𝑡, 2𝜋) + 𝜆0𝑄0𝑣𝑥 (𝑡, 2𝜋) +𝑄0𝑉0𝑣 (𝑡, 2𝜋) + 𝑅𝑄0𝜑 (𝑡, 2𝜋) |2 𝑑𝑡 (3.126)

≤ 𝐶
∑︁

|𝑛 | ≥𝑛0

��𝑎ℎ𝑛 ��2
|𝑛 |2

+𝐶
∑︁

|𝑛 | ≥𝑛0

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 ) (𝑇−𝜖 ) ,

see for instance the inequality (3.59). On the other hand, we compute

∥(𝜎2(𝜖), 𝑣2(𝜖), 𝜑2(𝜖))∥ ¤𝐻 −1
per (0,2𝜋 )×( ¤𝐿2 (0,2𝜋 ) )2

=
∑︁

|𝑛 | ≥𝑛0

(
𝑅𝜓0

|𝑛 |2
���𝑎ℎ𝑛𝑒𝜈ℎ𝑛 (𝑇−𝜖 )𝛼𝑛1 + 𝑎𝑝1𝑛 𝑒𝜈

𝑝1
𝑛 (𝑇−𝜖 )𝛽𝑛1 + 𝑎𝑝2𝑛 𝑒𝜈

𝑝2
𝑛 (𝑇−𝜖 )𝛾𝑛1

���2
+𝑄2

0

���𝑎ℎ𝑛𝑒𝜈ℎ𝑛 (𝑇−𝜖 )𝛼𝑛2 + 𝑎𝑝1𝑛 𝑒𝜈
𝑝1
𝑛 (𝑇−𝜖 )𝛽𝑛2 + 𝑎𝑝2𝑛 𝑒𝜈

𝑝2
𝑛 (𝑇−𝜖 )𝛾𝑛2

���2
+
𝑄2
0𝑐0

𝜓0

���𝑎ℎ𝑛𝑒𝜈ℎ𝑛 (𝑇−𝜖 )𝛼𝑛3 + 𝑎𝑝1𝑛 𝑒𝜈
𝑝1
𝑛 (𝑇−𝜖 )𝛽𝑛3 + 𝑎𝑝2𝑛 𝑒𝜈

𝑝2
𝑛 (𝑇−𝜖 )𝛾𝑛3

���2 )
.

Thanks to Remark 3.3.1, we can write

∥(𝜎2(𝜖), 𝑣2(𝜖), 𝜑2(𝜖))∥ ¤𝐻 −1
per (0,2𝜋 )×( ¤𝐿2 (0,2𝜋 ) )2 (3.127)

≥ 𝐶 ©­«
∑︁

|𝑛 | ≥𝑛0

��𝑎ℎ𝑛 ��2
|𝑛 |2

+
∑︁

|𝑛 | ≥𝑛0

��𝑎𝑝1𝑛 ��2 𝑒2Re(𝜈𝑝1𝑛 ) (𝑇−𝜖 ) +
∑︁

|𝑛 | ≥𝑛0

��𝑎𝑝2𝑛 ��2 𝑒2Re(𝜈𝑝2𝑛 ) (𝑇−𝜖 )ª®¬
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= 𝐶
©­«

∑︁
|𝑛 | ≥𝑛0

��𝑎ℎ𝑛 ��2
|𝑛 |2

+
∑︁

|𝑛 | ≥𝑛0

��𝑎𝑝𝑛 ��2 𝑒2Re(𝜈𝑝𝑛 ) (𝑇−𝜖 )ª®¬ .
Comparing this inequality with (3.126), we deduce that∫ 𝜖

2

0
|𝑅𝜓0𝜎 (𝑡, 2𝜋) + 𝜆0𝑄0𝑣𝑥 (𝑡, 2𝜋) +𝑄0𝑉0𝑣 (𝑡, 2𝜋) + 𝑅𝑄0𝜑 (𝑡, 2𝜋) |2 𝑑𝑡

≤ 𝐶 ∥(𝜎2(𝜖), 𝑣2(𝜖), 𝜑2(𝜖))∥ ¤𝐻 −1
per (0,2𝜋 )×( ¤𝐿2 (0,2𝜋 ) )2 ,

proving the required inequality (3.125).

Control in Temperature. The proof will be similar to the velocity case (due to the similar bounds
on the observation terms) and so we skip the details.

This concludes the proof of Theorem 3.1.3 in the case of multiple eigenvalues.

3.3.6 Lack of null controllability for less regular initial states

Similar to the barotropic case, we first write the following result:

Proposition 3.3.5. Let 0 ≤ 𝑠 < 1 and 𝑇 > 0 be given. Then,

• the system (3.6)-(3.7)-(3.9) is null controllable at time 𝑇 in the space ¤𝐻𝑠
per(0, 2𝜋) × ( ¤𝐿2(0, 2𝜋))2

if and only if the inequality

(𝜎 (0), 𝑣 (0), 𝜑 (0))†

2¤𝐻 −𝑠
per (0,2𝜋 )×( ¤𝐿2 (0,2𝜋 ) )2 (3.128)

≤ 𝐶
∫ 𝑇

0
|𝑅𝜓0𝜎 (𝑡, 2𝜋) + 𝜆0𝑄0𝑣𝑥 (𝑡, 2𝜋) +𝑄0𝑉0𝑣 (𝑡, 2𝜋) + 𝑅𝑄0𝜑 (𝑡, 2𝜋) |2 𝑑𝑡

holds for all (𝜎, 𝑣, 𝜑)† of the adjoint system (3.76) with (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 )† ∈ D(𝐴∗).

• the system (3.6)-(3.7)-(3.10) is null controllable at time 𝑇 in the space ¤𝐻𝑠
per(0, 2𝜋) × ( ¤𝐿2(0, 2𝜋))2

if and only if the inequality

(𝜎 (0), 𝑣 (0), 𝜑 (0))†

2¤𝐻 −𝑠
per (0,2𝜋 )×( ¤𝐿2 (0,2𝜋 ) )2 ≤ 𝐶

∫ 𝑇

0

����𝑅𝑣 (𝑡, 2𝜋) + 𝑐0𝑉0𝜓0
𝜑 (𝑡, 2𝜋) + 𝑐0𝜅0

𝜓0
𝜑𝑥 (𝑡, 2𝜋)

����2 𝑑𝑡
(3.129)

holds for all solutions (𝜎, 𝑣, 𝜑)† of (3.76) with (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 )† ∈ D(𝐴∗).

3.3.6.1 Proof of Proposition 3.1.2- Part (ii)

We will present the proof for velocity case only; the temperature case will be exactly similar, because
the observation terms 𝐵∗

𝜃
Φℎ
𝑛 and 𝐵∗𝑢Φ

ℎ
𝑛 have same upper bounds (see Lemma 3.3.4). For (𝜎𝑛

𝑇
, 𝑣𝑛

𝑇
, 𝜑𝑛

𝑇
)† =

Φℎ
𝑛, the solution to the adjoint system is

(𝜎𝑛 (𝑡, 𝑥), 𝑣𝑛 (𝑡, 𝑥), 𝜑𝑛 (𝑡, 𝑥))† = 𝑒𝜈ℎ𝑛 (𝑇−𝑡 )Φℎ
𝑛 (𝑥),

for (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 2𝜋) and 𝑛 ∈ Z∗. For large |𝑛 |, we have the following estimate


Φℎ
𝑛





𝐻 −𝑠

per (0,2𝜋 )×(𝐿2 (0,2𝜋 ) )2
≥ 𝐶

|𝑛 |𝑠 ,

and therefore 

(𝜎𝑛 (0), 𝑣𝑛 (0), 𝜑𝑛 (0))†

2
𝐻 −𝑠

per (0,2𝜋 )×(𝐿2 (0,2𝜋 ) )2 ≥ 𝐶

|𝑛 |2𝑠

for all |𝑛 | large. We also have∫ 𝑇

0

��𝑅𝜓0𝜎
𝑛 (𝑡, 2𝜋) + 𝜆0𝑄0𝑣

𝑛
𝑥 (𝑡, 2𝜋) +𝑄0𝑉0𝑣

𝑛 (𝑡, 2𝜋) + 𝑅𝑄0𝜑
𝑛 (𝑡, 2𝜋)

��2 𝑑𝑡 ≤ 𝐶

|𝑛 |2
,
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for all 𝑛 ∈ Z∗ (see equation (3.126) for instance). Thus, if the observability inequality (3.128) holds,
then we get

𝐶

|𝑛 |2𝑠
≤ 𝐶

|𝑛 |2
=⇒ |𝑛 |2−2𝑠 ≤ 𝐶,

which is not possible since 0 ≤ 𝑠 < 1. This completes the proof.

3.3.7 Lack of controllability at small time

The proof will be similar to the barotropic case, that is, the proof of Theorem 3.1.1- Part (ii). For the
sake of completeness, we give the proof below.

3.3.7.1 Proof of Proposition 3.1.2-Part (i)

Let 0 < 𝑇 < 2𝜋
𝑉0
. Following the notations in the proof of Theorem 3.1.1- Part (ii) (Section 3.2.7), we

consider the system 
𝜎𝑡 +𝑉0𝜎𝑥 = 𝜔𝜎, in (0,𝑇 ) × (0, 2𝜋),
𝜎 (𝑡, 0) = 𝜎 (𝑡, 2𝜋), for 𝑡 ∈ (0,𝑇 ),
𝜎 (𝑇, 𝑥) = 𝜎𝑁𝑇 (𝑥), in (0, 2𝜋) .

(3.130)

Since supp(𝜎𝑁
𝑇
) ⊂ supp(𝜎𝑇 ) ⊂ (𝑇, 2𝜋), the solution satisfies 𝜎𝑁 (𝑡, 0) = 𝜎𝑁 (𝑡, 2𝜋) = 0 for all 𝑡 ∈ (0,𝑇 ).

We now consider the adjoint to our main system

−𝜎𝑡 −𝑉0𝜎𝑥 −𝑄0𝑣𝑥 = 0, in (0,𝑇 ) × (0, 2𝜋),

−𝑣𝑡 − 𝜆0𝑣𝑥𝑥 −
𝑅𝜓0

𝑄0
𝜎𝑥 −𝑉0𝑣𝑥 − 𝑅𝜑𝑥 = 0, in (0,𝑇 ) × (0, 2𝜋),

−𝜑𝑡 − 𝜅0𝜑𝑥𝑥 −
𝑅𝜓0

𝑐0
𝑣𝑥 −𝑉0𝜑𝑥 = 0, in (0,𝑇 ) × (0, 2𝜋),

𝜎 (𝑡, 0) = 𝜎 (𝑡, 2𝜋), for 𝑡 ∈ (0,𝑇 ),
𝑣 (𝑡, 0) = 𝑣 (𝑡, 2𝜋), 𝑣𝑥 (𝑡, 0) = 𝑣𝑥 (𝑡, 2𝜋), for 𝑡 ∈ (0,𝑇 ),
𝜑 (𝑡, 0) = 𝜑 (𝑡, 2𝜋), 𝜑𝑥 (𝑡, 0) = 𝜑𝑥 (𝑡, 2𝜋), for 𝑡 ∈ (0,𝑇 ),
𝜎 (𝑇, 𝑥) = 𝜎𝑁𝑇 (𝑥), 𝑣 (𝑇, 𝑥) = 𝑣𝑁𝑇 (𝑥), 𝜑 (𝑇, 𝑥) = 𝜑𝑁

𝑇 (𝑥), in (0, 2𝜋),

(3.131)

where we choose 𝑣𝑁
𝑇

and 𝜑𝑁
𝑇

such that

(𝜎𝑁𝑇 , 𝑣
𝑁
𝑇 , 𝜑

𝑁
𝑇 )† =

∑︁
|𝑛 | ≥𝑁+1

𝑎ℎ𝑛Φ
ℎ
𝑛

with 𝑎ℎ𝑛𝛼
𝑛
1 := 𝑎𝑛𝑃

𝑁 (𝑛) for all |𝑛 | ≥ 𝑁 + 1. We write the solutions to the systems (3.130) and (3.131)
respectively as

𝜎𝑁 (𝑡, 𝑥) =
∑︁

|𝑛 | ≥𝑁+1
𝑎𝑛𝑃

𝑁 (𝑛)𝑒 (𝑉0𝑖𝑛−𝜔 ) (𝑇−𝑡 )𝑒𝑖𝑛𝑥 , (3.132)

𝜎𝑁 (𝑡, 𝑥) =
∑︁

|𝑛 | ≥𝑁+1
𝑎𝑛𝑃

𝑁 (𝑛)𝑒𝜈ℎ𝑛 (𝑇−𝑡 )𝑒𝑖𝑛𝑥 , (3.133)

𝑣𝑁 (𝑡, 𝑥) =
∑︁

|𝑛 | ≥𝑁+1
𝑎𝑛𝑃

𝑁 (𝑛)
𝛽𝑛1

𝛼𝑛1
𝑒𝜈

ℎ
𝑛 (𝑇−𝑡 )𝑒𝑖𝑛𝑥 , (3.134)

𝜑𝑁 (𝑡, 𝑥) =
∑︁

|𝑛 | ≥𝑁+1
𝑎𝑛𝑃

𝑁 (𝑛)
𝛾𝑛1

𝛼𝑛1
𝑒𝜈

ℎ
𝑛 (𝑇−𝑡 )𝑒𝑖𝑛𝑥 , (3.135)

for all (𝑡, 𝑥) ∈ [0,𝑇 ] × [0, 2𝜋]. Similar to the barotropic case, we prove that the solution component
𝜎𝑁 approximates the solution 𝜎𝑁 . Indeed, we have

𝜎𝑁 (·, 𝑥) − 𝜎𝑁 (·, 𝑥)



2
𝐿2 (0,𝑇 ) ≤

∑︁
|𝑛 | ≥𝑁+1

|𝑎𝑛 |2
��𝑃𝑁 (𝑛)

��2 


𝑒𝜈ℎ𝑛 (𝑇−𝑡 ) − 𝑒 (𝑉0𝑖𝑛−𝜔 ) (𝑇−𝑡 )



2
𝐿2 (0,𝑇 )
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≤
∑︁

|𝑛 | ≥𝑁+1
|𝑎𝑛 |2

��𝑃𝑁 (𝑛)
��2 


𝑒 (𝑉0𝑖𝑛−𝜔 ) (𝑇−𝑡 )𝑒𝑂 ( |𝑛 |−1 ) (𝑇−𝑡 ) − 1




2
𝐿2 (0,𝑇 )

≤ 𝐶

|𝑛 |2
∑︁

|𝑛 | ≥𝑁+1
|𝑎𝑛 |2

��𝑃𝑁 (𝑛)
��2 ,

for all 𝑥 ∈ [0, 2𝜋]. We also have for all 𝑥 ∈ [0, 2𝜋]



𝑣𝑁 (·, 𝑥)


2
𝐿2 (0,𝑇 ) ≤

∑︁
|𝑛 | ≥𝑁+1

|𝑎𝑛 |2
��𝑃𝑁 (𝑛)

��2 ��𝛽𝑛1 ��2��𝛼𝑛1 ��2



𝑒𝜈ℎ𝑛 (𝑇−·)




2
𝐿2 (0,𝑇 )

≤ 𝐶
∑︁

|𝑛 | ≥𝑁+1
|𝑎𝑛 |2

��𝑃𝑁 (𝑛)
��2 1

|𝑛 |2

≤ 𝐶

|𝑁 |2
∑︁

|𝑛 | ≥𝑁+1
|𝑎𝑛 |2

��𝑃𝑁 (𝑛)
��2

We suppose that the following observability inequality holds∫ 𝑇

0

��𝑉0𝜎𝑁 (𝑡, 2𝜋) +𝑄0𝑣
𝑁 (𝑡, 2𝜋)

��2 𝑑𝑡 ≥ 𝐶 

(𝜎𝑁 (0), 𝑣𝑁 (0), 𝜑𝑁 (0))†


2
( ¤𝐿2 (0,2𝜋 ) )3 .

Then, we have

(𝜎𝑁 (0), 𝑣𝑁 (0), 𝜑𝑁 (0))†


2
( ¤𝐿2 (0,2𝜋 ) )3

≤ 𝐶
∫ 𝑇

0

��𝑉0𝜎𝑁 (𝑡, 2𝜋) +𝑄0𝑣
𝑁 (𝑡, 2𝜋)

��2 𝑑𝑡
≤ 𝐶

∫ 𝑇

0

(
𝑉 2
0

��(𝜎𝑁 (𝑡, 2𝜋) − 𝜎𝑁 (𝑡, 2𝜋))
��2 +𝑉 2

0

��𝜎𝑁 (𝑡, 2𝜋)
��2 +𝑄2

0

��𝑣𝑁 (𝑡, 2𝜋)
��2) 𝑑𝑡

≤ 𝐶

𝑁 2

∑︁
|𝑛 | ≥𝑁+1

|𝑎𝑛 |2
��𝑃𝑁 (𝑛)

��2 ,
since 𝜎𝑁 (𝑡, 0) = 0 = 𝜎𝑁 (𝑡, 2𝜋) for all 𝑡 ∈ (0,𝑇 ). Thus, we get

𝜎𝑁 (0)



2¤𝐿2 (0,2𝜋 ) ≤ 

(𝜎𝑁 (0), 𝑣𝑁 (0), 𝜑𝑁 (0))†


2
( ¤𝐿2 (0,2𝜋 ) )3

≤ 𝐶

𝑁 2

∑︁
|𝑛 | ≥𝑁+1

|𝑎𝑛 |2
��𝑃𝑁 (𝑛)

��2 ≤ 𝐶

𝑁 2



𝜎𝑁 (0)


2¤𝐿2 (0,2𝜋 ) ,

since Re(𝜈ℎ𝑛) is bounded. Therefore, 1 ≤ 𝐶
𝑁 2 for all 𝑁 and hence the above inequality cannot hold.

This is a contradiction and the proof is complete.

3.3.8 Lack of approximate controllability

In this section, we find the existence of certain coefficients 𝑄0,𝑉0,𝜓0, 𝜆0, 𝜅0, 𝑅, 𝑐0 such that the system
(3.6) is not approximately controllable at any time 𝑇 > 0 in (𝐿2(0, 2𝜋))2 (that is, Proposition 3.1.3).
Full characterization of these coefficients is very difficult due to the cubic polynomial (3.87). We
present the proof of Proposition 3.1.3 in the case when there is a boundary control acting in density
component. The proof will be similar in other cases (that is, when the control is acting in the velocity
or temperature components) and so we omit the details.

3.3.8.1 Proof of Proposition 3.1.3

Let 𝑇 > 0 be given and let us choose the coefficients

𝑄0 = 𝑉0 = 𝜆0 = 1 = 𝑅𝜓0 =
𝑅2𝜓0

𝑐0
= 1, 𝜅0 = 2.
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To prove this result (in the density case), it is enough to find a terminal data (𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 ) ∈ D(𝐴∗)
such that the associated solution (𝜎, 𝑣, 𝜑) of (3.76) fails to satisfy the following unique continuation
property:

𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋) = 0 for all 𝑡 ∈ (0,𝑇 ) implies (𝜎, 𝑣, 𝜑) = (0, 0, 0) .
Thanks to Remark 3.3.2, 𝐴∗ has an eigenvalue 𝜈1 = 𝜈−1 = −1 for 𝑛 = 1 and 𝑛 = −1 respectively. Let

Φ1 :=
©­­«
𝛼1

𝛼2

𝛼3

ª®®¬ 𝑒𝑖𝑥 and Φ−1 :=
©­­«
𝛽1

𝛽2

𝛽3

ª®®¬ 𝑒−𝑖𝑥 (for some 𝛼𝑖 , 𝛽𝑖 ∈ C, 𝑖 = 1, 2, 3) denote the independent eigenfunctions

of 𝐴∗ corresponding to this multiple eigenvalue −1. We now choose the terminal data as

(𝜎𝑇 , 𝑣𝑇 , 𝜑𝑇 )† = 𝐶Φ1 + 𝐷Φ−1,

where 𝐶, 𝐷 are complex constants that will be chosen later. The solution of (3.76) is then given by

(𝜎 (𝑡), 𝑣 (𝑡), 𝜑 (𝑡))† = 𝑒−(𝑇−𝑡 ) (𝐶Φ1 + 𝐷Φ−1)

for all 𝑡 ∈ (0,𝑇 ). Therefore

𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋) = 𝑒−(𝑇−𝑡 )
(
𝐶B∗

𝜌Φ1 + 𝐷B∗
𝜌Φ−1

)
for all 𝑡 ∈ (0,𝑇 ). If we take 𝐶 = −B∗

𝜌Φ−1 and 𝐷 = B∗
𝜌Φ1, then 𝐶, 𝐷 ≠ 0 (thanks to Lemma 3.3.4) and

for these choice of 𝐶, 𝐷, we have 𝑉0𝜎 (𝑡, 2𝜋) +𝑄0𝑣 (𝑡, 2𝜋) = 0 for all 𝑡 ∈ (0,𝑇 ) but (𝜎, 𝑣, 𝜑) ≠ (0, 0, 0). This
completes the proof.

3.4 Further comments and conclusions

3.4.1 Controllability results using Neumann boundary conditions

We consider the system (3.1) with the initial state (3.2) and the boundary conditions

𝜌 (𝑡, 0) = 𝜌 (𝑡, 2𝜋), 𝑢 (𝑡, 0) = 𝑢 (𝑡, 2𝜋), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 2𝜋) + 𝑞1(𝑡), 𝑡 ∈ (0,𝑇 ), (3.136)

where 𝑞1 is a boundary control that acts on the velocity through Neumann conditions. Since the
observation terms satisfies similar estimates as in (3.36), following the proof of Theorem 3.1.2, we
can obtain the null controllability of the system (3.1)-(3.2)-(3.136) at time 𝑇 > 2𝜋

𝑉0
in the space

¤𝐻1
per(0, 2𝜋) × ¤𝐿2(0, 2𝜋), and the null controllability fails in the space ¤𝐻𝑠

per(0, 2𝜋) × ¤𝐿2(0, 2𝜋) for 0 ≤ 𝑠 < 1.
In this case also, null controllability of the system (3.1)-(3.2)-(3.136) is inconclusive when the time is
small (0 < 𝑇 ≤ 2𝜋

𝑉0
).

Similar to the barotropic case, we consider the system (3.6) with the initial state (3.7) and the
boundary conditions

𝜌 (𝑡, 0) = 𝜌 (𝑡, 2𝜋), 𝑢 (𝑡, 0) = 𝑢 (𝑡, 2𝜋), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 2𝜋) + 𝑞2(𝑡), (3.137)

𝜃 (𝑡, 0) = 𝜃 (𝑡, 2𝜋), 𝜃𝑥 (𝑡, 0) = 𝜃𝑥 (𝑡, 2𝜋), 𝑡 ∈ (0,𝑇 ).

In this case also, following the proof of Theorem 3.1.3-Part (ii) and Proposition 3.1.2-Part (ii), we
get null controllability of the system (3.6)-(3.7)-(3.137) at time 𝑇 > 2𝜋

𝑉0
in the space ¤𝐻1

per(0, 2𝜋) ×
( ¤𝐿2(0, 2𝜋))2, and null controllability fails in the space ¤𝐻𝑠

per(0, 2𝜋) × ( ¤𝐿2(0, 2𝜋))2 for 0 ≤ 𝑠 < 1.

We next consider the system (3.6) with the initial state (3.7) and the boundary conditions

𝜌 (𝑡, 0) = 𝜌 (𝑡, 2𝜋), 𝑢 (𝑡, 0) = 𝑢 (𝑡, 2𝜋), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 2𝜋), (3.138)

𝜃 (𝑡, 0) = 𝜃 (𝑡, 2𝜋), 𝜃𝑥 (𝑡, 0) = 𝜃𝑥 (𝑡, 2𝜋) + 𝑞3(𝑡), 𝑡 ∈ (0,𝑇 ) .

Similar to the previous case, following the proof of Theorem 3.1.3-Part (ii) and Proposition 3.1.2-
Part (ii), we get null controllability of the system (3.6)-(3.7)-(3.138) at time 𝑇 > 2𝜋

𝑉0
in the space

¤𝐻1
per(0, 2𝜋)×( ¤𝐿2(0, 2𝜋))2, and null controllability fails in the space ¤𝐻𝑠

per(0, 2𝜋)×( ¤𝐿2(0, 2𝜋))2 for 0 ≤ 𝑠 < 1.

For both systems (3.6)-(3.7)-(3.137) and (3.6)-(3.7)-(3.138), null controllability is inconclusive for a
small time 0 < 𝑇 ≤ 2𝜋

𝑉0
.
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3.4. Further comments and conclusions

3.4.2 Backward uniqueness property

The backward uniqueness property of the system (3.1) or (3.6) is itself an interesting question from
the mathematical point of view. It says that, when there is no control acting on the system and
the solution vanishes at time 𝑇 > 0, then the solution must vanish identically at all time 𝑡 ∈ [0,𝑇 ].
Our system (3.1) with the initial condition (3.2) and boundary condition (3.3) (with 𝑝 = 0) or (3.4)
(with 𝑞 = 0) satisfies the backward uniqueness property, more precisely, (𝜌 (𝑇 ), 𝑢 (𝑇 )) = (0, 0) implies
(𝜌 (𝑡), 𝑢 (𝑡)) = 0 for all 𝑡 ∈ [0,𝑇 ]. This can be seen easily as the eigenfunctions of 𝐴∗, and hence of 𝐴,
form a complete set in (𝐿2(0, 2𝜋))2. We can similarly conclude that the non-barotropic system (3.6)
with the initial condition (3.7) and boundary condition (3.8) (with 𝑝 = 0) or (3.9) (with 𝑞 = 0) or
(3.10) (with 𝑟 = 0) satisfies the backward uniqueness property.

If a system has backward uniqueness property, then null controllability of the system at some
time 𝑇 > 0 will give approximate controllability at that time 𝑇 . This can be seen easily, because
the observability inequality (for null controllability) and the backward uniqueness implies the unique
continuation property for the corresponding adjoint system. Thus, using a boundary control in density,
our systems (3.1) and (3.6) are approximately controllable at time𝑇 > 2𝜋

𝑉0
in the spaces ( ¤𝐿2(0, 2𝜋))2 and

( ¤𝐿2(0, 2𝜋))3 respectively (thanks to Theorem 3.1.1 and Theorem 3.1.3). Similarly, when a boundary
control is acting in the velocity or in temperature (for the non-barotropic case), the systems (3.1)
and (3.6) are approximately controllable at time 𝑇 > 2𝜋

𝑉0
in the spaces ¤𝐻1

per(0, 2𝜋) × ¤𝐿2(0, 2𝜋) and
¤𝐻1
per(0, 2𝜋) × ( ¤𝐿2(0, 2𝜋))2 respectively (thanks to Theorem 3.1.2 and Theorem 3.1.3).

In this context, we must mention that proving the backward uniqueness property might be difficult
(in general) when the associated operator do not have complete set of eigenfunctions; see for instance
[Ren15], where the author proved backward uniqueness of the linearized compressible Navier-Stokes
system (3.1) under Dirichlet boundary conditions 𝜌 (𝑡, 0) = 𝑢 (𝑡, 0) = 𝑢 (𝑡, 1) = 0 (𝑡 ∈ (0,𝑇 )), by proving
injectivity of the associated semigroup.

3.4.3 More number of controls

Adding controls in both velocity and temperature components does not improve the null controlla-
bility result of the system (3.6) with respect to the regularity of the initial states. Estimates of the
observation terms remain the same as in the control acts in velocity or temperature.
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Chapter 4
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4. Linearized compressible Navier-Stokes system (barotropic fluids)

In this paper, we prove the boundary null-controllability of the compressible Navier-Stokes
equations linearized around a positive constant steady state in a bounded interval when the time is
sufficiently large. The novelty of this work is that we consider only one Dirichlet boundary control
at one end of the interval acting either on the velocity or density part of the concerned system,
where the first-order couplings between transport and heat-type equations arise. Moreover, we
establish that the null-controllability results are optimal/sharp concerning the regularity of initial
states for the velocity case and with respect to time for the density case.

The proofs of controllability results rely on a parabolic-hyperbolic joint Ingham-type inequality,
which is derived in this work, and a mixed parabolic-hyperbolic moments method. In light of
the requirement, we need to use some complex analytic arguments to check the Fattorini-Hautus
criterion. To this end, a careful spectral analysis of the associated non-self-adjoint operator is
performed, where the spectrum consists of parabolic and hyperbolic branches of eigenvalues. It is
one of the involved parts of this article because we analyze more general boundary conditions in
contrast to the periodic case appearing in [CMRR14].

4.1 Introduction and main results

4.1.1 The system under study

The Navier-Stokes (NS) system for a viscous compressible isentropic fluid in (0, 𝐿) is{
𝜌𝑡 + (𝜌𝑢)𝑥 = 0, in (0, +∞) × (0, 𝐿),
𝜌
(
𝑢𝑡 + 𝑢𝑢𝑥

)
+ (𝑝 (𝜌))𝑥 − 𝜈𝑢𝑥𝑥 = 0, in (0, +∞) × (0, 𝐿),

(4.1)

where 𝐿 > 0 denotes the finite length of the interval, 𝜌 is the fluid density and 𝑢 is the velocity. The
viscosity of the fluid is denoted by 𝜈 > 0 and we assume that the pressure 𝑝 satisfies the constitutive
law 𝑝 (𝜌) = 𝑎𝜌𝛾 for 𝑎 > 0 and 𝛾 ≥ 1. Upon linearization of (4.1) around some constant steady state
(𝑄0,𝑉0) (with 𝑄0 > 0,𝑉0 > 0), we have


𝜌𝑡 +𝑉0𝜌𝑥 +𝑄0𝑢𝑥 = 0, in (0, +∞) × (0, 𝐿),

𝑢𝑡 −
𝜈

𝑄0
𝑢𝑥𝑥 +𝑉0𝑢𝑥 + 𝑎𝛾𝑄𝛾−2

0 𝜌𝑥 = 0, in (0, +∞) × (0, 𝐿) . (4.2)

Now, if we consider the change of variables:

𝜌 (𝑡, 𝑥) → 𝛼𝜌 (𝛽𝑡, 𝛿𝑥), 𝑢 (𝑡, 𝑥) → 𝑢 (𝛽𝑡, 𝛿𝑥), ∀(𝑡, 𝑥) ∈ (0, +∞) × (0, 𝐿),

with the choices of 𝛼, 𝛽, 𝛿 > 0 as

𝛼 :=
(
𝑎𝛾𝑄

𝛾−3
0

)−1/2
, 𝛽 :=

𝑄0𝑉
2
0

𝜈
, 𝛿 :=

𝑄0𝑉0

𝜈
,

then the system (4.2) reduces to{
𝜌𝑡 + 𝜌𝑥 + 𝑐𝑢𝑥 = 0, in (0, +∞) × (0, 𝛿𝐿),
𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢𝑥 + 𝑐𝜌𝑥 = 0, in (0, +∞) × (0, 𝛿𝐿),

(4.3)

with 𝑐 = 𝑄0

𝑉0

(
𝑎𝛾𝑄

𝛾−3
0

)1/2
. Let us describe the problems on which we are going to work in the present

article. Our goal is to study the boundary controllability properties of the linearized Navier-Stokes
system (4.3) at time𝑇 > 0 with a single control force acting either on the velocity or density component.
Here, we must mention that the whole analysis of this paper will be performed in the space domain
(0, 1), which is mainly for the simplicity of spectral computations. The same can be done in the
interval (0, 𝛿𝐿).
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4.1. Introduction and main results

I. Control on velocity: The first problem under consideration is

𝜌𝑡 + 𝜌𝑥 + 𝑐𝑢𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢𝑥 + 𝑐𝜌𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝜌 (𝑡, 0) = 𝜌 (𝑡, 1), for 𝑡 ∈ (0,𝑇 ),
𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 1) = 𝑞(𝑡), for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 1),

(4.4)

with a Dirichlet control 𝑞 acting at the right boundary point only through the velocity component 𝑢,
and (𝜌0, 𝑢0) is the given initial state from some suitable Hilbert space.

II. Control on density: Next, we consider the case when a boundary control 𝑝 acts on the density
part instead of velocity. More precisely, the system under consideration is

𝜌𝑡 + 𝜌𝑥 + 𝑐𝑢𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢𝑥 + 𝑐𝜌𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝜌 (𝑡, 0) = 𝜌 (𝑡, 1) + 𝑝 (𝑡), for 𝑡 ∈ (0,𝑇 ),
𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 1) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 1) .

(4.5)

The aim is to study the null-controllability of the systems (4.4) and (4.5) at a given time 𝑇 > 0.
Moreover, as a consequence of the null controllability result for the system (4.5), we can also achieve
the null-controllability for the following full Dirichlet system when a control is exerted on the density
part, that is 

𝜌𝑡 + 𝜌𝑥 + 𝑐𝑢𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢𝑥 + 𝑐𝜌𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝜌 (𝑡, 0) = ℎ(𝑡), for 𝑡 ∈ (0,𝑇 ),
𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 1) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 1).

(4.6)

Let us prescribe the notions of null and approximate controllability for the concerned systems (4.4)–
(4.6).

Definition 4.1.1. Let 𝐻 be a Hilbert space. We say the system (4.4) (resp. (4.5) and (4.6)) is

• null controllable at a finite time 𝑇 > 0 in 𝐻 if, for any given initial state (𝜌0, 𝑢0) ∈ 𝐻 , there
exists a control 𝑞 ∈ 𝐿2(0,𝑇 ) (resp. 𝑝, ℎ ∈ 𝐿2(0,𝑇 )) such that the solution (𝜌,𝑢) to (4.4) (resp.
(4.5) and (4.6)) can be driven to 0 at the time 𝑇 , that is,

(𝜌 (𝑇, 𝑥), 𝑢 (𝑇, 𝑥)) = (0, 0), for all 𝑥 ∈ (0, 1) .

• approximately controllable at a finite time 𝑇 > 0 in 𝐻 if, for any given initial state (𝜌0, 𝑢0) ∈
𝐻 , final state (𝜌𝑇 , 𝑢𝑇 ) ∈ 𝐻 and given 𝜖 > 0, there exists a control 𝑞 ∈ 𝐿2(0,𝑇 ) (resp. 𝑝, ℎ ∈ 𝐿2(0,𝑇 ))
such that the solution (𝜌,𝑢) to (4.4) (resp. (4.5) and (4.6)) satisfies

∥(𝜌 (𝑇 ), 𝑢 (𝑇 )) − (𝜌𝑇 , 𝑢𝑇 )∥𝐻 ≤ 𝜖.

If the system (4.4) is null controllable at some time 𝑇 > 0 by using a control 𝑞 ∈ 𝐿2(0,𝑇 ) acting
only on the velocity part, then we have the following compatibility condition (obtained by integrating
the first equation of (4.4)): ∫ 1

0
𝜌0(𝑥)𝑑𝑥 = 𝑐

∫ 𝑇

0
𝑞(𝑡)𝑑𝑡 .
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4. Linearized compressible Navier-Stokes system (barotropic fluids)

We also get a similar compatibility condition for the density case (that is, for system (4.5)), given by∫ 1

0
𝜌0(𝑥)𝑑𝑥 = −

∫ 𝑇

0
𝑝 (𝑡)𝑑𝑡 .

To avoid these constraints, we shall work on the Hilbert space ¤𝐿2(0, 1) × 𝐿2(0, 1), where

¤𝐿2(0, 1) :=
{
𝑓 ∈ 𝐿2(0, 1) :

∫ 1

0
𝑓 𝑑𝑥 = 0

}
.

4.1.2 Functional setting

For any 𝑠 > 0, we introduce the following Sobolev space

𝐻𝑠
♯
(0, 𝐿) := {𝜑 ∈ 𝐻𝑠 (0, 𝐿) : 𝜑 (0) = 𝜑 (𝐿)}

and denote (𝐻𝑠
♯
(0, 𝐿))′ as the dual space of 𝐻𝑠

♯
(0, 𝐿) with respect to the pivot space 𝐿2(0, 𝐿). We also

denote, for any 𝑠 > 0, 𝐻−𝑠 (0, 𝐿) and ( ¤𝐻𝑠
♯
(0, 𝐿))′ as the dual spaces of 𝐻𝑠

0(0, 𝐿) and ¤𝐻𝑠
♯
(0, 𝐿) with respect

to the pivot spaces 𝐿2(0, 𝐿) and ¤𝐿2(0, 𝐿) respectively. We note here that, although the trace 𝜑 (0) or
𝜑 (𝐿) is meaningful only for 𝑠 > 1

2 , we still keep the same notation for 𝑠 ≤ 1
2 to simplify the presentation.

Let us now write the underlying operator associated with the control systems (4.4) or (4.5), given by

𝐴 =

(
−𝜕𝑥 −𝑐𝜕𝑥
−𝑐𝜕𝑥 𝜕𝑥𝑥 − 𝜕𝑥

)
, (4.7)

with its domain

𝐷 (𝐴) =
{
Φ = (𝜉, 𝜂) ∈ 𝐻1(0, 1) × 𝐻2(0, 1) : 𝜉 (0) = 𝜉 (1), 𝜂 (0) = 𝜂 (1) = 0

}
. (4.8)

The adjoint of the operator 𝐴 has the following formal expression

𝐴∗ =

(
𝜕𝑥 𝑐𝜕𝑥

𝑐𝜕𝑥 𝜕𝑥𝑥 + 𝜕𝑥

)
, (4.9)

also with the same domain 𝐷 (𝐴∗) = 𝐷 (𝐴), given by (4.8). Note that, the operator 𝐴 is non-self-adjoint
in nature.

Notations: Throughout the chapter, 𝐶,𝐶𝑖 > 0 for 𝑖 ∈ N∗, denote the generic constants that may
vary from line to line and may depend on 𝑇 .

4.1.3 Main results

This section is devoted to announce the main results of this chapter.

Theorem 4.1.1 (Control on velocity). Let 𝑇 > 1 and 𝑐 > 0 such that 𝑐4 + 8𝑐2 + 5 < 4𝜋2. Then, there

exists a countable set N such that for chosen 𝑐 ∉ N and any given (𝜌0, 𝑢0) ∈ ¤𝐻
1
2

♯
(0, 1) × 𝐿2(0, 1), there

exists a Dirichlet boundary control 𝑞 ∈ 𝐿2(0,𝑇 ) acting on the velocity component such that the system
(4.4) is null-controllable at time 𝑇 , that is

𝜌 (𝑇, 𝑥) = 𝑢 (𝑇, 𝑥) = 0, ∀𝑥 ∈ (0, 1). (4.10)

Moreover, if 0 ≤ 𝑠 < 1
2 , the system (4.4) fails to satisfy the null-controllability criterion (4.10) in the

space ¤𝐻𝑠
♯
(0, 1) × 𝐿2(0, 1) for any given time 𝑇 > 0 and 𝑐 > 0.
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4.1. Introduction and main results

Theorem 4.1.2 (Control on density). Let 𝑇 > 1 and 𝑐 > 0 such that 𝑐4 + 8𝑐2 + 5 < 4𝜋2. Then, for
any given initial state (𝜌0, 𝑢0) ∈ ¤𝐿2(0, 1) × 𝐿2(0, 1), there exists a boundary control 𝑝 ∈ 𝐿2(0,𝑇 ) acting
through the density component such that the system (4.5) is null-controllable at time 𝑇 , that is

𝜌 (𝑇, 𝑥) = 𝑢 (𝑇, 𝑥) = 0, ∀𝑥 ∈ (0, 1). (4.11)

Remark 4.1.1. We must mention here that the restrictions on 𝑐 appear in the above results because of
the difficulty in proving that roots of the auxiliary equation (which comes from the differential equation
satisfied by the eigenfunctions of 𝐴∗) are distinct, see Lemma 4.4.1 for instance. In particular, this
property ensures that all the eigenvalues of 𝐴∗ has geometric multiplicity 1 (see Proposition 4.3.1-Part
(iv)), which is very crucial to obtain null controllability of the systems (4.4) and (4.5). Moreover, the
set N appears while proving that all the observation terms are non-zero in the case when a control
acts only on the velocity part; see Proposition 4.4.1–Part 2 for details. Note that, in particular, the
set {𝑐 > 0 : 𝑐4 + 8𝑐2 + 5 < 4𝜋2} contains the interval (0, 1].

Moreover, we have the lack of null-controllability result for the system (4.5) when 𝑇 < 1. Precisely,
we prove the following proposition.

Proposition 4.1.1. Let 0 < 𝑇 < 1. The system (4.5) is not null-controllable at time 𝑇 in the space
𝐿2(0, 1) × 𝐿2(0, 1).

As a consequence of Theorem 4.1.2, we also achieve the null-controllability for the system (4.6)
with a Dirichlet control on the density part. More precisely, we have the following result.

Theorem 4.1.3 (Dirichlet control on density). Let 𝑇 > 1 and 𝑐 > 0 such that 𝑐4+8𝑐2+5 < 4𝜋2. Then,
for any given initial state (𝜌0, 𝑢0) ∈ ¤𝐿2(0, 1) × 𝐿2(0, 1), there exists a boundary control ℎ ∈ 𝐿2(0,𝑇 )
acting through the density component such that the system (4.6) is null-controllable at time 𝑇 , that is

𝜌 (𝑇, 𝑥) = 𝑢 (𝑇, 𝑥) = 0, ∀𝑥 ∈ (0, 1). (4.12)

Moreover, if 0 < 𝑇 < 1, the system (4.6) is not null controllable at time 𝑇 in 𝐿2(0, 1) × 𝐿2(0, 1).

Indeed, by Theorem 4.1.2, there exists a control 𝑝 ∈ 𝐿2(0,𝑇 ) which drives the solution (𝜌,𝑢) of the
system (4.5) to (0, 0) with initial state (𝜌0, 𝑢0) ∈ ¤𝐿2(0, 1) ×𝐿2(0, 1). Then, by showing 𝜌 (·, 1) ∈ 𝐿2(0,𝑇 ),
one can consider ℎ(𝑡) := 𝜌 (𝑡, 1) + 𝑝 (𝑡) for 𝑡 ∈ (0,𝑇 ), which acts as a null-control for the system (4.6).
Similarly, we can prove null controllability of (4.5) by assuming null controllability of the system (4.6).
As a consequence, null controllability of the system (4.5) is equivalent to that for the system (4.6).
This kind of technique has been applied for instance in [CC09a, CHO16].

To prove the main results of this paper, we notably use an Ingham-type inequality and the moments
technique. In fact, we establish the following Ingham-type inequality which is of independent interest.

Proposition 4.1.2 (A combined Ingham-type inequality). Let {𝜆𝑘 }𝑘∈N∗ and {𝛾𝑘 }𝑘∈Z be two sequences
in C with the following properties: there is 𝑁 ∈ N∗ such that

(i) for all 𝑘, 𝑗 ∈ Z, 𝛾𝑘 ≠ 𝛾 𝑗 unless 𝑗 = 𝑘;

(ii) 𝛾𝑘 = 𝛽 + 2𝑘𝜋𝑖 + 𝜈𝑘 for all |𝑘 | ≥ 𝑁 ;

where 𝛽 ∈ C and {𝜈𝑘 } |𝑘 | ≥𝑁 ∈ ℓ2.
Also, there exist constants 𝐴0 ≥ 0, 𝐵0 ≥ 𝛿 with 𝛿 > 0 and some 𝜖 > 0 for which {𝜆𝑘 }𝑘∈N∗ satisfies

(i) for all 𝑘, 𝑗 ∈ N∗, 𝜆𝑘 ≠ 𝜆 𝑗 unless 𝑗 = 𝑘;

(ii) −Re(𝜆𝑘 )
|Im(𝜆𝑘 ) | ≥ 𝑐̂ for some 𝑐̂ > 0 and 𝑘 ≥ 𝑁 ;

(iii) there exists some 𝑟 > 1 such that
��𝜆𝑘 − 𝜆 𝑗 �� ≥ 𝛿 |𝑘𝑟 − 𝑗𝑟 | for all 𝑘 ≠ 𝑗 with 𝑘, 𝑗 ≥ 𝑁 and

(iv) 𝜖 (𝐴0 + 𝐵0𝑘𝑟 ) ≤ |𝜆𝑘 | ≤ 𝐴0 + 𝐵0𝑘𝑟 for all 𝑘 ≥ 𝑁 .
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We also assume that the families are disjoint, i.e.,

{𝛾𝑘 , 𝑘 ∈ Z} ∩ {𝜆𝑘 , 𝑘 ∈ N∗} = ∅.

Then, for any time 𝑇 > 1, there exists a positive constant 𝐶 depending only on 𝑇 such that∫ 𝑇

0

����� ∑︁
𝑘∈N∗

𝑎𝑘𝑒
𝜆𝑘𝑡 +

∑︁
𝑘∈Z

𝑏𝑘𝑒
𝛾𝑘𝑡

�����2 𝑑𝑡 ≥ 𝐶
( ∑︁
𝑘∈N∗

|𝑎𝑘 |2 𝑒2Re(𝜆𝑘 )𝑇 +
∑︁
𝑘∈Z

|𝑏𝑘 |2
)
, (4.13)

for all sequences {𝑎𝑘 }𝑘∈N∗ and {𝑏𝑘 }𝑘∈Z in ℓ2.

Remark 4.1.2. The first Ingham inequality was proved in 1936 by Ingham [Ing36]. He considered a
hyperbolic family of the form (𝑖𝛾𝑘 )𝑘∈N∗, where (𝛾𝑘 )𝑘∈N∗ is a sequence of real numbers satisfying the gap
condition inf𝑘∈N |𝛾𝑘+1 − 𝛾𝑘 | > 0. Since then, there are many variations of this inequality available in the
literature including the parabolic Ingham inequality (commonly known as the Müntz-Szász theorem).
We refer to the works [AI95, JTZ97, You01, FCGBdT10, Edw06, LZ02, Lóp99, KL05, MZ04] for
proofs of these variations of Ingham-type inequality.

Zhang and Zuazua [ZZ03a, ZZ03b, ZZ04] proved a joint parabolic-hyperbolic Ingham-type inequality
with a parabolic branch of the form −𝑘2𝜋2 + 2 +𝑂 (𝑘−1) and a hyperbolic branch of the form ( 12 +𝑘)𝜋𝑖 +
𝑂 ( |𝑘 |−1) (Lemma 4.1 in [ZZ03a] or [ZZ04] and Lemma 4.5 in [ZZ03b]). This result has been generalized
by Komornik and Tenenbaum [KT15]. In this article, we prove a joint parabolic-hyperbolic Ingham-
type inequality under more general assumptions on the parabolic and hyperbolic branches compare to
the assumptions in [KT15, Theorem 1.1]. Our proof is based on a decoupling idea as mentioned in
[Zua16, Section 2.4] by Zuazua and [CMRR14, Theorem 4.2] by Chowdhury, Mitra, Ramaswamy and
Renardy. In fact, our proof works with more general assumptions on the sequences (𝜆𝑘 )𝑘∈N∗ and (𝛾𝑘 )𝑘∈Z
for which each of the individual parabolic and hyperbolic Ingham inequalities hold.

4.1.4 Literature on the controllability results related to the compressible
Navier-Stokes equations

In the past few years, the controllability of the compressible and incompressible fluids has turned
into a very significant topic to the control community. Fernández-Cara et al. [FCGIP04b] proved the
local exact distributed controllability of the incompressible Navier-Stokes system when a control is
supported in a small open set; see also the references therein. A local null-controllability result of 3D
Navier-Stokes system with distributed control for incompressible fluids having two vanishing compo-
nents has been addressed in [CL14] by Coron and Lissy. Badra, Ervedoza and Guerrero in [BEG16]
proved the local exact controllability to the trajectories for non-homogeneous (variable density) in-
compressible 2D Navier-Stokes equations using boundary controls for both density and velocity.

In the case of compressible Navier-Stokes equations, we first mention the work by E. V. Amosova
[Amo11] where she considered a compressible viscous fluid in 1D w.r.t. the Lagrangian coordinates
with zero boundary condition on the velocity and an interior control acting on the velocity equation.
She proved a local exact controllability result when the initial density is already on the targeted
trajectory. Ervedoza, Glass, Guerrero and Puel in [EGGP12] proved a local exact controllability
result for the 1D compressible Navier-Stokes system in a bounded domain (0, 𝐿) for regular initial
data in 𝐻3(0, 𝐿) × 𝐻3(0, 𝐿) with two boundary controls, when time is large enough. This result has
been improved by Ervedoza and Savel in [ES18] by choosing the initial data from 𝐻1(0, 𝐿) × 𝐻1(0, 𝐿);
see also a generalized result [EGG16] by Ervedoza, Glass and Guerrero for dimensions 2 and 3.

We also refer that Chowdhury, Ramaswamy and Raymond in [CRR12] established a null control-
lability and stabilizability result of a linearized (around a constant steady-state (𝑄0, 0), 𝑄0 > 0) 1D
compressible Navier-Stokes equations. The authors proved that their system is null-controllable in
𝐻1
0 × 𝐿2 by a distributed control acting everywhere in the velocity equation. Their result is proved

to be sharp in the following sense: the null-controllability cannot be achieved by a localized interior
control (or by a boundary control) acting on the velocity part.
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Martin, Rosier and Rouchon in [MRR13] considered the wave equation with structural damping
in 1D; using the spectral analysis and method of moments, they obtained that their equation is null-
controllable with a moving distributed control for regular initial conditions in 𝐻𝑠+2 × 𝐻𝑠 for 𝑠 > 15/2
at sufficiently large time. See also the work of Chaves-Silva, Rosier and Zuazua [CSRZ14a] for the
higher dimensional case.

The 1D compressible Navier–Stokes equations linearized around a constant steady state with pe-
riodic boundary conditions is closely related to the structurally damped wave equation studied in
[MRR13]. Chowdhury and Mitra [CM15] studied the interior null-controllability of the linearized
(around constant steady state (𝑄0,𝑉0), 𝑄0 > 0,𝑉0 > 0) 1D compressible Navier–Stokes system with
periodic boundary conditions. Following the approach of [MRR13], the authors in [CM15] established
that their system is null-controllable by a localized interior control when the time is large enough, and
for regular initial data in ¤𝐻𝑠+1

𝑝𝑒𝑟 × 𝐻𝑠
𝑝𝑒𝑟 with 𝑠 > 13/2. They also achieved that, for any 𝑇 > 2𝜋

𝑉0
, the

system is approximately controllable at time 𝑇 > 2𝜋
𝑉0

in ¤𝐿2×𝐿2 using a localized interior control (of the
form 𝑓 (𝑡, 𝑥) = ℎ(𝑡)𝑔(𝑥) for (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 2𝜋)) and, it is null-controllable at time 𝑇 using periodic
boundary control with regular initial data ¤𝐻𝑠+1

𝑝𝑒𝑟 × ¤𝐻𝑠
𝑝𝑒𝑟 for 𝑠 > 9/2.

In [CMRR14], Chowdhury, Mitra, Ramaswamy and Renardy considered the one-dimensional com-
pressible Navier–Stokes equations linearized around a constant steady state (𝑄0,𝑉0), 𝑄0 > 0,𝑉0 > 0,
with homogeneous periodic boundary conditions in the interval (0, 2𝜋). They proved that the linearized
system with homogeneous periodic boundary conditions is null controllable in ¤𝐻1

𝑝𝑒𝑟 × 𝐿2 by a localized

interior control when the time 𝑇 > 2𝜋
𝑉0
. Moreover, in their work the distributed null-controllability

result in ¤𝐻1
𝑝𝑒𝑟 × 𝐿2 is sharp in the sense that the controllability fails in ¤𝐻𝑠

𝑝𝑒𝑟 × 𝐿2 for any 0 ≤ 𝑠 < 1. As
usual, the large time for controllability is needed due to the presence of transport part and indeed, the
null-controllability fails for small time, see [Mai15] by Maity and [AMM22] by Ahamed, Maity and
Mitra.

Chowdhury in [Cho15] considered the same linearized Navier–Stokes system around (𝑄0,𝑉0) with
𝑄0 > 0,𝑉0 > 0 in (0, 𝐿) with homogeneous Dirichlet boundary conditions and an interior control acting
only on the velocity equation on a open subset (0, 𝑙) ⊂ (0, 𝐿). He proved the approximate controllability
of the linearized system in 𝐿2(0, 𝐿) × 𝐿2(0, 𝐿) with a localized control in 𝐿2(0,𝑇 ;𝐿2(0, 𝑙)) when 𝑇 > 𝐿−𝑙

𝑉0
.

In the context of the controllability of coupled transport-parabolic system (which is the main
feature of linearized compressible Navier-Stokes equations), we must mention the work [LZ98] by
Lebeau and Zuazua where the distributed null-controllability of Thermoelasticity system has been
studied. More recently, Beauchard, Koenig and Le Balc’h [BKLB20] considered the linear parabolic-
transport system with constant coefficients and coupling of order zero and one with locally distributed
controls posed on the one-dimensional torus T. Following the approach of [LZ98], they proved the
null-controllability at sufficiently large time when there are as many controls as equations. On the
other hand, when the control acts only on the transport (resp. parabolic) component, they obtained
an algebraic necessary and sufficient condition on the coupling term for the null-controllability, and
their controllability studies based on a detailed spectral analysis. According to the more general result
established in [BKLB20], we can say that for a 2×2 coupled parabolic-transport system (with periodic
boundary conditions), the null-controllability with one localized interior control holds true in 𝐿2(T) ×
¤𝐿2(T) (resp. in ¤𝐻2(T)×𝐻2(T)) when the control acts only on the transport (resp. parabolic) component.
More recently, the distributed null-controllability of underactuated linear parabolic-transport systems
with constant coefficients in one-dimensional torus has been established in [KL23] by Koenig and Lissy
for regular enough initial data and large time.

Finally, one may find few stabilization results for linearized compressible Navier-Stokes system
available in [ABBEFR11, CRR12, CMRR15, CDM21, MRR15, MRR17].

4.1.5 Our approach and achievement of the present work

As mentioned earlier, in compressible Navier-Stokes system, the interesting feature is the first order
coupling between transport equation and the momentum equation of parabolic type. It was shown
in [CMRR14, CM15] that the linearized compressible Navier-Stokes system with Periodic-Periodic
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boundary conditions, there is a sequence of generalized eigenfunctions of the associated adjoint op-
erator that forms a Riesz Basis for the state Hilbert space. The success in obtaining this result lies
in the simplicity of the corresponding characteristic equations as well as the explicit structure of all
eigenfunctions in terms of Fourier basis.

But for the operator (𝐴∗, 𝐷 (𝐴∗)) defined in (4.9), the characteristic equation is a third order ODE
and the eigenvalue equation is a non-standard transcendental equation, which is quite challenging to
handle. In fact, the method (invariant subspace idea) used in [CMRR14, CM15] is not practically
applicable to our case. However, we manage to characterize the set of eigenvalues and eigenfunctions
for the operator 𝐴∗. More precisely, the spectrum of 𝐴∗ consists of: a parabolic part containing the
eigenvalues 𝜆

𝑝

𝑘
such that Re(𝜆𝑝

𝑘
) behaves like −𝑘2𝜋2 for large enough 𝑘 ∈ N∗ while Im(𝜆𝑝

𝑘
) is bounded;

a hyperbolic part made up of the eigenvalues 𝜆ℎ
𝑘
such that Im(𝜆ℎ

𝑘
) behaves like 2𝑘𝜋 for large enough

𝑘 ∈ Z while Re(𝜆ℎ
𝑘
) is bounded; and a finite set of lower frequencies. The Riesz basis property of the

set of (generalized) eigenfunctions has been then established by using an abstract result of B.-Z. Guo
[Guo01].

To study the boundary null controllability, we mention that the usual extension method is not
really convenient for the Navier-Stokes system. This is because, when we put one interior control in
the system, then upon extending the domain and restricting the solution on the boundary will give
rise to two boundary controls for the system. In this regard, we refer some earlier null-controllability
results [MRR17, EGGP12, ES18] with one interior control acting in the velocity equation or two
boundary controls both for density and velocity.

The main novelty of the present work is that we directly handle the boundary null controllability
with only one control acting on the density or velocity part where the boundary conditions are of
mixed type (In this regard, we mention the work [CMZ20] by Cerpa, Montoya and Zhang, where
some mixed boundary conditions has been appeared in the context of KdV-Burgers equation). More
precisely, when a control acts in velocity, we use the Ingham-type inequality given by Proposition 4.1.2

to prove an observability inequality for the adjoint to the system (4.4) in ( ¤𝐻
1
2

♯
(0, 1))′ ×𝐿2(0, 1), leading

to the null-controllability of (4.4) at time 𝑇 > 1 with initial data in ¤𝐻
1
2

♯
(0, 1) × 𝐿2(0, 1). On the other

hand, when a boundary control acts on the density part, we proceed in the following way: first, using
the Ingham-type inequality (4.13) we obtain the null-controllability of the system (4.5) at time 𝑇 > 1
in the space ¤𝐿2(0, 1) ×𝐻1

0 (0, 1); secondly, we apply a parabolic-hyperbolic joint moments technique as
developed in [Han94] by Hansen to conclude the null-controllability of the same system (4.5) in the
space ¤𝐻𝑠

♯
(0, 1) ×𝐿2(0, 1) for 𝑠 > 1

2 at 𝑇 > 1. Then, due to the linearity of the solution map of the system

(4.5), these two results provide the null-controllability of that system in the space ¤𝐿2(0, 1) × 𝐿2(0, 1)
when 𝑇 > 1. And, consequently, we deduce the null-controllability of the system (4.6) at time 𝑇 > 1
in ¤𝐿2(0, 1) × 𝐿2(0, 1). Finally, we obtain that null controllability of the systems (4.5) and (4.6) fails in
𝐿2(0, 1) × 𝐿2(0, 1) when the time is small, that is, when 0 < 𝑇 < 1.

4.1.6 Chapter organization

The chapter is organized as follows.

– In Section 4.2, we discuss the well-posedness results of the main systems and some associated
results have been proved in the Appendix.

– We split the spectral analysis for the associated adjoint operator into two sections for the ease of
reading. Section 4.3 contains a short description of the spectral properties whereas the detailed
analysis is prescribed in Section 4.8.

– In Section 4.4, we obtain the lower bounds for the observation terms which are crucial to deter-
mine the null-controllability for the system (4.4) or (4.5).

– Section 4.6 is devoted to prove the null-controllability of the system (4.4), that is Theorem 4.1.1.
An Ingham-type inequality (Proposition 4.1.2), proved in Section 4.5, is the main ingredient for
the required null-controllability proof.
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– Then, in Section 4.7, we prove the null-controllability of the system (4.5), that is Theorem 4.1.2
by using both the method of moments and the Ingham-type inequality obtained in Section 4.5.
As a consequence, we conclude the result in Theorem 4.1.3. Further, a lack of null controllability
result (Proposition 4.1.1) for this system (4.5) is also included in this section.

– Finally, we conclude our paper by providing some open question and remarks in Section 4.9.

4.2 Well-posedness of the system

Let us first recall the operator 𝐴∗ defined by (4.9). Then, we write the adjoint system associated to
the control problems (4.4) and (4.5): let (𝜎, 𝑣) be the adjoint state and the system reads as

−𝜎𝑡 − 𝜎𝑥 − 𝑐𝑣𝑥 = 𝑓 , in (0,𝑇 ) × (0, 1),
−𝑣𝑡 − 𝑣𝑥𝑥 − 𝑣𝑥 − 𝑐𝜎𝑥 = 𝑔, in (0,𝑇 ) × (0, 1),
𝜎 (𝑡, 0) = 𝜎 (𝑡, 1), for 𝑡 ∈ (0,𝑇 ),
𝑣 (𝑡, 0) = 𝑣 (𝑡, 1) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜎 (𝑇, 𝑥) = 𝜎𝑇 (𝑥), 𝑣 (𝑇, 𝑥) = 𝑣𝑇 (𝑥), in (0, 1) .

(4.14)

Shortly, one may express it by

−𝑉 ′(𝑡) = 𝐴∗𝑉 (𝑡) + 𝐹 (𝑡), ∀𝑡 ∈ (0,𝑇 ), 𝑉 (𝑇 ) = 𝑉𝑇 , (4.15)

where the state is 𝑉 := (𝜎, 𝑣), given final data is 𝑉𝑇 := (𝜎𝑇 , 𝑣𝑇 ) and source term is 𝐹 := (𝑓 , 𝑔).
To show the well-posedness of the solutions to (4.4) and (4.5), let us first write the following lemma.

Lemma 4.2.1. The operator 𝐴 (resp. 𝐴∗) is maximal dissipative in 𝐿2(0, 1)×𝐿2(0, 1), that is, (𝐴, 𝐷 (𝐴))
(resp. (𝐴∗, 𝐷 (𝐴∗))) generates a strongly continuous semigroup of contractions in 𝐿2(0, 1) × 𝐿2(0, 1).

The proof of Lemma 4.2.1 can be done in a standard fashion. For the sake of completeness, we
give the proof in Appendix A.0.1. As a consequence of this result, we now guarantee the existence
of a strong solution of the Navier-Stokes equation (4.4) (resp. (4.5)) when there is no control input
acting on the system.

Lemma 4.2.2. For any given (𝜌0, 𝑢0) ∈ D(𝐴), the system (4.4) with 𝑞 = 0 (or the system (4.5) with
𝑝 = 0) admits a unique strong solution (𝜌,𝑢) ∈ C1( [0,𝑇 ];𝐿2(0, 1) × 𝐿2(0, 1)) ∩ C0( [0,𝑇 ];D(𝐴)).

Once we have the existence of semigroup generated by the operator 𝐴∗, we can write the following
result:

Proposition 4.2.1. For any given 𝐹 := (𝑓 , 𝑔) ∈ 𝐿2(0,𝑇 ;𝐿2(0, 1) ×𝐿2(0, 1)) and 𝑉𝑇 = (𝜎𝑇 , 𝑣𝑇 ) ∈ 𝐿2(0, 1) ×
𝐿2(0, 1), there exists a unique weak solution 𝑉 := (𝜎, 𝑣) to the system (4.15) in the space

C([0,𝑇 ];𝐿2(0, 1)) × [C([0,𝑇 ];𝐿2(0, 1)) ∩ 𝐿2(0,𝑇 ;𝐻1
0 (0, 1))] with the estimate

∥(𝜎, 𝑣)∥C0 ( [0,𝑇 ];𝐿2 (0,1)×𝐿2 (0,1) ) + ∥𝑣 ∥𝐿2 (0,𝑇 ;𝐻1
0 (0,1) )

≤ 𝐶
(
∥𝐹 ∥𝐿2 (0,𝑇 ;𝐿2 (0,1)×𝐿2 (0,1) ) + ∥𝑉𝑇 ∥𝐿2 (0,1)×𝐿2 (0,1)

)
.

Moreover, we have the hidden regularity property 𝜎 (·, 1) ∈ 𝐿2(0,𝑇 ).
In particular, if 𝐹 ∈ 𝐿2(0,𝑇 ;𝐻1(0, 1) × 𝐿2(0, 1)) and 𝑉𝑇 = (0, 0), the solution (𝜎, 𝑣) to (4.15) belongs

to C0( [0,𝑇 ];𝐻1
♯
(0, 1)) × [C0( [0,𝑇 ];𝐻1

0 (0, 1)) ∩ 𝐿2(0,𝑇 ;𝐻2(0, 1))].

The proof of this result can be adapted from the work [Gir08, Chapter IV, Sec. 4.3] and so we
omit the details. For the hidden regularity property, we give a detailed proof in Appendix A.1.

Now, we can define the notion of solutions to the control systems (4.4) and (4.5) in the sense of
transposition (see for instance [Cor07]) where a non-trivial boundary source term is appearing.

Definition 4.2.1. We write the following definitions bases on the act of the control.
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• For given initial state 𝑈0 := (𝜌0, 𝑢0) ∈ 𝐿2(0, 1)×𝐿2(0, 1) and boundary data 𝑞 ∈ 𝐿2(0,𝑇 ), a function
𝑈 := (𝜌,𝑢) ∈ 𝐿2(0,𝑇 ; (𝐻1

♯
(0, 1))′) × 𝐿2(0,𝑇 ;𝐿2(0, 1)) is a solution to the system (4.4) if for any

given 𝐹 := (𝑓 , 𝑔) ∈ 𝐿2(0,𝑇 ;𝐻1(0, 1)) × 𝐿2(0,𝑇 ;𝐿2(0, 1)), the following identity holds true:∫ 𝑇

0
⟨𝜌 (𝑡, ·), 𝑓 (𝑡, ·)⟩ (𝐻1 ) ′,𝐻1 𝑑𝑡 +

∫ 𝑇

0

∫ 1

0
𝑢 (𝑡, 𝑥)𝑔(𝑡, 𝑥)𝑑𝑥𝑑𝑡

= ⟨𝑈0(·),𝑉 (0, ·)⟩𝐿2×𝐿2 +
∫ 𝑇

0

[
𝑐𝜎 (𝑡, 1) + 𝑣𝑥 (𝑡, 1)

]
𝑞(𝑡)𝑑𝑡,

where 𝑉 := (𝜎, 𝑣) is the unique weak solution to the adjoint system (4.15) with 𝑉𝑇 = (0, 0).

• For given initial state 𝑈0 := (𝜌0, 𝑢0) ∈ 𝐿2(0, 1)×𝐿2(0, 1) and boundary data 𝑝 ∈ 𝐿2(0,𝑇 ), a function
𝑈 := (𝜌,𝑢) ∈ 𝐿2(0,𝑇 ;𝐿2(0, 1)) × 𝐿2(0,𝑇 ;𝐿2(0, 1)) is a solution to the system (4.5) if for any given
𝐹 := (𝑓 , 𝑔) ∈ 𝐿2(0,𝑇 ;𝐿2(0, 1)) × 𝐿2(0,𝑇 ;𝐿2(0, 1)), the following identity holds true:∫ 𝑇

0

∫ 1

0
𝜌 (𝑡, 𝑥) 𝑓 (𝑡, 𝑥)𝑑𝑥𝑑𝑡 +

∫ 𝑇

0

∫ 1

0
𝑢 (𝑡, 𝑥)𝑔(𝑡, 𝑥)𝑑𝑥𝑑𝑡 = ⟨𝑈0(·),𝑉 (0, ·)⟩𝐿2×𝐿2 +

∫ 𝑇

0
𝜎 (𝑡, 1)𝑝 (𝑡)𝑑𝑡,

where 𝑉 := (𝜎, 𝑣) is the unique weak solution to the adjoint system (4.15) with 𝑉𝑇 = (0, 0).

Let us state the following theorems that concern the existence and uniqueness of solutions to the
control problems (4.4) and (4.5).

Theorem 4.2.1. For every 𝑞 ∈ 𝐿2(0,𝑇 ) and 𝑈0 := (𝜌0, 𝑢0) ∈ 𝐿2(0, 1) × 𝐿2(0, 1), the system (4.4) has
a unique solution 𝑈 := (𝜌,𝑢) belonging to the space C0( [0,𝑇 ]; (𝐻1

♯
(0, 1))′) × [C0( [0,𝑇 ];𝐻−1(0, 1)) ∩

𝐿2(0,𝑇 ;𝐿2(0, 1))] in the sense of transposition.

Moreover, this solution (𝜌,𝑢) satisfies the following estimate

∥𝜌 ∥C0 ( [0,𝑇 ];(𝐻1
♯
(0,1) ) ′ ) + ∥𝑢∥C0 ( [0,𝑇 ];𝐻 −1 (0,1) )∩𝐿2 (0,𝑇 ;𝐿2 (0,1) ) ≤ 𝐶

(
∥(𝜌0, 𝑢0)∥𝐿2 (0,1)×𝐿2 (0,1) + ∥𝑞∥𝐿2 (0,𝑇 )

)
for some constant 𝐶 > 0.

The proof for Theorem 4.2.1 will be followed from [CR13, Section 3]. In fact, if (𝜌0, 𝑢0) ∈ 𝐿2(0, 1) ×
𝐿2(0, 1) and 𝑞 ∈ 𝐿2(0,𝑇 ), the solution (𝜌,𝑢) of (4.4) belong to 𝐿2(0,𝑇 ; (𝐻1

♯
(0, 1))′) × 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)).

Using the continuity estimate for the transport equation and properties of the parabolic equation, we
can deduce that 𝜌 ∈ C0( [0,𝑇 ]; (𝐻1

♯
(0, 1))′) and 𝑢 ∈ C0( [0,𝑇 ];𝐻−1(0, 1)).

Theorem 4.2.2. For every 𝑝 ∈ 𝐿2(0,𝑇 ) and 𝑈0 := (𝜌0, 𝑢0) ∈ 𝐿2(0, 1) × 𝐿2(0, 1), the system (4.5) has
a unique solution 𝑈 := (𝜌,𝑢) belonging to the space 𝐿2(0,𝑇 ;𝐿2(0, 1)) × 𝐿2(0,𝑇 ;𝐿2(0, 1)) in the sense of
transposition and the operator defined by

(𝑈0, 𝑝) ↦→ 𝑈 (𝑈0, 𝑝),

is linear and continuous from (𝐿2(0, 1) × 𝐿2(0, 1)) × 𝐿2(0,𝑇 ) into 𝐿2(0,𝑇 ;𝐿2(0, 1)) × 𝐿2(0,𝑇 ;𝐿2(0, 1)).
Moreover, the solution satisfies the following regularity result,

(𝜌,𝑢) ∈ C0( [0,𝑇 ];𝐿2(0, 1)) × [C0( [0,𝑇 ];𝐿2(0, 1)) ∩ 𝐿2(0,𝑇 ;𝐻1
0 (0, 1))] (4.16)

with the estimate

∥𝜌 ∥C0 ( [0,𝑇 ];𝐿2 (0,1) ) + ∥𝑢∥C0 ( [0,𝑇 ];𝐿2 (0,1) )∩𝐿2 (0,𝑇 ;𝐻1
0 (0,1) )

≤ 𝐶
(
∥𝜌0∥𝐿2 (0,1) + ∥𝑢0∥𝐿2 (0,1) + ∥𝑝 ∥𝐿2 (0,𝑇 )

)
, (4.17)

for some constant 𝐶 > 0.

Further, we have the hidden regularity property 𝜌 (·, 1) ∈ 𝐿2(0,𝑇 ).

We give a sketch of the proof for Theorem 4.2.2 in Appendix A.0.2-A.1.
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4.3 A short description of the spectral properties of the adjoint
operator

In this section, we briefly describe the spectral properties of the adjoint operator 𝐴∗ associated to our
control system (4.4) or (4.5). This part is crucial in our analysis but it is the most technical part, and
thus a detailed study will be presented in Section 4.8.

4.3.1 The eigenvalue problem

Let us denote Φ := (𝜉, 𝜂) and consider the following eigenvalue problem:

𝐴∗Φ = 𝜆Φ, for 𝜆 ∈ C,

which is explicitly given by

𝜉 ′(𝑥) + 𝑐𝜂′(𝑥) = 𝜆𝜉 (𝑥), 𝑥 ∈ (0, 1),
𝜂′′(𝑥) + 𝜂′(𝑥) + 𝑐𝜉 ′(𝑥) = 𝜆𝜂 (𝑥), 𝑥 ∈ (0, 1),

𝜉 (0) = 𝜉 (1),
𝜂 (0) = 𝜂 (1) = 0.

(4.18)

We prove the following proposition.

Proposition 4.3.1. The following results are true.

(i) ker𝐴∗ = span{(1, 0)}.

(ii) All non-zero eigenvalues of 𝐴∗ have negative real parts.

(iii) The resolvent operator associated with 𝐴∗ is compact and hence the spectrum of 𝐴∗ is discrete.

(iv) Let 𝑐 > 0 be such that 𝑐4 + 8𝑐2 + 5 < 4𝜋2. Then, the eigenvalues of 𝐴∗ are geometrically simple.

A quick observation tells that: when 𝜆 = 0, then 𝛼 (1, 0) with 𝛼 ≠ 0 are the only eigenfunctions of
the operator 𝐴∗, which is nothing but the part (i) of the above proposition. Proofs of the other parts
are given in Section 4.8.

4.3.2 The set of eigenvalues

Let us write the properties of the eigenvalues of the operator 𝐴∗. More precisely, we have the following
lemma.

Lemma 4.3.1. Let (𝐴∗, 𝐷 (𝐴∗)) be the operator given by (4.9). Then, there exist 𝑘0, 𝑛0 ∈ N∗ such that
𝐴∗ has three sets of eigenvalues: the parabolic part {𝜆𝑝

𝑘
}𝑘≥𝑘0, the hyperbolic part {𝜆ℎ

𝑘
} |𝑘 | ≥𝑘0 and a finite

family {0} ∪ {𝜆𝑛}𝑛0

𝑛=1 of lower frequencies. Moreover, the parabolic and hyperbolic branches satisfy the
following asymptotic properties:

𝜆
𝑝

𝑘
= −𝑘2𝜋2 +𝑂 (1), for all 𝑘 ≥ 𝑘0 large, (4.19a)

𝜆ℎ
𝑘
= −𝑐2 − 2𝑖𝑘𝜋 +𝑂 ( |𝑘 |−1), for all |𝑘 | ≥ 𝑘0 large. (4.19b)

The proof of the above lemma is one of the crucial part of our work and it is heavy; the details
have been provided in Sections 4.8.1 and 4.8.3.

For simplicity, we set 𝜆0 = 0 and the associated eigenfunction by Φ𝜆0 = (1, 0). We further denote
the set of eigenvalues associated to the parabolic and hyperbolic parts respectively by

Λ𝑝 :=
{
𝜆
𝑝

𝑘
, 𝑘 ≥ 𝑘0

}
, Λℎ :=

{
𝜆ℎ
𝑘
, |𝑘 | ≥ 𝑘0

}
, (4.20)
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and for the lower frequencies by

Λ0 :=
{
𝜆𝑛, 1 ≤ 𝑛 ≤ 𝑛0

}
. (4.21)

Finally, the set of all eigenvalues are denoted by 𝜎 (𝐴∗), where

𝜎 (𝐴∗) :=
{
𝜆0

}
∪ Λ0 ∪ Λ𝑝 ∪ Λℎ . (4.22)

4.3.3 The set of eigenfunctions

We start by writing the following proposition.

Proposition 4.3.2. Let 𝑘0 be as given by Lemma 4.3.1. Then, the operator 𝐴∗ has the following
sets of (generalized) eigenfunctions: the parabolic part {Φ𝜆

𝑝

𝑘
}𝑘≥𝑘0, the hyperbolic part {Φ𝜆ℎ

𝑘
} |𝑘 | ≥𝑘0, the

singleton set {Φ𝜆0} and a finite set {Φ𝑖
𝜆
; 𝜆 ∈ Λ0, 𝑖 = 0, . . . ,𝑚𝜆 − 1}, where 𝑚𝜆 ≥ 1 is the length of Jordan

chain associated to each of the eigenvalues 𝜆 ∈ Λ0.

Furthermore, we have the following:

1. The parabolic part of the eigenfunctions

Φ𝜆
𝑝

𝑘
:= (𝜉𝜆𝑝

𝑘
, 𝜂𝜆𝑝

𝑘
) (4.23)

have asymptotic expressions for large 𝑘 ≥ 𝑘0, given by

𝜉𝜆𝑝
𝑘
(𝑥) = 𝑖𝑏

𝑘𝜋
𝑒−

1
2 (1+𝑥 ) cos(𝑘𝜋 (1 − 𝑥)) + 𝑒𝑥 (−𝑘2𝜋2+𝑂 (1)) ×𝑂

(
1

𝑘

)
+𝑂

(
1

𝑘2

)
, (4.24)

𝜂𝜆𝑝
𝑘
(𝑥) = 𝑒− 1

2 (1+𝑥 ) sin(𝑘𝜋 (1 − 𝑥)) +𝑂
(
1

𝑘

)
, (4.25)

for all 𝑥 ∈ (0, 1) and the hyperbolic part of the eigenfunctions

Φ𝜆ℎ
𝑘
:= (𝜉𝜆ℎ

𝑘
, 𝜂𝜆ℎ

𝑘
) (4.26)

have asymptotic expressions for large |𝑘 | ≥ 𝑘0, given by

𝜉𝜆ℎ
𝑘
(𝑥) = 2𝑖

𝑏𝑒
1√
|𝑘 |

sgn(𝑘)𝑒− 1
2−𝑖 sgn(𝑘 )

√
|𝑘𝜋 |𝑒−2𝑖𝑘𝜋𝑥 +𝑂

(
|𝑘 |−1

)
, (4.27)

𝜂𝜆ℎ
𝑘
(𝑥) = 1

𝑘𝜋𝑒
1√
|𝑘 |

sgn(𝑘)𝑒− 1
2−𝑖 sgn(𝑘 )

√
|𝑘𝜋 |𝑒−2𝑖𝑘𝜋𝑥 (4.28)

+ 1

𝑘𝜋𝑒
1√
|𝑘 |

sgn(𝑘)𝑒−(1−𝑥 )
(√

|𝑘𝜋 |− 1
2−𝑖 sgn(𝑘 )

√
|𝑘𝜋 |

)
+𝑂

(
|𝑘 |−1

)
,

for all 𝑥 ∈ (0, 1), where the sgn function is defined as

sgn(𝑘) =
{
1 when 𝑘 ≥ 0,

−1 when 𝑘 < 0,
(4.29)

2. The eigenfamily, denoted by

E(𝐴∗) :=
{
Φ𝜆

𝑝

𝑘
, 𝑘 ≥ 𝑘0

}
∪

{
Φ𝜆ℎ

𝑘
, |𝑘 | ≥ 𝑘0

}
∪

{
Φ𝜆0

}
∪

{
Φ𝑖
𝜆
; 𝜆 ∈ Λ0, 𝑖 = 0, . . . ,𝑚𝜆 − 1

}
, (4.30)

forms a Riesz basis in 𝐿2(0, 1) × 𝐿2(0, 1).

The last property (Riesz basis) can also be proved in the space (𝐻𝑠1
♯
(0, 1))′ ×𝐻−𝑠2 (0, 1) (𝑠1, 𝑠2 ≥ 0)

by normalize the eigenfunctions suitably, as written below.
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Corollary 4.3.1. Let 𝑠1, 𝑠2 ≥ 0 be given. The family of (generalized) eigenfunctions

E(𝐴∗) :=
{
𝑘𝑠2Φ𝜆

𝑝

𝑘
, 𝑘 ≥ 𝑘0

}
∪

{
𝑘𝑠1Φ𝜆ℎ

𝑘
, |𝑘 | ≥ 𝑘0

}
∪

{
Φ𝜆0

}
∪

{
Φ𝑗

𝜆
; 𝜆 ∈ Λ0, 𝑗 = 0, . . . ,𝑚𝜆 − 1

}
,

forms a Riesz basis in (𝐻𝑠1
♯
(0, 1))′ × 𝐻−𝑠2 (0, 1).

We have taken the same finitely many eigenfunctions as before, which can be ensured by choosing
suitable multiples of the generalized eigenfunctions. We will use this Riesz basis property (with
appropriate 𝑠1 and 𝑠2) to prove the required observability inequalities, see the proof of our main
results in Sections 4.6–4.7.

The existence of parabolic and hyperbolic parts of the family of eigenfunctions are proved in Sec-
tions 4.8.2–4.8.4. Then, using a result from [Guo01], we shall prove the existence of lower frequencies

of eigenvalues {𝜆𝑛}𝑛0

𝑛=1 and the associated (generalized) eigenfunctions. Moreover, we will prove that
the set of eigenfunctions E(𝐴∗) forms a Riesz basis for 𝐿2(0, 1) × 𝐿2(0, 1).

Lemma 4.3.2 (Bounds of the eigenfunctions). Recall the eigenfunctions Φ𝜆
𝑝

𝑘
= (𝜉𝜆𝑝

𝑘
, 𝜂𝜆𝑝

𝑘
), ∀𝑘 ≥ 𝑘0

and Φ𝜆ℎ
𝑘
= (𝜉𝜆ℎ

𝑘
, 𝜂𝜆ℎ

𝑘
), ∀|𝑘 | ≥ 𝑘0 given by (4.24)–(4.25) and (4.27)–(4.28) respectively. Then there exist

constants 𝐶1,𝐶2 > 0 independent in 𝑘, such that we have the following.

1. For any 𝑠 ≥ 0 and 𝑘 ≥ 𝑘0, we have{
𝐶1𝑘

−𝑠−1 ≤ ∥𝜉𝜆𝑝
𝑘
∥ (𝐻𝑠

♯
(0,1) ) ′ ≤ 𝐶2𝑘

−𝑠−1,

𝐶1𝑘
−𝑠 ≤ ∥𝜂𝜆𝑝

𝑘
∥𝐻 −𝑠 (0,1) ≤ 𝐶2𝑘

−𝑠 .
(4.31)

2. On the other hand, for any |𝑘 | ≥ 𝑘0 and 𝑠 ≥ 0, we have{
𝐶1 |𝑘 |−𝑠 ≤ ∥𝜉𝜆ℎ

𝑘
∥ (𝐻𝑠

♯
(0,1) ) ′ ≤ 𝐶2 |𝑘 |−𝑠 ,

𝐶1 |𝑘 |−𝑠−1 ≤ ∥𝜂𝜆ℎ
𝑘
∥𝐻 −𝑠 (0,1) ≤ 𝐶2 |𝑘 |−𝑠−1.

(4.32)

Again, the proofs can be found in Section 4.8.5.

Riesz basis property of the (generalized) eigenfunctions. Let us first recall the following
result.

Theorem 4.3.1 (B.-Z. GUO [Guo01]). Let 𝐴 be a densely defined discrete operator (i.e., the resolvent
of 𝐴 is compact) in a Hilbert space 𝐻 . Let {𝜙𝑛}∞1 be a Riesz basis of 𝐻 . If there are an integer 𝑁 ≥ 0
and a sequence of generalized eigenvectors {𝜓𝑛}∞𝑁+1 of 𝐴 such that

∞∑︁
𝑁+1

∥𝜙𝑛 −𝜓𝑛 ∥2 < +∞,

then the following results hold.

(i) There are a constant 𝑀 > 𝑁 and generalized eigenvectors {𝜓𝑛0}𝑀1 of 𝐴 such that {𝜓𝑛0}𝑀1 ∪{𝜓𝑛}∞𝑀+1
forms a Riesz Basis for 𝐻 .

(ii) Let {𝜓𝑛0}𝑀1 ∪{𝜓𝑛}∞𝑀+1 correspond to the eigenvalues {𝜆𝑛}∞1 of 𝐴. Then the spectrum 𝜎 (𝐴) = {𝜆𝑛}∞1 ,
where 𝜆𝑛 is counted according to its algebraic multiplicity.

(iii) If there is an 𝑀0 > 0 such that 𝜆𝑛 ≠ 𝜆𝑚 for all 𝑚,𝑛 > 𝑀0, then there is an 𝑁0 > 𝑀0 such that all
𝜆𝑛 are algebraically simple if 𝑛 > 𝑁0.
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The first assumption of Theorem 4.3.1 is true in our case since we know that the resolvent operator
of 𝐴∗ is compact, thanks to the Proposition 4.3.1–part (iii). So, the next duty is to find a known family
{Ψ𝑘 , 𝑘 ∈ N∗; Ψ̃𝑘 , 𝑘 ∈ Z} that defines a Riesz basis for 𝐿2(0, 1) × 𝐿2(0, 1) and that is quadratically close
to the countable family

{
Φ𝜆

𝑝

𝑘
, 𝑘 ≥ 𝑘0

}
∪

{
Φ𝜆ℎ

𝑘
, |𝑘 | ≥ 𝑘0

}
. Precisely, our goal is to show the following:∑︁

𝑘≥𝑘0




Φ𝜆
𝑝

𝑘
− Ψ𝑘




2
𝐿2×𝐿2

+
∑︁

|𝑘 | ≥𝑘0




Φ𝜆ℎ
𝑘
− Ψ̃𝑘




2
𝐿2×𝐿2

< +∞. (4.33)

To this end, let us consider the following functions on (0, 1):

Ψ𝑘 (𝑥) :=
(
𝜙𝑘 (𝑥)
𝜓𝑘 (𝑥)

)
=

(
0

2𝑖𝑒−
1
2 (1+𝑥 ) sin(𝑘𝜋 (1 − 𝑥))

)
, ∀𝑘 ∈ N∗, (4.34a)

Ψ̃𝑘 (𝑥) :=
(
𝜙𝑘 (𝑥)
𝜓𝑘 (𝑥)

)
=

©­«
2𝑖

𝑐𝑒

1√
|𝑘 |

sgn(𝑘)𝑒− 1
2−𝑖 sgn(𝑘 )

√
|𝑘𝜋 |𝑒−2𝑖𝑘𝜋𝑥

0

ª®¬ , ∀𝑘 ∈ Z. (4.34b)

It can be shown that the family {Ψ𝑘 , 𝑘 ∈ N∗; Ψ̃𝑘 , 𝑘 ∈ Z} of above functions forms a Riesz basis for
𝐿2(0, 1) × 𝐿2(0, 1) and we have the following result.

Lemma 4.3.3. The family {Ψ𝑘 , 𝑘 ∈ N∗; Ψ̃𝑘 , 𝑘 ∈ Z} given by (4.34) is quadratically close to the family
of eigenfunctions

{
Φ𝜆

𝑝

𝑘
, 𝑘 ≥ 𝑘0

}
∪

{
Φ𝜆ℎ

𝑘
, |𝑘 | ≥ 𝑘0

}
.

Proof. Looking at the expressions of the eigenfunctions Φ𝜆
𝑝

𝑘
, Φ𝜆ℎ

𝑘
for large modulus of 𝑘, given by

(4.23)–(4.24)–(4.25) and (4.26)–(4.27)–(4.28) (resp.) and the known functions Ψ𝑘 , Ψ̃𝑘 given by (4.34),
it is straightforward to compute that


Φ𝜆

𝑝

𝑘
− Ψ𝑘




2
𝐿2×𝐿2

≤ 𝐶

𝑘2
, ∀𝑘 ≥ 𝑘0 large enough,

and 


Φ𝜆ℎ
𝑘
− Ψ̃𝑘




2
𝐿2×𝐿2

≤ 𝐶

𝑘2
, ∀|𝑘 | ≥ 𝑘0 large enough,

which implies the required property (4.33).

Sketch of the proof for Proposition 4.3.2. First, recall that the countable (infinite) number of eigen-
functions {Φ𝜆

𝑝

𝑘
}𝑘≥𝑘0 and {Φ𝜆ℎ

𝑘
} |𝑘 | ≥𝑘0 , with their asymptotic expressions are already given by (4.24)–

(4.25), (4.27)–(4.28).

Now, thanks to Lemma 4.3.3, we can apply the point (i) of Theorem 4.3.1 to ensure the existence
of eigenmodes for lower frequencies. Accordingly, there exist an 𝑛0 ∈ N∗ and a finite set eigenvalues

Λ0 := {𝜆𝑛}𝑛0

1

of the operator 𝐴∗. But there may exist some generalized eigenfunctions corresponding to the eigen-
values of the finite set Λ0. Thus, for each 𝜆 ∈ Λ0, we associate a Jordan chain of length 𝑚𝜆 ≥ 1,
denoted by Φ0

𝜆
, . . . ,Φ𝑚𝜆−1

𝜆
which verify

(𝐴∗ − 𝜆𝐼 )Φ𝑗

𝜆
= Φ𝑗−1

𝜆
, ∀𝑗 ∈ {1, . . . ,𝑚𝜆 − 1}, 𝜆 ∈ Λ0,

where in particular Φ0
𝜆
:= Φ𝜆, the eigenfunction corresponding to 𝜆. Moreover, by virtue of Theorem

4.3.1, we can guarantee that the family, given by

E(𝐴∗) :=
{
Φ𝜆

𝑝

𝑘
, 𝑘 ≥ 𝑘0

}
∪

{
Φ𝜆ℎ

𝑘
, |𝑘 | ≥ 𝑘0

}
∪

{
Φ𝜆0

}
∪

{
Φ𝑗

𝜆
; 𝜆 ∈ Λ0, 𝑗 = 0, . . . ,𝑚𝜆 − 1

}
,

forms a Riesz basis in 𝐿2(0, 1) × 𝐿2(0, 1).
The proof ends.
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Remark 4.3.1. In the same way, one can prove that the set of eigenvalues and (generalized) eigen-
functions of 𝐴 (denoted by 𝜎 (𝐴) and E(𝐴) respectively) have similar properties as of the eigenpairs of
𝐴∗. In this case, we can find some 𝑘̃0 ∈ N∗ (large enough) such that 𝐴 has the eigenvalues of parabolic
and hyperbolic nature for 𝑘 ≥ 𝑘̃0 and |𝑘 | ≥ 𝑘̃0 respectively. For later use, we denote the eigenfunctions
of 𝐴, respectively by 𝛷

𝑝

𝑘
, 𝑘 ≥ 𝑘̃0 and 𝛷ℎ

𝑘
, |𝑘 | ≥ 𝑘̃0 corresponding to the parabolic and hyperbolic branches

of eigenvalues. Moreover, using the result of Theorem 4.3.1, we can show that the set E(𝐴) forms a
Riesz basis for the space 𝐿2(0, 1) × 𝐿2(0, 1).

4.4 Estimations of the observation terms

In this section, we are going to find some lower bounds of the observation terms associated to our
control systems. In this regard, we use the notations B∗

𝜌 and B∗
𝑢 which represent the observation

operators for the density and velocity case respectively, and their formal expressions are given below.

• The observation operator corresponding to (4.5) (control in density) is defined by

B∗
𝜌 =

(
1
0

)
1{𝑥=1} : 𝐷 (𝐴∗) → R, (4.35)

such that

B∗
𝜌Φ = 𝜉 (1), ∀Φ = (𝜉, 𝜂) ∈ 𝐷 (𝐴∗). (4.36)

• The observation operator corresponding to (4.4) (control in velocity) is defined by

B∗
𝑢 = 𝑐1{𝑥=1}

(
1
0

)
+ 1{𝑥=1}

(
0
1

)
𝜕

𝜕𝑥
: 𝐷 (𝐴∗) → R, (4.37)

such that

B∗
𝑢Φ = 𝑐𝜉 (1) + 𝜂′(1), ∀Φ = (𝜉, 𝜂) ∈ 𝐷 (𝐴∗). (4.38)

4.4.1 Characteristics of the observation terms

Let us pick any
Φ := (𝜉, 𝜂) ∈

{
Φ𝜆; 𝜆 ∈ Λ𝑝 ∪ Λℎ ∪ Λ0

}
,

and recall the eigenvalue problem (4.18). Substituting the first equation of (4.18) in the second one,
we get

𝜂′′(𝑥) − (𝑐2 − 1)𝜂′(𝑥) + 𝑐𝜆𝜉 (𝑥) − 𝜆𝜂 (𝑥) = 0, ∀𝑥 ∈ (0, 1) . (4.39)

Differentiating, we have

𝜂′′′(𝑥) − (𝑐2 − 1)𝜂′′(𝑥) + 𝑐𝜆𝜉 ′(𝑥) − 𝜆𝜂′(𝑥) = 0, ∀𝑥 ∈ (0, 1) .

By substituting 𝑐𝜉 ′ = 𝜆𝜂 − 𝜂′′ − 𝜂′ in above, we get a third order ode satisfied only by 𝜂 as follows
𝜂′′′(𝑥) − (𝜆 + 𝑐2 − 1)𝜂′′(𝑥) − 2𝜆𝜂′(𝑥) + 𝜆2𝜂 (𝑥) = 0, ∀𝑥 ∈ (0, 1),
𝜂 (0) = 0, 𝜂 (1) = 0,

𝜂′′(0) − (𝑐2 − 1)𝜂′(0) = 𝜂′′(1) − (𝑐2 − 1)𝜂′(1) .
(4.40)

Let 𝑚1,𝑚2 and 𝑚3 be roots of the cubic auxiliary equation (associated to (4.40))

𝑚3 − (𝜆 + 𝑐2 − 1)𝑚2 − 2𝜆𝑚 + 𝜆2 = 0. (4.41)

Then, we have the following result which states some properties of the roots 𝑚1,𝑚2 and 𝑚3.
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Lemma 4.4.1. The following statements hold.

• Roots of the cubic equation (4.41) has multiplicity less than 3.

• If 𝑐 > 0 is such that 𝑐4 + 8𝑐2 + 5 < 4𝜋2, the relation 𝑒𝑚1 = 𝑒𝑚2 = 𝑒𝑚3 cannot hold.

Proof. From the relation between roots and the coefficients, we have
𝑚1 +𝑚2 +𝑚3 = 𝜆 + 𝑐2 − 1,

𝑚1𝑚2 +𝑚2𝑚3 +𝑚3𝑚1 = −2𝜆,
𝑚1𝑚2𝑚3 = −𝜆2.

(4.42)

We prove all the statements separately.

• Let 𝑚1 =𝑚2 =𝑚3 =𝑚. Then, we have from the first equation of (4.42)

𝑚 =
1

3
(𝜆 + 𝑐2 − 1) .

Next, from the second and third equations of (4.42), we have 3𝑚2 = −2𝜆 and 𝑚3 = −𝜆2 which
further yields

(𝜆 + 𝑐2 − 1)2 = −6𝜆, (𝜆 + 𝑐2 − 1)3 = −27𝜆2, (4.43)

so that 𝜆 + 𝑐2 − 1 = 9
2𝜆. By means of the first equality in (4.43), we then have 𝜆 = − 8

27 which
eventually gives

𝑐2 = 1 + 7

2
𝜆 = 1 − 28

27
= − 1

27
< 0,

and this is not possible. Hence 𝑚1,𝑚2 and 𝑚3 cannot be equal together.

• Let us now assume
𝑒𝑚1 = 𝑒𝑚2 = 𝑒𝑚3,

that is,
𝑚2 =𝑚1 + 2𝑖𝑙𝜋, 𝑚3 =𝑚1 + 2𝑖𝑛𝜋,

for some 𝑙, 𝑛 ∈ Z. From the first equation of (4.42), we have that

3𝑚1 + 2𝑖𝑙𝜋 + 2𝑖𝑛𝜋 = 𝜆 + 𝑐2 − 1, i.e., 𝑚1 =
1

3
(𝜆 + 𝑐2 − 1 − 2𝑖𝑙𝜋 − 2𝑖𝑛𝜋), (4.44)

and so,

𝑚2 =
1

3
(𝜆 + 𝑐2 − 1 + 4𝑖𝑙𝜋 − 2𝑖𝑛𝜋), 𝑚3 =

1

3
(𝜆 + 𝑐2 − 1 − 2𝑖𝑙𝜋 + 4𝑖𝑛𝜋) . (4.45)

Substituting the above 𝑚1,𝑚2,𝑚3 in the second equation of (4.42), we deduce (upon simplifica-
tions)

𝜆2 + 2(𝑐2 + 2)𝜆 + 4(𝑙2 − 𝑙𝑛 + 𝑛2)𝜋2 + (𝑐2 − 1)2 = 0.

Solving the above equation, we get some particular values of 𝜆, namely

𝜆 =
−2(𝑐2 + 2) ±

√︁
4(𝑐2 + 2)2 − 16𝜋2(𝑙2 − 𝑙𝑛 + 𝑛2) − 4(𝑐2 − 1)2

2

= −𝑐2 − 2 ±
√︁
3(2𝑐2 + 1) − 4𝜋2(𝑙2 − 𝑙𝑛 + 𝑛2).

Since 𝑙, 𝑛 ∈ Z, one has 𝑙2 − 𝑙𝑛 + 𝑛2 ≥ 01 and 𝑙2 − 𝑙𝑛 + 𝑛2 = 0 if and only if 𝑙 = 𝑛 = 02. Thus for
(𝑙, 𝑛) ≠ (0, 0) the values of 𝜆 are

𝜆 = −𝑐2 − 2 ± 𝑖
√︁
4𝜋2(𝑙2 − 𝑙𝑛 + 𝑛2) − 3(2𝑐2 + 1). (4.46)

1For 𝑙𝑛 = 0, 𝑙2 − 𝑙𝑛 + 𝑛2 = 𝑙2 + 𝑛2 ≥ 0, for 𝑙𝑛 < 0, 𝑙2 − 𝑙𝑛 + 𝑛2 > 0 and for 𝑙𝑛 > 0, 𝑙2 − 𝑙𝑛 + 𝑛2 = (𝑙 − 𝑛)2 + 𝑙𝑛 > 0.
2If 𝑙2 − 𝑙𝑛 + 𝑛2 = 0 and 𝑛 ≠ 0 then ( 𝑙𝑛 )

2 − ( 𝑙𝑛 ) + 1 = 0 has no real solutions. Therefore 𝑛 = 0 and hence 𝑙 = 0.
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Note that 4𝜋2(𝑙2−𝑙𝑛+𝑛2)−3(2𝑐2+1) is always non-negative under the assumption 𝑐4+8𝑐2+5 < 4𝜋2

and for all (𝑙, 𝑛) ≠ (0, 0).
On the other hand, putting the values of𝑚1,𝑚2,𝑚3 (given by (4.44)–(4.45)) in the third equation
of (4.42), we get

(𝜆 + 𝑐2 − 1 − 2𝑖𝑙𝜋 − 2𝑖𝑛𝜋) (𝜆 + 𝑐2 − 1 + 4𝑖𝑙𝜋 − 2𝑖𝑛𝜋) (𝜆 + 𝑐2 − 1 − 2𝑖𝑙𝜋 + 4𝑖𝑛𝜋) = −27𝜆2,

which further yields

𝜆3 + 3(𝑐2 + 8)𝜆2 + (3(𝑐2 − 1)2 + 12𝑙2𝜋2 − 12𝑙𝑛𝜋2 + 12𝑛2𝜋2)𝜆 + (𝑐2 − 1)3

+ 12𝜋2(𝑐2 − 1) (𝑙2 − 𝑙𝑛 + 𝑛2) − 16𝑖𝑙3𝜋3 + 24𝑖𝑙2𝑛𝜋3 + 24𝑖𝑙𝑛2𝜋3 − 16𝑖𝑛3𝜋3 = 0.

The real part of above equality satisfies

Re(𝜆3) + 3(𝑐2 + 8)Re(𝜆2) + [3(𝑐2 − 1)2 + 12𝜋2(𝑙2 − 𝑙𝑛 + 𝑛2)]Re(𝜆)
+(𝑐2 − 1)3 + 12𝜋2(𝑐2 − 1) (𝑙2 − 𝑙𝑛 + 𝑛2) = 0.

(4.47)

Now, from (4.46), one may find that

Re(𝜆) = −(𝑐2 + 2),
Re(𝜆2) = 𝑐4 + 10𝑐2 + 7 − 4𝜋2(𝑙2 − 𝑙𝑛 + 𝑛2),
Re(𝜆3) = −𝑐6 − 24𝑐4 − 57𝑐2 − 26 + 12𝜋2(𝑐2 + 2) (𝑙2 − 𝑙𝑛 + 𝑛2).

Replacing the above values in (4.47), we obtain

− 𝑐6 − 24𝑐4 − 57𝑐2 − 26 + 12𝜋2(𝑐2 + 2) (𝑙2 − 𝑙𝑛 + 𝑛2)
+ 3(𝑐2 + 8) [𝑐4 + 10𝑐2 + 7 − 4𝜋2(𝑙2 − 𝑙𝑛 + 𝑛2)]
− [3(𝑐2 − 1)2 + 12𝜋2(𝑙2 − 𝑙𝑛 + 𝑛2)] (𝑐2 + 2) + (𝑐2 − 1)3 + 12𝜋2(𝑐2 − 1) (𝑙2 − 𝑙𝑛 + 𝑛2) = 0

Simplifying, we eventually have

27𝑐4 + 216𝑐2 + 135 − 108𝜋2(𝑙2 − 𝑙𝑛 + 𝑛2) = 0,

so that

𝑙2 − 𝑙𝑛 + 𝑛2 = 27𝑐4 + 216𝑐2 + 135

108𝜋2
=
𝑐4 + 8𝑐2 + 5

4𝜋2
< 1,

by our assumption 𝑐4+8𝑐2+5 < 4𝜋2, which is a contradiction as 𝑙2−𝑙𝑛+𝑛2 ≥ 1 for any (𝑙, 𝑛) ≠ (0, 0).
Therefore, the only possibility could be 𝑙 = 𝑛 = 0, but in that case, the expressions (4.44) and
(4.45) provides us 𝑚1 =𝑚2 =𝑚3, which is again a contradiction to the first part of the lemma.

Hence, the results of this lemma are true.

We are now ready to prove that all the observation terms are non-zero for both density and velocity
control cases. For 𝜆 = 0, the eigenfunction is (1, 0), and thus from the expressions of observation terms
(4.36) and (4.38), we immediately get

B∗
𝜌 (1, 0) = 1, B∗

𝑢 (1, 0) = 𝑐,

which are non-zero.

We thus focus only on the case when 𝜆 ≠ 0. In such a situation, for any eigenfunction Φ of 𝐴∗, the
observation terms can be rewritten as

B∗
𝜌Φ = − 1

𝑐𝜆

(
𝜂′′(1) − (𝑐2 − 1)𝜂′(1)

)
, (4.48)

B∗
𝑢Φ = −1

𝜆

(
𝜂′′(1) − (𝜆 + 𝑐2 − 1)𝜂′(1)

)
, (4.49)

where we have used the equation (4.39).

We now prove the following proposition.

141



4. Linearized compressible Navier-Stokes system (barotropic fluids)

Proposition 4.4.1. We have the following results for any non-zero eigenvalue 𝜆 of 𝐴∗.

1. Let 𝑐 > 0 be such that 𝑐4 + 8𝑐2 + 5 < 4𝜋2. Then, the solution 𝜂 of (4.40) satisfies 𝜂′′(1) ≠

(𝑐2 − 1)𝜂′(1).

2. There exists a countable set N ⊂ (0,∞) such that for all 𝑐 ∈ (0,∞) \ N with 𝑐4 + 8𝑐2 + 5 < 4𝜋2,
the solution 𝜂 of (4.40) satisfies 𝜂′′(1) ≠ (𝜆 + 𝑐2 − 1)𝜂′(1).

Proof. 1. To prove the first part, we suppose on contrary that 𝜂′′(1) = (𝑐2 − 1)𝜂′(1). This will
also give us 𝜂′′(0) = (𝑐2 − 1)𝜂′(0) since 𝜉 (0) = 𝜉 (1) and consequently, 𝜂′′(1) − (𝑐2 − 1)𝜂′(1) =

𝜂′′(0) − (𝑐2 − 1)𝜂′(0). We will use the Fourier transform technique together with some complex
analytical arguments to prove that 𝜂 = 0 on (0, 1). This kind of technique is applied in many
works, see for instance [Ros97] for KdV the equation.

Let us define an extension map 𝜗 : R→ R by

𝜗 (𝑥) =
{
𝜂 (𝑥), 𝑥 ∈ (0, 1),
0, 𝑥 ∈ R \ (0, 1) .

(4.50)

Then the transformed equation for (4.40) is

𝜗 ′′′(𝑥) − (𝜆 + 𝑐2 − 1)𝜗 ′′(𝑥) − 2𝜆𝜗 ′(𝑥) + 𝜆2𝜗 (𝑥)
= −𝜂′′(1)𝛿𝑥=1 + 𝜂′′(0)𝛿𝑥=0 − 𝜂′(1)

[
𝛿 ′𝑥=1 − (𝜆 + 𝑐2 − 1)𝛿𝑥=1

]
+ 𝜂′(0)

[
𝛿 ′𝑥=0 − (𝜆 + 𝑐2 − 1)𝛿𝑥=0

]
(4.51)

for all 𝑥 ∈ R.
Let us use the conditions 𝜂′′(1) = (𝑐2 − 1)𝜂′(1) and 𝜂′′(0) = (𝑐2 − 1)𝜂′(0) in (4.51), which gives

𝜗 ′′′(𝑥) − (𝜆 + 𝑐2 − 1)𝜗 ′′(𝑥) − 2𝜆𝜗 ′(𝑥) + 𝜆2𝜗 (𝑥) (4.52)

= −𝜂′(1)
[
𝛿 ′𝑥=1 − 𝜆𝛿𝑥=1

]
+ 𝜂′(0)

[
𝛿 ′𝑥=0 − 𝜆𝛿𝑥=0

]
, ∀𝑥 ∈ R.

Observe that, the existence of an 𝜂 satisfying (4.40) is equivalent to the existence of 𝛼, 𝛽, 𝜆 with
(𝛼, 𝛽) ≠ (0, 0), such that

𝜗 ′′′(𝑥) − (𝜆 + 𝑐2 − 1)𝜗 ′′(𝑥) − 2𝜆𝜗 ′(𝑥) + 𝜆2𝜗 (𝑥)
= −𝛼

[
𝛿 ′𝑥=1 − 𝜆𝛿𝑥=1

]
+ 𝛽

[
𝛿 ′𝑥=0 − 𝜆𝛿𝑥=0

]
, ∀𝑥 ∈ R.

(4.53)

Without loss of generality, we can assume 𝛼 ≠ 0. Indeed, 𝛼 = 𝜂′(1) = 0 implies 𝜂′′(1) = 0 from
our assumption and thus from the equation (4.40), one has 𝜂 = 0.

Taking Fourier transform on both sides of (4.53), we get(
(𝑖𝑧)3 − (𝜆 + 𝑐2 − 1) (𝑖𝑧)2 − 2𝜆(𝑖𝑧) + 𝜆2

)
𝜗 (𝑧)

= −𝛼 (𝑖𝑧𝑒−𝑖𝑧 − 𝜆𝑒−𝑖𝑧) + 𝛽 (𝑖𝑧 − 𝜆), for 𝑧 ∈ C,

which yields

𝜗 (𝑧) = (−𝛼𝑒−𝑖𝑧 + 𝛽) (𝑖𝑧 − 𝜆)
(𝑖𝑧)3 − (𝜆 + 𝑐2 − 1) (𝑖𝑧)2 − 2𝜆(𝑖𝑧) + 𝜆2 , for 𝑧 ∈ C.

Since 𝜗 is the Fourier transform of a function 𝜂 ∈ 𝐻1
0 (0, 1), by the Paley-Wiener theorem, the

function 𝜗 is entire. Thus, the roots of (𝑖𝑧)3 − (𝜆 + 𝑐2 − 1) (𝑖𝑧)2 − 2𝜆(𝑖𝑧) + 𝜆2 are also the roots of
(−𝛼𝑒−𝑖𝑧 − 𝛽) (𝜆 − 𝑖𝑧) with the same multiplicity. So, the main work is to find the roots of

(−𝛼𝑒−𝑖𝑧 + 𝛽) (𝑖𝑧 − 𝜆) = 0, for 𝑧 ∈ C. (4.54)

In fact, rewriting 𝜗 as a function 𝑖𝑧 ∈ C, we have

𝜗 (𝑖𝑧) = (−𝛼𝑒𝑧 + 𝛽) (−𝑧 − 𝜆)
−𝑧3 − (𝜆 + 𝑐2 − 1)𝑧2 + 2𝜆𝑧 + 𝜆2 , for 𝑧 ∈ C. (4.55)
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In (4.55), the roots of (−𝛼𝑒𝑧 + 𝛽) (−𝑧 − 𝜆) are 𝑧 = −𝜆 and the zeros of 𝑒𝑧 =
𝛽

𝛼
(as we have 𝛼 ≠ 0).

We also note that −𝜆 is not a root of the polynomial equation

−𝑧3 − (𝜆 + 𝑐2 − 1)𝑧2 + 2𝜆𝑧 + 𝜆2 = 0, (4.56)

since 𝜆𝑐 ≠ 0.

Let 𝑟1, 𝑟2, 𝑟3 be the roots of the equation (4.56). Then one must have

𝑒𝑟1 = 𝑒𝑟2 = 𝑒𝑟3 =
𝛽

𝛼
,

which is not possible, due to Lemma 4.4.1.

Therefore, the only possibility is 𝛼 = 𝛽 = 0, which gives (comparing (4.52) and (4.53)) that
𝜂′(0) = 𝜂′(1) = 0. But, we have the boundary condition 𝜂 (0) = 𝜂 (1) = 0 and by assumption
𝜂′′(1) − (𝑐2 − 1)𝜂′(1) = 𝜂′′(0) − (𝑐2 − 1)𝜂′(0), i.e., 𝜂′′(1) = 𝜂′′(0) = 0. Consequently, 𝜂 = 0 in (0, 1)
and thus 𝜉 = 0 in (0, 1).
So our assumption was false, and that the assertion of first part holds true.

2. To prove the second statement, we assume on contrary that

𝜂′′(1) = (𝜆 + 𝑐2 − 1)𝜂′(1) . (4.57)

Now, our claim is to show that 𝜂 = 0 in (0, 1). We note here that the Fourier transform
technique used earlier will not work here due to the difficulty of the boundary condition 𝜂′′(1) =
(𝜆 + 𝑏2 − 1)𝜂′(1). However, we use a different complex analytic method, addressed for instance
in [LB20b], to conclude the proof.

Consider the following adjoint system of (4.40) as{
−𝜃 ′′′(𝑥) − (𝜆 + 𝑐2 − 1)𝜃 ′′(𝑥) + 2𝜆𝜃 ′(𝑥) + 𝜆2𝜃 (𝑥) = 0,

𝜃 (0) = 0, 𝜃 ′(0) = 0, 𝜃 ′(1) ≠ 0.
(4.58)

Multiplying the equation (4.40) by 𝜃 and then integrating by parts, we obtain

𝜂′′(1)𝜃 (1) − 𝜂′(1)𝜃 ′(1) − (𝜆 + 𝑐2 − 1)𝜂′(1)𝜃 (1) = 0.

Then, due to our assumption (4.57), we get

𝜂′(1)𝜃 ′(1) = 0. (4.59)

Let us make the following claim.

Claim. There exists a countable set N such that for any 𝑐 ∈ (0,∞) \ N with 𝑐4 + 8𝑐2 + 5 < 4𝜋2,
the equation (4.58) has a non-trivial solution.

Proof of the Claim. Let 𝑚∗
1,𝑚

∗
2,𝑚

∗
3 be roots of the following auxiliary equation

−𝑚3 − (𝜆 + 𝑐2 − 1)𝑚2 + 2𝜆𝑚 + 𝜆2 = 0. (4.60)

Since 𝑐 satisfies 𝑐4 + 8𝑐2 + 5 < 4𝜋2, the roots of (4.60) does not satisfy 𝑒𝑚
∗
1 = 𝑒𝑚

∗
2 = 𝑒𝑚

∗
3 , thanks

to Lemma 4.4.1. Note also that the map 𝑐 ↦→ 𝑚(𝑐) is injective. In fact, 𝑚(𝑐1) = 𝑚(𝑐2) implies
(𝑐21 − 𝑐22)𝑚(𝑐1) = 0 and hence 𝑐1 = 𝑐2 (since 𝑚(𝑐1) ≠ 0 for any 𝜆 ≠ 0). We then write the solution
𝜃 of (4.58) as

𝜃 (𝑥) = 𝐶1𝑒
𝑚∗

1𝑥 +𝐶2𝑒
𝑚∗

2𝑥 +𝐶3𝑒
𝑚∗

3𝑥 , 𝑥 ∈ (0, 1). (4.61)

Consider the following system of equations

𝐶1 +𝐶2 +𝐶3 = 0
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𝐶1𝑚
∗
1 +𝐶2𝑚

∗
2 +𝐶3𝑚

∗
3 = 0

𝐶1𝑚
∗
1𝑒

𝑚∗
1 +𝐶2𝑚

∗
2𝑒

𝑚∗
2 +𝐶3𝑚

∗
3𝑒

𝑚∗
3 = 𝜃 ′(1),

which has a solution if and only if the matrix

R𝑐 :=
©­­«

1 1 1

𝑚∗
1 𝑚∗

2 𝑚∗
3

𝑚∗
1𝑒

𝑚∗
1 𝑚∗

2𝑒
𝑚∗

2 𝑚∗
3𝑒

𝑚∗
3

ª®®¬ (4.62)

is invertible. The determinant of R𝑐 is given by

det(R𝑐) =𝑚∗
2𝑚

∗
3(𝑒𝑚

∗
2 − 𝑒𝑚∗

3) +𝑚∗
3𝑚

∗
1(𝑒𝑚

∗
3 − 𝑒𝑚∗

1) +𝑚∗
1𝑚

∗
2(𝑒𝑚

∗
1 − 𝑒𝑚∗

2) . (4.63)

We now characterize all 𝑐 ∈ (0,∞) such that det(R𝑐) ≠ 0. Let us define three entire functions
𝐹𝑖 : C→ C (𝑖 = 1, 2, 3) by

𝐹1(𝑧) : = 𝑧
[
(𝑚∗

2 −𝑚∗
3)𝑒𝑧 −𝑚∗

2𝑒
𝑚∗

2 +𝑚∗
3𝑒

𝑚∗
3

]
+𝑚∗

2𝑚
∗
3

(
𝑒𝑚

∗
2 − 𝑒𝑚∗

3

)
(4.64)

𝐹2(𝑧) : = 𝑧
[
(𝑚∗

3 −𝑚∗
1)𝑒𝑧 +𝑚∗

1𝑒
𝑚∗

1 −𝑚∗
3𝑒

𝑚∗
3

]
+𝑚∗

3𝑚
∗
1

(
𝑒𝑚

∗
3 − 𝑒𝑚∗

1

)
(4.65)

𝐹3(𝑧) : = 𝑧
[
(𝑚∗

1 −𝑚∗
2)𝑒𝑧 −𝑚∗

1𝑒
𝑚∗

1 +𝑚∗
2𝑒

𝑚∗
2

]
+𝑚∗

1𝑚
∗
2

(
𝑒𝑚

∗
1 − 𝑒𝑚∗

2

)
. (4.66)

We first consider the function 𝐹1. Note that if 𝐹1(0) = 0, then 𝑒𝑚
∗
2 = 𝑒𝑚

∗
3 , which implies 𝐹1(𝑧) =

(𝑚∗
2 −𝑚∗

3)𝑧 (𝑒𝑧 − 𝑒𝑚
∗
3) and hence 𝐹1(𝑚∗

1) ≠ 0, else 𝑒𝑚
∗
1 = 𝑒𝑚

∗
2 = 𝑒𝑚

∗
3 which is not possible due to

Lemma 4.4.1. Therefore, the function 𝐹1 does not vanish identically. This implies that the zero
set of 𝐹1, defined as

𝑍𝐹1 := {𝑧 ∈ C : 𝐹1(𝑧) = 0} (4.67)

is at most countable. In a similar manner, we can say that the zero sets of 𝐹2 and 𝐹3, defined as

𝑍𝐹2 : = {𝑧 ∈ C : 𝐹2(𝑧) = 0} , (4.68)

𝑍𝐹3 : = {𝑧 ∈ C : 𝐹3(𝑧) = 0} (4.69)

are at most countable. Since the map 𝑐 ↦→𝑚(𝑐) is injective, the set

N𝑗 :=
{
𝑐 ∈ (0,∞) : 𝐹 𝑗 (𝑚 𝑗 (𝑐)) = 0

}
(4.70)

for 𝑗 = 1, 2, 3, is also at most countable. Let us then define the set

N :=
3⋃
𝑗=1

N𝑗 . (4.71)

From the construction of the set N , it is clear that for all 𝑐 ∈ (0,∞) \ N with 𝑐4 + 8𝑐2 + 5 < 4𝜋2,
det(R𝑐) is non-zero. This proves our claim.

From the previous fact, we can see that for 𝑐 ∈ (0,∞) \N with 𝑐4 + 8𝑐2 + 5 < 4𝜋2, solution of the
adjoint equation (4.58) verifies 𝜃 ′(1) ≠ 0, which implies from (4.59) that 𝜂′(1) = 0. Hence 𝜂 ≡ 0
on (0, 1).

This completes the proof of the Lemma.

4.4.2 Lower bounds of the observation terms

The next lemmas show that the observation terms satisfy some lower bounds which are not exponen-
tially small. In fact, these lower bounds are crucial to conclude the null-controllability of the concerned
systems (4.4) and (4.5).
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Lemma 4.4.2 (Observation estimates: control on density). There exist constants 𝐶1,𝐶2 > 0, inde-
pendent in 𝑘, such that we have the following observation estimates for the parabolic and hyperbolic
parts of the set of eigenfunctions of 𝐴∗, namely

𝐶1

𝑘𝜋
≤ |B∗

𝜌Φ𝜆
𝑝

𝑘
| ≤ 𝐶2

𝑘𝜋
, for large 𝑘 ≥ 𝑘0, (4.72a)

𝐶1 ≤ |B∗
𝜌Φ𝜆ℎ

𝑘
| ≤ 𝐶2, for large 𝑘 ≥ 𝑘0, (4.72b)

where the number 𝑘0 is introduced by Lemma 4.3.1.

Proof. Using the definition of B∗
𝜌 introduced by (4.36), we have

B∗
𝜌Φ𝜆

𝑝

𝑘
= 𝜉𝜆𝑝

𝑘
(1), ∀𝑘 ≥ 𝑘0,

B∗
𝜌Φ𝜆ℎ

𝑘
= 𝜉𝜆ℎ

𝑘
(1), ∀|𝑘 | ≥ 𝑘0.

(i) Let us recall the expressions of 𝜉𝜆𝑝
𝑘
from (4.24), so that we have

𝜉𝜆𝑝
𝑘
(1) = 𝑖𝑐

𝑘𝜋
𝑒−1 + 𝑒−𝑘2𝜋2+𝑂 (1) ×𝑂

(
1

𝑘

)
+𝑂

(
1

𝑘2

)
From the above expression, it is easy to observe that

𝑘𝜋

���𝜉𝜆𝑝
𝑘
(1)

��� → 𝑐𝑒−1 as 𝑘 → +∞,

and thus the result (4.72a) holds for large enough 𝑘.

(ii) On the other hand, from the expression of 𝜉𝜆ℎ
𝑘
given by (4.27), we have

𝜉𝜆ℎ
𝑘
(1) = 2𝑖

𝑐
sgn(𝑘)𝑒− 1

2−𝑖 sgn(𝑘 )
√

|𝑘𝜋 | +𝑂
(
|𝑘 |−1

)
,

and so, ���𝜉𝜆ℎ
𝑘
(1)

��� → 2

𝑐
𝑒−

1
2 as 𝑘 → +∞.

As a consequence, the estimate (4.72b) follows.

The proof is completed.

Lemma 4.4.3 (Observation estimates: control in velocity). There exist some constants 𝐶1,𝐶2 > 0,
independent in 𝑘, such that we have the following observation estimates:

𝐶1𝑘𝜋 ≤ |B∗
𝑢Φ𝜆

𝑝

𝑘
| ≤ 𝐶2𝑘𝜋, for large 𝑘, (4.73a)

𝐶1√︁
|𝑘𝜋 |

≤ |B∗
𝑢Φ𝜆ℎ

𝑘
| ≤ 𝐶2√︁

|𝑘𝜋 |
, for large 𝑘, (4.73b)

Proof. Using the definition of B∗
𝑢 given by (4.37)–(4.38), we have

B∗
𝑢Φ𝜆

𝑝

𝑘
= 𝑐𝜉𝜆𝑝

𝑘
(1) + 𝜂′

𝜆
𝑝

𝑘

(1), ∀𝑘 ≥ 𝑘0,

B∗
𝑢Φ𝜆ℎ

𝑘
= 𝑐𝜉𝜆ℎ

𝑘
(1) + 𝜂′

𝜆ℎ
𝑘

(1), ∀|𝑘 | ≥ 𝑘0.
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(i) Recall the expressions of 𝜉𝜆𝑝
𝑘
and 𝜂𝜆𝑝

𝑘
, given by (4.24) and (4.25) respectively, so that we have

𝐶𝜉𝜆𝑝
𝑘
(1) + 𝜂′

𝜆
𝑝

𝑘

(1) = 𝑖𝑐2

𝑘𝜋
𝑒−1 + 𝑏𝑒−𝑘2𝜋2+𝑂 (1) ×𝑂

(
1

𝑘

)
+ 𝑘𝜋𝑒−1 +𝑂

(
1

𝑘

)
.

Observe that,

1

𝑘𝜋

����𝑐𝜉𝜆𝑝
𝑘
(1) + 𝜂′

𝜆
𝑝

𝑘

(1)
���� → 𝑒−1 as 𝑘 → +∞,

and hence the estimate (4.73a) holds.

(ii) For the set of eigenfunctions (4.27)–(4.28) associated to 𝜆ℎ
𝑘
, the observation terms are

𝑐𝜉𝜆ℎ
𝑘
(1) + 𝜂′

𝜆ℎ
𝑘

(1) = sgn(𝑘)
√︁
|𝑘𝜋 | − 1

2 − 𝑖 sgn(𝑘)
√︁
|𝑘𝜋 |

𝑘𝜋𝑒
1√
|𝑘 |

+𝑂
(
|𝑘 |−1

)
Here, one can show that √︁

|𝑘𝜋 |
����𝑐𝜉𝜆ℎ𝑘 (1) + 𝜂′𝜆ℎ𝑘 (1)

���� → √
2 as 𝑘 → +∞,

which concludes the required observation estimate (4.73b).

The proof ends.

4.5 A combined parabolic-hyperbolic Ingham-type inequality

This section is devoted to prove the Ingham-type inequality stated in Proposition 4.1.2 which will be
intensively used to prove the controllability results of this paper. We will closely follow the decoupling
idea given by [CMRR14, Theorem 4.2] [Zua16, Section 2.4].

Proof of Proposition 4.1.2. Recall the sequences {𝜆𝑘 }𝑘∈N∗ and {𝛾𝑘 }𝑘∈Z and the hypothesis of Propo-
sition 4.1.2. We denote 𝜆𝑘 = 𝜆𝑘 − 𝛽, ∀𝑘 ∈ N∗ and 𝛾𝑘 = 𝛾𝑘 − 𝛽, ∀𝑘 ∈ Z. Let 𝑁 ∈ N∗ be as given in the
hypothesis. Then, we have the following known parabolic and hyperbolic Ingham inequalities∫ 𝑇

0

�����∑︁
𝑘≥𝑁

𝑎𝑘𝑒
𝜆𝑘 (𝑇−𝑡 )

�����2 𝑑𝑡 ≥ 𝐶 ∑︁
𝑘≥𝑁

|𝑎𝑘 |2 𝑒2Re(𝜆𝑘 )𝑇 for any 𝑇 > 0, (4.74)

𝐶1

∑︁
|𝑘 | ≥𝑁

|𝑏𝑘 |2 ≤
∫ 𝑇

0

������ ∑︁
|𝑘 | ≥𝑁

𝑏𝑘𝑒
𝛾𝑘 (𝑇−𝑡 )

������
2

𝑑𝑡 ≤ 𝐶2

∑︁
|𝑘 | ≥𝑁

|𝑏𝑘 |2 for any 𝑇 > 1, (4.75)

see for instance, [Han91, Lóp99, Edw06, Ing36, LZ02, FCGBdT10, KL05, MZ04].

Let us denote
𝑈 𝑝 (𝑡) =

∑︁
𝑘≥𝑁

𝑎𝑘𝑒
𝜆𝑘 (𝑇−𝑡 ) , 𝑈 ℎ (𝑡) =

∑︁
|𝑘 | ≥𝑁

𝑏𝑘𝑒
𝛾𝑘 (𝑇−𝑡 ) , 𝑡 ≥ 0, (4.76)

and
𝑈 (𝑡) = 𝑈 𝑝 (𝑡) +𝑈 ℎ (𝑡), 𝑡 ≥ 0. (4.77)

Motivating from [Zua16], we define for 𝑡 > 1

𝑈 𝑝 (𝑡) = 𝑈 𝑝 (𝑡) −𝑈 𝑝 (𝑡 − 1) =
∑︁
𝑘≥𝑁

𝑎𝑘

(
1 − 𝑒𝜆𝑘

)
𝑒𝜆𝑘 (𝑇−𝑡 ) , (4.78a)

𝑈 ℎ (𝑡) = 𝑈 ℎ (𝑡) −𝑈 ℎ (𝑡 − 1) =
∑︁
|𝑘 | ≥𝑁

𝑏𝑘

(
1 − 𝑒𝛾𝑘

)
𝑒𝛾𝑘 (𝑇−𝑡 ) , (4.78b)
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and
𝑈 (𝑡) = 𝑈 𝑝 (𝑡) +𝑈 ℎ (𝑡) = 𝑈 (𝑡) −𝑈 (𝑡 − 1) . (4.79)

Then, we have ∫ 𝑇

1

���𝑈 (𝑡)
���2 𝑑𝑡 ≤ ∫ 𝑇

1
|𝑈 (𝑡) |2 𝑑𝑡 +

∫ 𝑇

1
|𝑈 (𝑡 − 1) |2 𝑑𝑡

≤ 𝐶
∫ 𝑇

0
|𝑈 (𝑡) |2 𝑑𝑡 .

We now compute the 𝐿2-norms of the functions𝑈 𝑝 and𝑈 ℎ separately. Applying the hyperbolic Ingham
inequality given by (4.75), we get∫ 𝑇

1

���𝑈 ℎ (𝑡)
���2 𝑑𝑡 ≤ 𝐶 ∑︁

|𝑘 | ≥𝑁
|𝑏𝑘 |2

��1 − 𝑒𝛾𝑘 ��2 .
Since 1 − 𝑒𝛾𝑘 = 1 − 𝑒𝜈𝑘 and {𝜈𝑘 } |𝑘 | ≥𝑁 ∈ ℓ2, we can choose 𝑁 large enough such that

��1 − 𝑒𝛾𝑘 ��2 < 𝜖 for all
|𝑘 | ≥ 𝑁 . Thus, it follows that, ∫ 𝑇

1

���𝑈 ℎ (𝑡)
���2 𝑑𝑡 ≤ 𝐶𝜖 ∑︁

|𝑘 | ≥𝑁
|𝑏𝑘 |2 . (4.80)

Now, recall (4.79) so that one has 𝑈 𝑝 (𝑡) = 𝑈 (𝑡) −𝑈 ℎ (𝑡). Using the triangle inequality, we get∫ 𝑇

1

���𝑈 𝑝 (𝑡)
���2 𝑑𝑡 ≤ 𝐶 ∫ 𝑇

1

���𝑈 (𝑡)
���2 𝑑𝑡 +𝐶 ∫ 𝑇

1

���𝑈 ℎ (𝑡)
���2 𝑑𝑡 (4.81)

≤ 𝐶
∫ 𝑇

0
|𝑈 (𝑡) |2 𝑑𝑡 +𝐶𝜖

∑︁
|𝑘 | ≥𝑁

|𝑏𝑘 |2 .

Let be 0 < 𝜏 < 𝑇 . Applying the parabolic Ingham inequality (4.74) to the quantity 𝑈 𝑝 (𝑡) (given
by (4.78a)), we obtain∫ 𝑇

𝑇−𝜏

���𝑈 𝑝 (𝑡)
���2 𝑑𝑡 = ∫ 𝜏

0

���𝑈 𝑝 (𝑇 − 𝑡)
���2 𝑑𝑡 ≥ 𝐶 ∑︁

𝑘≥𝑁
|𝑎𝑘 |2 |1 − 𝑒𝜆𝑘 |2𝑒2Re(𝜆𝑘 )𝜏

≥ 𝐶
∑︁
𝑘≥𝑁

|𝑎𝑘 |2 𝑒2Re(𝜆𝑘 )𝜏 ,

thanks to the properties of 𝜆𝑘 . Note that the above constant 𝐶 depends on 𝜏 . Let us now choose 𝜏 > 0
small enough such that 𝑇 − 𝜏 > 1. Thus, we get∫ 𝑇

1

���𝑈 𝑝 (𝑡)
���2 𝑑𝑡 ≥ ∫ 𝑇

𝑇−𝜏

���𝑈 𝑝 (𝑡)
���2 𝑑𝑡 ≥ 𝐶 ∑︁

𝑘≥𝑁
|𝑎𝑘 |2 𝑒2Re(𝜆𝑘 )𝜏 . (4.82)

Recall the function 𝑈 𝑝 (𝑡) given by (4.76), we deduce that∫ 𝑇−𝜏

0

��𝑈 𝑝 (𝑡)
��2 𝑑𝑡 ≤ ∑︁

𝑘≥𝑁
|𝑎𝑘 |2

∫ 𝑇−𝜏

0
𝑒2Re(𝜆𝑘 ) (𝑇−𝑡 )𝑑𝑡 (4.83)

≤
∑︁
𝑘≥𝑁

|𝑎𝑘 |2
����𝑒Re(𝜆𝑘 )𝜏 − 𝑒2Re(𝜆𝑘 )𝑇

2Re(𝜆𝑘 )

����
≤ 𝐶

∑︁
𝑘≥𝑁

|𝑎𝑘 |2 𝑒2Re(𝜆𝑘 )𝜏 ,

thanks to fact that
���Re(𝜆𝑘 )���2 ≥ 𝐶 for 𝑘 ≥ 𝑁 large enough (combining the hypothesis (ii) and (iv) in

Proposition 4.1.2 satisfied by {𝜆𝑘 }𝑘∈N∗).
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Now, using the facts (4.82) and (4.81) in (4.83), we have∫ 𝑇−𝜏

0

��𝑈 𝑝 (𝑡)
��2 𝑑𝑡 ≤ 𝐶 ©­«

∫ 𝑇

0
|𝑈 (𝑡) |2 𝑑𝑡 + 𝜖

∑︁
|𝑘 | ≥𝑁

|𝑏𝑘 |2
ª®¬ . (4.84)

Since 𝑇 − 𝜏 > 1, applying the hyperbolic Ingham inequality (4.75) to 𝑈 ℎ (𝑡) and then following a
triangle inequality, we have∑︁

|𝑘 | ≥𝑁
|𝑏𝑘 |2 ≤ 𝐶

∫ 𝑇−𝜏

0

���𝑈 ℎ (𝑡)
���2 𝑑𝑡 ≤ 𝐶 (∫ 𝑇−𝜏

0
|𝑈 (𝑡) |2 𝑑𝑡 +

∫ 𝑇−𝜏

0

��𝑈 𝑝 (𝑡)
��2 𝑑𝑡 )

≤ 𝐶 ©­«
∫ 𝑇

0
|𝑈 (𝑡) |2 𝑑𝑡 + 𝜖

∑︁
|𝑘 | ≥𝑁

|𝑏𝑘 |2
ª®¬ ,

thanks to the estimate (4.84).

Now, fix 𝜖 > 0 small enough such that 1 −𝐶𝜖 > 0. As a consequence, there is some constant 𝐶 > 0
depending only on 𝑇 such that, we have∑︁

|𝑘 | ≥𝑁
|𝑏𝑘 |2 𝑑𝑡 ≤ 𝐶

∫ 𝑇

0
|𝑈 (𝑡) |2 𝑑𝑡 . (4.85)

On the other hand, using the parabolic Ingham inequality to𝑈 𝑝 (𝑡), followed by a triangle inequality,
hyperbolic Ingham inequality to 𝑈ℎ (𝑡) and the result (4.85), we obtain∑︁

𝑘≥𝑁
|𝑎𝑘 |2 𝑒2Re(𝜆𝑘 )𝑇 ≤ 𝐶

∫ 𝑇

0

��𝑈 𝑝 (𝑡)
��2 𝑑𝑡 ≤ 𝐶 (∫ 𝑇

0
|𝑈 (𝑡) |2 𝑑𝑡 +

∫ 𝑇

0

���𝑈 ℎ (𝑡)
���2 𝑑𝑡 )

≤ 𝐶 ©­«
∫ 𝑇

0
|𝑈 (𝑡) |2 𝑑𝑡 +

∑︁
|𝑘 | ≥𝑁

|𝑏𝑘 |2 𝑑𝑡
ª®¬

≤ 𝐶
∫ 𝑇

0
|𝑈 (𝑡) |2 𝑑𝑡 .

Thus, eventually we have∑︁
𝑘≥𝑁

|𝑎𝑘 |2 𝑒2Re(𝜆𝑘 )𝑇 +
∑︁
|𝑘 | ≥𝑁

|𝑏𝑘 |2 ≤ 𝐶
∫ 𝑇

0
|𝑈 (𝑡) |2 𝑑𝑡 . (4.86)

Recall that 𝜆𝑘 = 𝜆𝑘 − 𝛽, 𝛾𝑘 = 𝛾𝑘 − 𝛽, and that∫ 𝑇

0
|𝑈 (𝑡) |2 𝑑𝑡 =

∫ 𝑇

0

������∑︁𝑘≥𝑁 𝑎𝑘𝑒 (𝜆𝑘−𝛽 ) (𝑇−𝑡 ) +
∑︁
|𝑘 | ≥𝑁

𝑏𝑘𝑒
(𝛾𝑘−𝛽 ) (𝑇−𝑡 )

������
2

𝑑𝑡 (4.87)

≤ 𝐶
∫ 𝑇

0

������∑︁𝑘≥𝑁 𝑎𝑘𝑒𝜆𝑘 (𝑇−𝑡 ) +
∑︁
|𝑘 | ≥𝑁

𝑏𝑘𝑒
𝛾𝑘 (𝑇−𝑡 )

������
2

𝑑𝑡 .

Moreover, it is easy to see that

𝑒2Re(𝜆𝑘 )𝑇 = 𝑒2Re(𝜆𝑘 )𝑇−2Re(𝛽 )𝑇 ≥ 𝐶𝑒2Re(𝜆𝑘 )𝑇

for some 𝐶 > 0 and thus combining (4.86) and (4.87), we obtain

∑︁
𝑘≥𝑁

|𝑎𝑘 |2 𝑒2Re(𝜆𝑘 )𝑇 +
∑︁
|𝑘 | ≥𝑁

|𝑏𝑘 |2 ≤ 𝐶
∫ 𝑇

0

������∑︁𝑘≥𝑁 𝑎𝑘𝑒𝜆𝑘 (𝑇−𝑡 ) +
∑︁
|𝑘 | ≥𝑁

𝑏𝑘𝑒
𝛾𝑘 (𝑇−𝑡 )

������
2

𝑑𝑡 .
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Finally, adding the finitely many terms in the above summation using a similar idea as in [MZ04,
Theorem 4.3, Chapter 4] (since {𝛾𝑘 }𝑘∈Z and {𝜆𝑘 }𝑘∈N∗ are disjoint), we can conclude that∑︁

𝑘∈N∗
|𝑎𝑘 |2 𝑒2Re(𝜆𝑘 )𝑇 +

∑︁
𝑘∈Z

|𝑏𝑘 |2 ≤ 𝐶
∫ 𝑇

0

����� ∑︁
𝑘∈N∗

𝑎𝑘𝑒
𝜆𝑘 (𝑇−𝑡 ) +

∑︁
𝑘∈Z

𝑏𝑘𝑒
𝛾𝑘 (𝑇−𝑡 )

�����2 𝑑𝑡 . (4.88)

This completes the proof.

Remark 4.5.1. Note that, in the proof we have only used the individual (parabolic and hyperbolic)
Ingham inequalities. Thus, the hypotheses on the sequences (𝜆𝑘 )𝑘∈N∗ and (𝛾𝑘 )𝑘∈Z can be relaxed so that
each of the inequalities (4.74) and (4.75) holds. In this context, we refer to the works [FCGBdT10,
LZ02, LdT13] for a proof of the parabolic Ingham’s inequality (4.74) under different hypotheses on the
sequence (𝜆𝑘 )𝑘∈N∗.

4.6 Null-controllability for the velocity case

In this section, we prove the null-controllability of the system (4.4) (that is, Theorem 4.1.1) by es-
tablishing a proper observability inequality. The parabolic-hyperbolic joint Ingham-type inequality as
obtained in Section 4.5, is the main ingredient to conclude this result.

Let (𝜌,𝑢) be the solution to the system (4.4) with a boundary control 𝑞 acting on the velocity part.
The following lemma gives an equivalent criterion for the null-controllability of the concerned model
(4.4).

Lemma 4.6.1. The system (4.4) is null-controllable at time 𝑇 > 0 in ¤𝐻
1
2

♯
(0, 1) ×𝐿2(0, 1) if and only if

there exists a control 𝑞 ∈ 𝐿2(0,𝑇 ) such that〈(
𝜎 (0)
𝑣 (0)

)
,

(
𝜌0
𝑢0

)〉
( ¤𝐻

1
2
♯
) ′×𝐿2, ¤𝐻

1
2
♯
×𝐿2

=

∫ 𝑇

0

(
𝑐𝜎 (𝑡, 1) + 𝑣𝑥 (𝑡, 1)

)
𝑞(𝑡)𝑑𝑡, (4.89)

where (𝜎, 𝑣) is the solution to the adjoint system (4.14) with (𝑓 , 𝑔) = (0, 0) and any given final data
(𝜎𝑇 , 𝑣𝑇 ) ∈ 𝐷 (𝐴∗).

With this result, we can now write the observability inequality that is required to prove null
controllability of the system (4.4). Recall the observation operator B∗

𝑢 defined by (4.37)–(4.38).

Theorem 4.6.1. The system (4.4) is null-controllable at time 𝑇 > 0 in the space ¤𝐻
1
2

♯
(0, 1) ×𝐿2(0, 1) if

and only if the following observability inequality∫ 𝑇

0

��B∗
𝑢 (𝜎 (𝑡), 𝑣 (𝑡))

��2 𝑑𝑡 ≥ 𝐶 ∥(𝜎 (0), 𝑣 (0))∥2
( ¤𝐻

1
2
♯
(0,1) ) ′×𝐿2 (0,1)

(4.90)

hold for every (𝜎𝑇 , 𝑣𝑇 ) ∈ 𝐷 (𝐴∗) and (𝑓 , 𝑔) = (0, 0).

Proof. We only proof the null controllability by assuming the observability inequality (4.90), and
for the other part we refer to the article [MZ04]. To prove null controllability of the system (4.4),
it is enough to prove the existence of a minimizer of certain quadratic functional, see for instance
[MZ04, Zua07]. For this, we define the following set

H : =
{
(𝜎𝑇 , 𝑣𝑇 ) ∈ ( ¤𝐻

1
2

♯
(0, 1))′ × 𝐿2(0, 1) : the solution (𝜎, 𝑣) of (4.15) with (𝑓 , 𝑔) = (0, 0)

satisfies

∫ 𝑇

0

��B∗
𝑢 (𝜎 (𝑡), 𝑣 (𝑡))

��2 𝑑𝑡 < ∞
}

and define a quadratic functional 𝐽𝑢 : H → R by

𝐽𝑢 (𝜎𝑇 , 𝑣𝑇 ) :=
1

2

∫ 𝑇

0

��B∗
𝑢 (𝜎 (𝑡), 𝑣 (𝑡))

��2 𝑑𝑡 + 〈(
𝜎 (0)
𝑣 (0)

)
,

(
𝜌0
𝑢0

)〉
( ¤𝐻

1
2
♯
) ′×𝐿2, ¤𝐻

1
2
♯
×𝐿2

, (𝜎𝑇 , 𝑣𝑇 ) ∈ H . (4.91)
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The map 𝐽𝑢 may not be coercive in 𝐻 with respect to the usual ( ¤𝐻
1
2

♯
)′ × 𝐿2-norm. Thus, we define a

new norm on H by

∥(𝜎𝑇 , 𝑣𝑇 )∥H :=

(∫ 𝑇

0
|B∗(𝜎 (𝑡), 𝑣 (𝑡)) |2 𝑑𝑡

) 1
2

.

Indeed, if ∥(𝜎𝑇 , 𝑣𝑇 )∥H = 0 then B∗
𝑢 (𝜎 (𝑡), 𝑣 (𝑡)) = 0 for all 𝑡 ∈ (0,𝑇 ). The observability inequality (4.90)

is then yields (𝜎 (0), 𝑣 (0)) = (0, 0) and as a consequence of the backward uniqueness property of the
adjoint system (4.15) (see Section 4.9), it follows that (𝜎, 𝑣) ≡ (0, 0).

With this new norm on H , the operator 𝐽𝑢 is continuous and coercive in H . Thus, it has a unique
minimizer (𝜎𝑇 , 𝑣𝑇 ) ∈ H . Let (𝜎, 𝑣) be the solution of (4.15) with respect to this terminal data (𝜎𝑇 , 𝑣𝑇 ).
Then the function 𝑞 = B∗

𝑢 (𝜎, 𝑣) ∈ 𝐿2(0,𝑇 ) will be a null control of the system (4.4).

We are now ready to prove our first main result, i.e., Theorem 4.1.1 of our work.

Proof of Theorem 4.1.1. We prove each part separately.

Null-controllability in ¤𝐻
1
2

♯
(0, 1) × 𝐿2(0, 1). Recall that the set of (generalized) eigenfunctions{

Φ𝜆
𝑝

𝑘
, 𝑘 ≥ 𝑘0

}
∪

{
𝑘

1
2Φ𝜆ℎ

𝑘
, |𝑘 | ≥ 𝑘0

}
∪

{
Φ𝑖
𝜆
; 𝜆 ∈ Λ0, 𝑖 = 0, . . . ,𝑚𝜆 − 1

}
forms a Riesz basis in ( ¤𝐻

1
2

♯
(0, 1))′ ×𝐿2(0, 1), due to Proposition 4.3.2 and Corollary 4.3.1, and thus one

can consider any given final data (𝜎𝑇 , 𝑣𝑇 ) ∈ ( ¤𝐻
1
2

♯
(0, 1))′ × 𝐿2(0, 1) as follows:

(𝜎𝑇 , 𝑣𝑇 ) =
∑︁
𝑘≥𝑘0

𝑎𝑘Φ𝜆
𝑝

𝑘
+

∑︁
|𝑘 | ≥𝑘0

𝑏𝑘𝑘
1
2Φ𝜆ℎ

𝑘
+

∑︁
𝜆∈Λ0

𝑚𝜆−1∑︁
𝑗=0

𝑐𝜆,𝑗Φ
𝑗

𝜆
, (4.92)

where
∑︁
𝑘≥𝑘0

|𝑎𝑘 |2 +
∑︁

|𝑘 | ≥𝑘0

|𝑏𝑘 |2 < +∞, and 𝑐𝜆,𝑗 for 𝜆 ∈ Λ0 and 𝑗 ∈ {0, · · · ,𝑚𝜆 − 1} are constants.

Therefore, the solution to the adjoint system (4.14) with the above terminal data and (𝑓 , 𝑔) = (0, 0)
can be written as

(𝜎 (𝑡), 𝑣 (𝑡)) =
∑︁
𝑘≥𝑘0

𝑎𝑘𝑒
𝜆
𝑝

𝑘
(𝑇−𝑡 )Φ𝜆

𝑝

𝑘
+

∑︁
|𝑘 | ≥𝑘0

𝑏𝑘𝑘
1
2𝑒𝜆

ℎ
𝑘
(𝑇−𝑡 )Φ𝜆ℎ

𝑘
+

∑︁
𝜆∈Λ0

𝑚𝜆−1∑︁
𝑗=0

𝑐𝜆,𝑗 (𝑇 − 𝑡) 𝑗𝑒𝜆 (𝑇−𝑡 )Φ𝑗

𝜆
, (4.93)

for 𝑡 ∈ [0,𝑇 ]. Now, we find that

B∗
𝑢 (𝜎 (𝑡), 𝑣 (𝑡)) = 𝑐𝜎 (𝑡, 1) + 𝑣𝑥 (𝑡, 1)

=
∑︁
𝑘≥𝑘0

𝑎𝑘 𝑒
𝜆
𝑝

𝑘
(𝑇−𝑡 )B∗

𝑢Φ𝜆
𝑝

𝑘
+

∑︁
|𝑘 | ≥𝑘0

𝑏𝑘𝑘
1
2 𝑒𝜆

ℎ
𝑘
(𝑇−𝑡 )B∗

𝑢Φ𝜆ℎ
𝑘
+

∑︁
𝜆∈Λ0

𝑚𝜆−1∑︁
𝑗=0

𝑐𝜆,𝑗 (𝑇 − 𝑡) 𝑗𝑒𝜆 (𝑇−𝑡 )B∗
𝑢Φ

𝑗

𝜆
,

for 𝑡 ∈ (0,𝑇 ). At this point, we may assume that

B∗
𝑢Φ

𝑗

𝜆
≠ 0, ∀𝜆 ∈ Λ0, 𝑗 = 1, · · · ,𝑚𝜆 − 1,

which can be ensured as one can add any multiple of the eigenfunction to each (finitely many) gener-
alized eigenfunction and adjust accordingly.

We start with 𝑇 > 1. Then, in one hand, using the Ingham-type inequality (4.13) for |𝑘 | ≥ 𝑘0, we
have ∫ 𝑇

0

���� ∑︁
𝑘≥𝑘0

𝑎𝑘 𝑒
𝜆
𝑝

𝑘
(𝑇−𝑡 )B∗

𝑢Φ𝜆
𝑝

𝑘
+

∑︁
|𝑘 | ≥𝑘0

𝑏𝑘𝑘
1
2 𝑒𝜆

ℎ
𝑘
(𝑇−𝑡 )B∗

𝑢Φ𝜆ℎ
𝑘

����2 𝑑𝑡
≥ 𝐶1

( ∑︁
𝑘≥𝑘0

���𝑎𝑘B∗
𝑢Φ𝜆

𝑝

𝑘

���2 𝑒2Re(𝜆𝑝
𝑘
)𝑇 +

∑︁
|𝑘 | ≥𝑘0

���𝑏𝑘𝑘 1
2B∗

𝑢Φ𝜆ℎ
𝑘

���2 )
≥ 𝐶1

©­«
∑︁
𝑘≥𝑘0

|𝑎𝑘 |2𝑘2𝑒2Re(𝜆𝑝
𝑘
)𝑇 +

∑︁
|𝑘 | ≥𝑘0

|𝑏𝑘 |2
ª®¬ ,

(4.94)
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for some 𝐶1 > 0, where we have also used the observation estimates given by Lemma 4.4.3.

On the other hand, thanks to the Riesz basis property (see Corollary 4.3.1), we have



 ∑︁
𝑘≥𝑘0

𝑎𝑘𝑒
𝜆
𝑝

𝑘
𝑇Φ𝜆

𝑝

𝑘
+

∑︁
|𝑘 | ≥𝑘0

𝑏𝑘𝑘
1
2𝑒𝜆

ℎ
𝑘
𝑇Φ𝜆ℎ

𝑘





2
( ¤𝐻

1
2
♯
) ′×𝐿2

≤ 𝐶2

( ∑︁
𝑘≥𝑘0

|𝑎𝑘 |2𝑒2Re(𝜆𝑝
𝑘
)𝑇 +

∑︁
|𝑘 | ≥𝑘0

|𝑏𝑘 |2𝑒2Re(𝜆ℎ
𝑘
)𝑇

)
,

for some 𝐶2 > 0. Thus, we deduce that∫ 𝑇

0

���� ∑︁
𝑘≥𝑘0

𝑎𝑘 𝑒
𝜆
𝑝

𝑘
(𝑇−𝑡 )B∗

𝑢Φ𝜆
𝑝

𝑘
+

∑︁
|𝑘 | ≥𝑘0

𝑏𝑘𝑘
1
2 𝑒𝜆

ℎ
𝑘
(𝑇−𝑡 )B∗

𝑢Φ𝜆ℎ
𝑘

����2 𝑑𝑡 (4.95)

≥ 𝐶




 ∑︁
𝑘≥𝑘0

𝑎𝑘𝑒
𝜆
𝑝

𝑘
𝑇Φ𝜆

𝑝

𝑘
+

∑︁
|𝑘 | ≥𝑘0

𝑏𝑘𝑘
1
2𝑒𝜆

ℎ
𝑘
𝑇Φ𝜆ℎ

𝑘





2
( ¤𝐻

1
2
♯
) ′×𝐿2

for some 𝐶 > 0. But the solution (𝜎, 𝑣) also contains some finitely many terms as written in (4.93).
Thus, to conclude the required observability inequality (4.90), we need to consider those finite number
of terms in the inequality (4.95). Indeed, this can be done by using the strategy developed in [KL05]
and [CMRR14, Section 4.2] since all the observation terms B∗

𝑢Φ ≠ 0 for any (generalized) eigenfunction
Φ of 𝐴∗ as long as we consider 𝑐 ∉ N with 𝑐4 + 8𝑐2 + 5 < 4𝜋2 (see Proposition 4.4.1– Part 2). However,
we give a detailed proof here for the sake of completeness.

Let (𝜎𝑇 , 𝑣𝑇 ) ∈ ( ¤𝐻
1
2

♯
(0, 1))′ × 𝐿2(0, 1) be given. We write (𝜎𝑇 , 𝑣𝑇 ) = (𝜎𝑇,1, 𝑣𝑇,1) + (𝜎𝑇,2, 𝑣𝑇,2) with

(𝜎𝑇,1, 𝑣𝑇,1) =
∑︁
𝜆∈Λ0

𝑚𝜆−1∑︁
𝑗=0

𝑐𝜆,𝑗Φ
𝑗

𝜆
, and (𝜎𝑇,2, 𝑣𝑇,2) =

∑︁
𝑘≥𝑘0

𝑎𝑘Φ𝜆
𝑝

𝑘
+

∑︁
|𝑘 | ≥𝑘0

𝑏𝑘𝑘
1
2Φ𝜆ℎ

𝑘
.

The corresponding solutions of the adjoint system (4.15) with these (𝜎𝑇,1, 𝑣𝑇,1) and (𝜎𝑇,2, 𝑣𝑇,2) are
respectively

(𝜎1(𝑡), 𝑣1(𝑡)) =
∑︁
𝜆∈Λ0

𝑚𝜆−1∑︁
𝑗=0

𝑐𝜆,𝑗𝑒
𝜆 (𝑇−𝑡 ) (𝑇 − 𝑡) 𝑗Φ𝑗

𝜆
,

(𝜎2(𝑡), 𝑣2(𝑡)) =
∑︁
𝑘≥𝑘0

𝑎𝑘𝑒
𝜆
𝑝

𝑘
(𝑇−𝑡 )Φ𝜆

𝑝

𝑘
+

∑︁
|𝑘 | ≥𝑘0

𝑏𝑘𝑘
1
2𝑒𝜆

ℎ
𝑘
(𝑇−𝑡 )Φ𝜆ℎ

𝑘
.

From the previous computations (the case of high frequencies), we have the following inequality∫ 𝑇

0

��B∗
𝑢 (𝜎2(𝑡), 𝑣2(𝑡))

��2 𝑑𝑡 ≥ 𝐶 ∥(𝜎2(0), 𝑣2(0))∥2
( ¤𝐻

1
2
♯
) ′×𝐿2

. (4.96)

To prove the observability inequality (4.90), we have to include the observation term B∗
𝑢 (𝜎1(𝑡), 𝑣1(𝑡)) =∑

𝜆∈Λ0

∑𝑚𝜆−1
𝑗=0 𝑐𝜆,𝑗𝑒

𝜆 (𝑇−𝑡 ) (𝑇 − 𝑡) 𝑗B∗
𝑢Φ

𝑗

𝜆
in the above inequality. We give a detailed proof below by adding

only one term, say for instance 𝑒𝜆 𝑗0 (𝑇−𝑡 )
(
𝑐 𝑗0B∗

𝑢Φ𝑗0 + (𝑇 − 𝑡)𝑐 𝑗0B∗
𝑢Φ̃𝑗0

)
corresponding to the eigenvalue

𝜆 = 𝜆 𝑗0 ∈ Λ0, where Φ𝑗0 and Φ̃𝑗0 denote the (generalized) eigenfunctions corresponding to 𝜆 𝑗0 . All the
remaining finitely many terms can be added one by one using the same argument. We denote

F (𝑡) := B∗
𝑢 (𝜎2(𝑡), 𝑣2(𝑡)) + 𝑒𝜆 𝑗0 (𝑇−𝑡 )

(
𝑐 𝑗0B∗

𝑢Φ𝑗0 + (𝑇 − 𝑡)𝑐 𝑗0B∗
𝑢Φ̃𝑗0

)
, for 𝑡 ∈ (0,𝑇 ), (4.97)

and define

G(𝑡) := F (𝑡) − 1

2𝛿

∫ 𝛿

−𝛿
𝑒𝜆 𝑗0𝑠F (𝑡 + 𝑠)𝑑𝑠, 𝑡 ∈ (𝛿,𝑇 − 𝛿),

where we will choose 𝛿 > 0 later accordingly. Then, one can obtain the following estimate (see for
instance [KL05, Section 4.4]): ∫ 𝑇−𝛿

𝛿

|G(𝑡) |2 𝑑𝑡 ≤ 𝐶
∫ 𝑇

0
|F (𝑡) |2 𝑑𝑡 (4.98)
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for some constant 𝐶 > 0.

On the other hand, we have

G(𝑡) =
∑︁
𝑘≥𝑘0

𝑎𝑘𝑒
𝜆
𝑝

𝑘
(𝑇−𝑡 )B∗

𝑢Φ𝜆
𝑝

𝑘

(
1 −

sinh((𝜆𝑝
𝑘
− 𝜆 𝑗0)𝛿)

(𝜆𝑝
𝑘
− 𝜆 𝑗0)𝛿

)
+

∑︁
|𝑘 | ≥𝑘0

𝑏𝑘𝑘
1
2𝑒𝜆

ℎ
𝑘
(𝑇−𝑡 )B∗

𝑢Φ𝜆ℎ
𝑘

(
1 −

sinh((𝜆ℎ
𝑘
− 𝜆 𝑗0)𝛿)

(𝜆ℎ
𝑘
− 𝜆 𝑗0)𝛿

)
for 𝑡 ∈ (𝛿,𝑇 − 𝛿). Since 𝑇 > 1, choosing 𝛿 > 0 small enough so that 𝑇 − 2𝛿 > 1, we obtain by using the
Ingham-type inequality (4.13)∫ 𝑇−𝛿

𝛿

|G(𝑡) |2 𝑑𝑡 ≥ 𝐶 ©­«
∑︁
𝑘≥𝑘0

���𝑎𝑘B∗
𝑢Φ𝜆

𝑝

𝑘

���2 𝑒2Re(𝜆𝑝
𝑘
)𝑇 +

∑︁
|𝑘 | ≥𝑘0

���𝑏𝑘𝑘 1
2B∗

𝑢Φ𝜆ℎ
𝑘

���2ª®¬ .
This can be ensured from the fact that inf𝑘≥𝑘0

��𝜆𝑝
𝑘
− 𝜆 𝑗0

�� , inf𝑘≥𝑘0 ��𝜆ℎ
𝑘
− 𝜆 𝑗0

�� > 0, which then gives (by
taking 𝛿 > 0 suitably) that

inf
𝑘≥𝑘0

�����1 − sinh((𝜆𝑝
𝑘
− 𝜆 𝑗0)𝛿)

(𝜆𝑝
𝑘
− 𝜆 𝑗0)𝛿

����� , inf
𝑘≥𝑘0

�����1 − sinh((𝜆ℎ
𝑘
− 𝜆 𝑗0)𝛿)

(𝜆ℎ
𝑘
− 𝜆 𝑗0)𝛿

����� > 0.

Using this inequality, we readily have (see eq. (4.94)-(4.95))∫ 𝑇−𝛿

𝛿

|G(𝑡) |2 𝑑𝑡 ≥ 𝐶 ∥(𝜎2(0), 𝑣2(0))∥2
( ¤𝐻

1
2
♯
) ′×𝐿2

.

Combining this with the estimate (4.98), we deduce that∫ 𝑇

0
|F (𝑡) |2 𝑑𝑡 ≥ 𝐶 ∥(𝜎2(0), 𝑣2(0))∥2

( ¤𝐻
1
2
♯
) ′×𝐿2

. (4.99)

Since 𝑇 > 1, we can choose 𝜀 > 0 small enough so that 𝑇 − 𝜀 > 1. Then, we obtain from the above
inequality ∫ 𝑇

0
|F (𝑡) |2 𝑑𝑡 ≥

∫ 𝑇

𝜀

|F (𝑡) |2 𝑑𝑡 ≥ 𝐶 ∥(𝜎2(𝜀), 𝑣2(𝜀))∥2
( ¤𝐻

1
2
♯
) ′×𝐿2

. (4.100)

We now prove a weak admissibility inequality∫ 𝜀
2

0

��B∗
𝑢 (𝜎2(𝑡), 𝑣2(𝑡))

��2 𝑑𝑡 ≤ 𝐶 ∥(𝜎2(𝜀), 𝑣2(𝜀))∥2
( ¤𝐻

1
2
♯
) ′×𝐿2

. (4.101)

In fact, applying Hölder’s inequality and the hyperbolic Ingham inequality (4.75) (right side), we
deduce that∫ 𝜀

2

0

��B∗
𝑢 (𝜎2(𝑡), 𝑣2(𝑡))

��2 𝑑𝑡 ≤ 2

∫ 𝜀
2

0

����� ∑︁
𝑘≥𝑘0

𝑎𝑘𝑒
𝜆
𝑝

𝑘
(𝑇−𝑡 )B∗

𝑢Φ𝜆
𝑝

𝑘

�����2 𝑑𝑡 + 2

∫ 𝜀
2

0

������ ∑︁
|𝑘 | ≥𝑘0

𝑏𝑘𝑘
1
2𝑒𝜆

ℎ
𝑘
(𝑇−𝑡 )B∗

𝑢Φ𝜆ℎ
𝑘

������
2

𝑑𝑡

≤ 𝐶
∑︁
𝑘≥𝑘0

|𝑎𝑘 |2 𝑒2Re(𝜆𝑝
𝑘
) (𝑇−𝜀 )

∑︁
𝑘≥𝑘0

���B∗
𝑢Φ𝜆

𝑝

𝑘

���2 𝑒−2Re(𝜆𝑝
𝑘
) (𝑇−𝜀 )

∫ 𝜀
2

0
𝑒2Re(𝜆𝑝

𝑘
) (𝑇−𝑡 )𝑑𝑡

+𝐶
∑︁

|𝑘 | ≥𝑘0

���𝑏𝑘𝑘 1
2B∗

𝑢Φ𝜆ℎ
𝑘

���2
≤ 𝐶

∑︁
𝑘≥𝑘0

|𝑎𝑘 |2 𝑒2Re(𝜆𝑝
𝑘
) (𝑇−𝜀 ) +𝐶

∑︁
|𝑘 | ≥𝑘0

|𝑏𝑘 |2 ,
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thanks to the observation estimate (4.73b). On the other hand, using the Riesz basis property of the
eigenfunctions (see Corollary 4.3.1), we obtain

∥(𝜎2(𝜀), 𝑣2(𝜀))∥2
( ¤𝐻

1
2
♯
) ′×𝐿2

≥ 𝐶
∑︁
𝑘≥𝑘0

|𝑎𝑘 |2 𝑒2Re(𝜆𝑝
𝑘
) (𝑇−𝜀 ) +𝐶

∑︁
|𝑘 | ≥𝑘0

|𝑏𝑘 |2 .

Combining the above estimates, the weak admissibility inequality (4.101) follows. With this, we get
from (4.100) that ∫ 𝑇

0
|F (𝑡) |2 𝑑𝑡 ≥ 𝐶

∫ 𝜀
2

0

��B∗
𝑢 (𝜎2(𝑡), 𝑣2(𝑡))

��2 𝑑𝑡 . (4.102)

We now introduce the finite dimensional space generated by the (generalized) eigenfunctions

X := span
{
Φ𝑗0, Φ̃𝑗0

}
and define the norms on X as

(𝜎𝑇,1, 𝑣𝑇,1)

21 : = ∫ 𝜀

2

0

���𝑒𝜆 𝑗0 (𝑇−𝑡 )
(
𝑐 𝑗0B∗

𝑢Φ𝑗0 + (𝑇 − 𝑡)𝑐 𝑗0B∗
𝑢Φ̃𝑗0

)���2 𝑑𝑡, (4.103)

(𝜎𝑇,1, 𝑣𝑇,1)

2 : = ∥(𝜎1(0), 𝑣1(0))∥
( ¤𝐻

1
2
♯
) ′×𝐿2

, (4.104)

where (𝜎1(𝑡), 𝑣1(𝑡)) = 𝑒𝜆 𝑗0 (𝑇−𝑡 )
(
𝑐 𝑗0Φ𝑗0 + 𝑐 𝑗0Φ̃𝑗0

)
for 𝑡 ∈ (0,𝑇 ) is the solution of the adjoint system (4.15)

with the terminal data (𝜎𝑇,1, 𝑣𝑇,1) ∈ X and (𝑓 , 𝑔) = (0, 0). In fact, the norms (4.103) and (4.104) are
well-defined since we have B∗Φ𝑗0,B∗Φ̃𝑗0 ≠ 0 and (𝜎1(0), 𝑣1(0)) = (0, 0) implies Φ𝑗0 = Φ̃𝑗0 = 0. Moreover,
as any two norms in a finite dimensional space are equivalent, we deduce that∫ 𝜀

2

0

���𝑒𝜆 𝑗0 (𝑇−𝑡 )
(
𝑐 𝑗0B∗

𝑢Φ𝑗0 + (𝑇 − 𝑡)𝑐 𝑗0B∗
𝑢Φ̃𝑗0

)���2 𝑑𝑡 ≥ 𝐶 ∥(𝜎1(0), 𝑣1(0))∥2
( ¤𝐻

1
2
♯
) ′×𝐿2

.

As a consequence, we obtain (recall the function F defined by (4.97))

∥(𝜎1(0), 𝑣1(0))∥2
( ¤𝐻

1
2
♯
) ′×𝐿2

≤ 𝐶
∫ 𝜀

2

0
|F (𝑡) |2 𝑑𝑡 +𝐶

∫ 𝜀
2

0

��B∗
𝑢 (𝜎2(𝑡), 𝑣2(𝑡))

��2 𝑑𝑡 ≤ 𝐶 ∫ 𝑇

0
|F (𝑡) |2 𝑑𝑡,

thanks to the lower bound (4.102). This inequality together with (4.99), we deduce that∫ 𝑇

0
|F (𝑡) |2 𝑑𝑡 ≥ 𝐶 ∥(𝜎 (0) + 𝜎1(0), 𝑣 (0) + 𝑣1(0))∥2

( ¤𝐻
1
2
♯
) ′×𝐿2

. (4.105)

In a similar way, we can add the remaining finitely many terms in the above inequality. As a result,
we eventually get for 𝑇 > 1,∫ 𝑇

0
|B∗

𝑢 (𝜎 (𝑡), 𝑣 (𝑡)) |2𝑑𝑡 ≥ 𝐶 ∥(𝜎 (0), 𝑣 (0))∥2
( ¤𝐻

1
2
♯
) ′×𝐿2

, (4.106)

for given data (𝜎𝑇 , 𝑣𝑇 ) ∈ 𝐷 (𝐴∗).
This is a necessary and sufficient for the null-controllability of system (4.4) with given initial data

(𝜌0, 𝑢0) ∈ ¤𝐻
1
2

♯
(0, 1) × 𝐿2(0, 1), when 𝑇 > 1, which proves the first part of Theorem 4.1.1.

Lack of null-controllability for less regular initial states. Consider (𝜎𝑇,𝑘 , 𝑣𝑇,𝑘 ) = Φ𝜆ℎ
𝑘
for |𝑘 | ≥

𝑘0. Then, the solution to the adjoint system (4.15) reads as

(𝜎𝑘 (𝑡, 𝑥), 𝑣𝑘 (𝑡, 𝑥)) = 𝑒𝜆
ℎ
𝑘
(𝑇−𝑡 )Φ𝜆ℎ

𝑘
(𝑥), ∀|𝑘 | ≥ 𝑘0, (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 1) .

Now, in one hand we have 


Φ𝜆ℎ
𝑘





( ¤𝐻𝑠

♯
) ′×𝐿2

≥ 𝐶

|𝑘 |𝑠 , ∀|𝑘 | ≥ 𝑘0,
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by Lemma 4.3.2–eq. (4.32), and thus

∥(𝜎𝑘 (0), 𝑣𝑘 (0))∥2( ¤𝐻𝑠
♯
) ′×𝐿2 ≥ 𝐶

|𝑘 |2𝑠
, ∀|𝑘 | ≥ 𝑘0.

for all 𝑘 ∈ Z∗, since the real part of 𝜆ℎ
𝑘
is bounded. On the other hand, we have the following upper

bounds of the observation terms, namely∫ 𝑇

0

��B∗
𝑢 (𝜎𝑘 (𝑡), 𝑣𝑘 (𝑡))

��2 𝑑𝑡 ≤ 𝐶

|𝑘 | , ∀|𝑘 | ≥ 𝑘0,

in view of Lemma 4.4.3–eq. (4.73b). Thus, if the observability inequality (4.106) holds, we would have

𝐶

|𝑘 |2𝑠
≤ 𝐶

|𝑘 | =⇒ |𝑘 |1−2𝑠 ≤ 𝐶,

which is not possible since 0 ≤ 𝑠 < 1
2 . Therefore, the system (4.4) is not null-controllable at any time

𝑇 whenever 0 < 𝑠 < 1
2 .

This concludes the proof of Theorem 4.1.1.

4.7 Null-controllability for the density case

This section is devoted to prove the null-controllability of the system (4.5), more precisely Theorem
4.1.2. The proof is made of two steps:

– First, we use the Ingham-type inequality (4.13) (introduced as before) to show the null-controllability
of (4.5) in the space ¤𝐿2(0, 1) × 𝐻1

0 (0, 1).

– Secondly, by developing the moments method for parabolic-hyperbolic coupled system (due to
[Han94]), we prove that the same system (4.5) is null-controllable in the space ¤𝐻𝑠

♯
(0, 1) ×𝐿2(0, 1)

for any 𝑠 > 1
2 .

As a consequence, we conclude the null-controllability of our system (4.6) in the space ¤𝐿2(0, 1)×𝐿2(0, 1).
Before proceeding, we first write the following lemma, which gives an equivalent criterion for the

null-controllability of system (4.5).

Lemma 4.7.1. Let 𝑠1, 𝑠2 ≥ 0 be given. The system (4.5) is null-controllable at time 𝑇 > 0 in ¤𝐻𝑠1
♯
(0, 1)×

𝐻
𝑠2
0 (0, 1) if and only if there exists a control 𝑝 ∈ 𝐿2(0,𝑇 ) such that〈(

𝜎 (0)
𝑣 (0)

)
,

(
𝜌0
𝑢0

)〉
( ¤𝐻𝑠1

♯
) ′×𝐻 −𝑠2 , ¤𝐻𝑠1

♯
×𝐻𝑠2

0

= −
∫ 𝑇

0
𝜎 (𝑡, 1)𝑝 (𝑡)𝑑𝑡, (4.107)

where (𝜎, 𝑣) is the solution to the adjoint system (4.14) with (𝑓 , 𝑔) = (0, 0) and any given final data
(𝜎𝑇 , 𝑣𝑇 ) ∈ 𝐷 (𝐴∗).

4.7.1 Null-controllability in ¤𝐿2 × 𝐻1
0 : using Ingham-type inequality

We first write the following result, the proof of which is similar to the velocity case (Theorem 4.6.1)
and so we omit the details here.

Theorem 4.7.1. The system (4.5) is null-controllable at time 𝑇 > 0 in the space ¤𝐿2(0, 1) ×𝐻1
0 (0, 1) if

and only if the following observability inequality∫ 𝑇

0

���B∗
𝜌 (𝜎 (𝑡), 𝑣 (𝑡))

���2 𝑑𝑡 ≥ 𝐶 ∥(𝜎 (0), 𝑣 (0))∥2¤𝐿2×𝐻 −1 (4.108)

hold for every (𝜎𝑇 , 𝑣𝑇 ) ∈ 𝐷 (𝐴∗).
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Let (𝜎𝑇 , 𝑣𝑇 ) ∈ ¤𝐿2(0, 1) × 𝐻−1(0, 1) be given. Since the set of (generalized) eigenfunctions{
𝑘 Φ𝜆

𝑝

𝑘
, 𝑘 ≥ 𝑘0

}
∪

{
Φ𝜆ℎ

𝑘
, |𝑘 | ≥ 𝑘0

}
∪

{
Φ𝑖
𝜆
; 𝜆 ∈ Λ0, 𝑖 = 0, ...,𝑚𝜆 − 1

}
forms a Riesz basis of ¤𝐿2(0, 1) × 𝐻−1(0, 1), thanks to Corollary 4.3.1, we can write (𝜎𝑇 , 𝑣𝑇 ) as

(𝜎𝑇 , 𝑣𝑇 ) =
∑︁
𝑘≥𝑘0

𝑎𝑘𝑘 Φ𝜆
𝑝

𝑘
+

∑︁
|𝑘 | ≥𝑘0

𝑏𝑘Φ𝜆ℎ
𝑘
+

∑︁
𝜆∈Λ0

𝑚𝜆−1∑︁
𝑗=0

𝑐𝜆,𝑗Φ
𝑗

𝜆
.

Therefore, the solution to the adjoint system (4.14) with this terminal data (𝜎𝑇 , 𝑣𝑇 ) and (𝑓 , 𝑔) = (0, 0),
can be written as

(𝜎 (𝑡), 𝑣 (𝑡)) =
∑︁
𝑘≥𝑘0

𝑎𝑘𝑘 𝑒
𝜆
𝑝

𝑘
(𝑇−𝑡 )Φ𝜆

𝑝

𝑘
+

∑︁
|𝑘 | ≥𝑘0

𝑏𝑘𝑒
𝜆ℎ
𝑘
(𝑇−𝑡 )Φ𝜆ℎ

𝑘
+

∑︁
𝜆∈Λ0

𝑚𝜆−1∑︁
𝑗=0

𝑐𝜆,𝑗 (𝑇 − 𝑡) 𝑗𝑒𝜆 (𝑇−𝑡 )Φ𝑗

𝜆
,

for 𝑡 ∈ [0,𝑇 ]. Note that

B∗
𝜌 (𝜎 (𝑡), 𝑣 (𝑡)) =

∑︁
𝑘≥𝑘0

𝑎𝑘𝑘 𝑒
𝜆
𝑝

𝑘
(𝑇−𝑡 )B∗

𝜌Φ𝜆
𝑝

𝑘
+

∑︁
|𝑘 | ≥𝑘0

𝑏𝑘𝑒
𝜆ℎ
𝑘
(𝑇−𝑡 )B∗

𝜌Φ𝜆ℎ
𝑘
+

∑︁
𝜆∈Λ0

𝑚𝜆−1∑︁
𝑗=0

𝑐𝜆,𝑗 (𝑇 − 𝑡) 𝑗𝑒𝜆 (𝑇−𝑡 )B∗
𝜌Φ

𝑗

𝜆
,

for all 𝑡 ∈ (0,𝑇 ). Since 𝑇 > 1, we use the Ingham-type inequality (4.13) to obtain∫ 𝑇

0

���� ∑︁
𝑘≥𝑘0

𝑎𝑘𝑘 𝑒
𝜆
𝑝

𝑘
(𝑇−𝑡 )B∗

𝜌Φ𝜆
𝑝

𝑘
+

∑︁
|𝑘 | ≥𝑘0

𝑏𝑘 𝑒
𝜆ℎ
𝑘
(𝑇−𝑡 )B∗

𝜌Φ𝜆ℎ
𝑘

����2 𝑑𝑡
≥ 𝐶1

( ∑︁
𝑘≥𝑘0

���𝑎𝑘𝑘B∗
𝜌Φ𝜆

𝑝

𝑘

���2 𝑒2Re(𝜆𝑝
𝑘
)𝑇 +

∑︁
|𝑘 | ≥𝑘0

���𝑏𝑘B∗
𝜌Φ𝜆ℎ

𝑘

���2 )
≥ 𝐶1

©­«
∑︁
𝑘≥𝑘0

|𝑎𝑘 |2𝑒2Re(𝜆𝑝
𝑘
)𝑇 +

∑︁
|𝑘 | ≥𝑘0

|𝑏𝑘 |2
ª®¬ ,

(4.109)

for some 𝐶1 > 0, where we also have used the observation estimates from Lemma 4.4.2.

On the other hand, we have



 ∑︁
𝑘≥𝑘0

𝑎𝑘𝑘 𝑒
𝜆
𝑝

𝑘
𝑇Φ𝜆

𝑝

𝑘
+

∑︁
|𝑘 | ≥𝑘0

𝑏𝑘𝑒
𝜆ℎ
𝑘
𝑇Φ𝜆ℎ

𝑘





2¤𝐿2×𝐻 −1

≤ 𝐶2

( ∑︁
𝑘≥𝑘0

|𝑎𝑘 |2𝑒2Re(𝜆𝑝
𝑘
)𝑇 +

∑︁
|𝑘 | ≥𝑘0

|𝑏𝑘 |2𝑒2Re(𝜆ℎ
𝑘
)𝑇

)
,

for some 𝐶2 > 0, thanks to the Riesz basis property (Corollary 4.3.1).

Thus we deduce that∫ 𝑇

0

���� ∑︁
𝑘≥𝑘0

𝑎𝑘𝑘 𝑒
𝜆
𝑝

𝑘
(𝑇−𝑡 )B∗

𝜌Φ𝜆
𝑝

𝑘
+

∑︁
|𝑘 | ≥𝑘0

𝑏𝑘 𝑒
𝜆ℎ
𝑘
(𝑇−𝑡 )B∗

𝜌Φ𝜆ℎ
𝑘

����2 𝑑𝑡 (4.110)

≥ 𝐶




 ∑︁
𝑘≥𝑘0

𝑎𝑘𝑘 𝑒
𝜆
𝑝

𝑘
𝑇Φ𝜆

𝑝

𝑘
+

∑︁
|𝑘 | ≥𝑘0

𝑏𝑘𝑒
𝜆ℎ
𝑘
𝑇Φ𝜆ℎ

𝑘





2¤𝐿2×𝐻 −1
,

for some 𝐶 > 0.

On the other hand, since 𝑐4 +8𝑐2 +5 < 4𝜋2, all the observation terms B∗
𝜌Φ ≠ 0 for any (generalized)

eigenfunction Φ of 𝐴∗ and hence it is enough to consider only the large frequencies of eigenvalues. In
fact, the lower frequencies can be added one by one by proceeding in a similar way as in the proof of
Theorem 4.1.1 to deduce the required observability inequality∫ 𝑇

0
|B∗

𝜌 (𝜎 (𝑡), 𝑣 (𝑡)) |2𝑑𝑡 ≥ 𝐶 ∥(𝜎 (0), 𝑣 (0))∥2¤𝐿2×𝐻 −1 , (4.111)

for given data (𝜎𝑇 , 𝑣𝑇 ) ∈ 𝐷 (𝐴∗) provided 𝑇 > 1.

This proves the null-controllability of the system (4.5) at time 𝑇 > 1 for given initial data (𝜌0, 𝑢0) ∈
¤𝐿2(0, 1) × 𝐻1

0 (0, 1).
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4. Linearized compressible Navier-Stokes system (barotropic fluids)

4.7.2 Null-controllability in ¤𝐻 𝑠
♯
× 𝐿2, 𝑠 > 1

2 by moments method

To prove the null-controllability of system (4.5) at 𝑇 > 1 in the space ¤𝐻𝑠
♯
(0, 1) × 𝐿2(0, 1) for 𝑠 > 1

2 , we

shall formulate and solve a set of moments problem using the strategy developed in [Han94]. For the
sake of completeness, we recall the main results from [Han94] and use these results with respect to
our setting.

4.7.2.1 Parabolic-hyperbolic joint moments problem: results by S. W. Hansen

Let us first recall some important results by S. W. Hansen [Han94] which will be used to prove the
required null-controllability result of the system (4.5) in the space ¤𝐻𝑠

♯
(0, 1) × 𝐿2(0, 1) for 𝑠 > 1

2 .

The author in [Han94] made the following assumptions in his work.

Hypothesis 4.7.2. Let {𝜆𝑘 }𝑘∈N∗ and {𝛾𝑘 }𝑘∈Z be two sequences in C with the following properties:

(H1) for all 𝑘, 𝑗 ∈ Z, 𝛾𝑘 ≠ 𝛾 𝑗 unless 𝑗 = 𝑘,

(H2) 𝛾𝑘 = 𝛽 + 𝑏𝑘𝜋𝑖 + 𝜈𝑘 for all 𝑘 ∈ Z,

where 𝛽 ∈ C, 𝑏 > 0 and {𝜈𝑘 }𝑘∈Z ∈ ℓ2.
Also, there exist positive constants 𝐴0, 𝐵0, 𝛿, 𝜖 and 0 ≤ 𝜃 < 𝜋/2 for which {𝜆𝑘 }𝑘∈N∗ satisfies

(P1) |arg(−𝜆𝑘 ) | ≤ 𝜃 for all 𝑘 ∈ N∗,

(P2)
��𝜆𝑘 − 𝜆 𝑗 �� ≥ 𝛿 ��𝑘2 − 𝑗2

�� for all 𝑘 ≠ 𝑗 , 𝑘, 𝑗 ∈ N∗,

(P3) 𝜖 (𝐴0 + 𝐵0𝑘2) ≤ |𝜆𝑘 | ≤ 𝐴0 + 𝐵0𝑘2 for all 𝑘 ∈ N∗.

We also assume that the families are disjoint, i.e.,

{𝛾𝑘 , 𝑘 ∈ Z} ∩ {𝜆𝑘 , 𝑘 ∈ N∗} = ∅.

Then, he introduced the following spaces: for any 𝑎 < 𝑑,

𝑊[𝑎,𝑑 ] = closed span {𝑒𝛾𝑘𝑡 }𝑘∈Z in 𝐿2(𝑎, 𝑑),
𝐸 [𝑎,𝑑 ] = closed span {𝑒−𝜆𝑘𝑡 }𝑘∈N∗ in 𝐿2(𝑎, 𝑑) .

With these, the author in [Han94] has proved the following results.

Theorem 4.7.3. Assume that the Hypothesis 4.7.2 holds true. Then, for each 𝑇 > 2/𝑏, where 𝑏 is
defined as in Hypothesis 4.7.2, the spaces𝑊[0,𝑇 ] and 𝐸 [0,𝑇 ] are uniformly separated. This does not hold
for 𝑇 ≤ 2/𝑏.

The proof mainly relies upon the following lemma. Hereinafter, we denote 𝑡𝑏 = 2/𝑏.

Lemma 4.7.2. For any 𝑎 ∈ R, 𝑊[𝑎,𝑎+𝑡𝑏 ] = 𝐿2(𝑎, 𝑎 + 𝑡𝑏). Furthermore, for 𝑇 ≥ 𝑡𝑏, {𝑒𝛾𝑘𝑡 }𝑘∈Z forms a
Riesz basis for each of the spaces 𝑊[𝑎,𝑎+𝑇 ].

We refer to the work [Han94] for the proofs of Theorem 4.7.3 and Lemma 4.7.2.

Let us write the following set of moments problem,

𝑝𝑘 =

∫ 𝑇

0
𝑒𝜆𝑘𝑡 𝑓 (𝑡)𝑑𝑡, 𝑘 ∈ N∗, (4.112)

ℎ𝑘 =

∫ 𝑇

0
𝑒𝛾𝑘𝑡 𝑓 (𝑡)𝑑𝑡, 𝑘 ∈ Z. (4.113)

The space of all sequences {𝑝𝑘 }𝑘∈N∗ ∪ {ℎ𝑘 }𝑘∈Z for which there exists a 𝑓 ∈ 𝐿2(0,𝑇 ) that solves the set
of equations (4.112)–(4.113) is called the moment space.

Now, we recall the following results from the same paper which relate Theorem 4.7.3 to the moments
problem (4.112)–(4.113).
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4.7. Null-controllability for the density case

Proposition 4.7.1. Let {ℎ𝑘 }𝑘∈Z ∈ ℓ2. Then, for any 𝑇 ≥ 𝑡𝑏, there exists 𝑓 ∈𝑊[0,𝑇 ], which solves the

moment problem (4.113). Moreover, any 𝑓 ∈ 𝐿2(0,𝑇 ) given by 𝑓 = 𝑓 + 𝑓 with 𝑓 ∈ 𝑊 ⊥
[0,𝑇 ] also solves

(4.113).

The proof follows as a consequence of Lemma 4.7.2.

Proposition 4.7.2. Assume that for any 𝑟 > 0, the sequence {𝑝𝑘 }𝑘∈N∗ satisfies

|𝑝𝑘 |𝑒𝑟𝑘 → 0 as 𝑘 → +∞. (4.114)

Then, for any given 𝜏 > 0, there exists 𝑔 ∈ 𝐸 [0,𝜏 ], which solves the moment problem (4.112). Moreover,
any 𝑔 ∈ 𝐿2(0, 𝜏) given by 𝑔 = 𝑔 + 𝑔 with 𝑔 ∈ 𝐸⊥[0,𝜏 ] also solves (4.112).

The proof of the above proposition is standard. It relies on the existence of bi-orthogonal family
in the space 𝐸 [0,𝜏 ] to the family of exponentials {𝑒𝜆𝑘𝑡 }𝑘∈N∗ ; see [Han91] for a proof.

Let us now present the main theorem that tells the solvability of the mixed moment problems
(4.112)–(4.113).

Theorem 4.7.4. Let any 𝑇 > 𝑡𝑏 be given. Then, under Hypothesis 4.7.2, given any sequence {𝑝𝑘 }𝑘∈N∗
satisfying (4.114) and any {ℎ𝑘 }𝑘∈Z ∈ ℓ2, there exists a function 𝑓 ∈ 𝐿2(0,𝑇 ) that simultaneously solves
the set of moments problem (4.112)–(4.113). This does not hold for 𝑇 ≤ 𝑡𝑏.

The proof of above theorem can be found in [Han94, Theorem 4.11]. For the sake of completeness,
we give the proof below.

Proof. For 𝑇 ≤ 𝑡𝑏 , the set of moments problem (4.112)–(4.113) does not necessarily have a solution.
Thus, we start with 𝑇 > 𝑡𝑏 . By Theorem 4.7.3, the spaces 𝐸 := 𝐸 [0,𝑇 ] and 𝑊 :=𝑊[0,𝑇 ] are uniformly
separated. Thus the space 𝑉 := 𝐸 +𝑊 is closed in 𝐿2(0,𝑇 ) with its norm ∥ · ∥𝑉 := ∥ · ∥𝐿2 (0,𝑇 ) and so
𝑉 := 𝐸 ⊕𝑊 . Moreover, the orthogonal complements 𝐸⊥ and 𝑊 ⊥ of 𝐸 and 𝑊 (resp.) in 𝑉 are also
uniformly separated using a result by T. Kato [Kat95, Chap. 4, §4] and therefore, 𝑉 = 𝐸⊥ ⊕𝑊 ⊥. From
this, one can show that the restrictions 𝑃𝐸 |𝑊 ⊥ and 𝑃𝑊 |𝐸⊥ are isomorphisms, where 𝑃𝐸 and 𝑃𝑊 are the
orthogonal projections respectively onto 𝐸 and 𝑊 in 𝑉 . By Propositions 4.7.2 and 4.7.1, there exist
functions 𝑓1 ∈ 𝐸 and 𝑓2 ∈𝑊 which solve the equations (4.112) and (4.113) respectively. Set,

𝑓 = (𝑃𝐸 |𝑊 ⊥)−1 𝑓1 + (𝑃𝑊 |𝐸⊥)−1 𝑓2,

which simultaneously solves the equations (4.112)–(4.113) and moreover 𝑓 ∈ 𝐿2(0,𝑇 ).

4.7.2.2 Formulation of the parabolic-hyperbolic moments problem

Let us recall that the set of eigenvalues 𝜎 (𝐴∗), given by (4.22).

The sequence {𝜆ℎ
𝑘
} |𝑘 | ≥𝑘0 satisfies (H1) and (H2) of Hypothesis 4.7.2 with

𝛽 = −𝑐2, 𝑏 = 2, 𝜈𝑘 = 𝑂 ( |𝑘 |−1) .

Moreover, it is easy to observe that {𝜆𝑝
𝑘
}𝑘≥𝑘0 satisfies the properties (P1), (P2), (P3) of Hypothesis

4.7.2.

Thus, the spectrum 𝜎 (𝐴∗) satisfies Hypothesis 4.7.2 except for the finite set {𝜆0} ∪ {𝜆𝑛}𝑛0

𝑛=1. But
this will not lead any problem to construct and solve the associated moments equations. Let us go to
the detail.

157



4. Linearized compressible Navier-Stokes system (barotropic fluids)

General setting We first recall Theorem 4.7.3 and Theorem 4.7.2. As per those results, our goal
is to find uniformly separated spaces W[0,𝑇 ] and ℰ[0,𝑇 ] in 𝐿2(0,𝑇 ) for 𝑇 > 𝑡𝑏 = 1 (where 𝑡𝑏 = 2/𝑏 as
introduced in Section 4.7.2.1 and in our case 𝑏 = 2).

We start with 𝑇 > 1. Then, we pick a subset of complex numbers {𝜆𝑛𝑙 }
𝑙0
𝑙=1

in such a way that

W[𝑎,𝑎+1] := closed span
(
{𝑒𝜆ℎ𝑘 𝑡 } |𝑘 | ≥𝑘0 ∪ {𝑒𝜆𝑛𝑙 𝑡 }𝑙0

𝑙=1

)
in 𝐿2(𝑎, 𝑎 + 1), for any 𝑎 ∈ R, (4.115)

equals the space 𝐿2(𝑎, 𝑎 + 1); and moreover the above set forms a Riesz basis for the space W[𝑎,𝑎+𝑇 ] for
each 𝑇 ≥ 1.

In particular,

W[0,𝑇 ] = closed span
(
{𝑒𝜆ℎ𝑘 𝑡 } |𝑘 | ≥𝑘0 ∪ {𝑒𝜆𝑛𝑙 𝑡 }𝑙0

𝑙=1

)
in 𝐿2(0,𝑇 ). (4.116)

Next, we consider the space

ℰ[0,𝑇 ] = closed span
(
{𝑒−𝜆

𝑝

𝑘
𝑡 }𝑘≥𝑘0 ∪ {𝑒−𝜆𝑡 }𝜆∈Λ0 ∪ {1}

)
in 𝐿2(0,𝑇 ) . (4.117)

Then, we have the following result which follows from Theorem 4.7.3.

Lemma 4.7.3. The spaces W[0,𝑇 ] and ℰ[0,𝑇 ] defined by (4.116) and (4.117) respectively, are uniformly
separated in 𝐿2(0,𝑇 ) for 𝑇 > 1. This does not hold for 𝑇 ≤ 1.

The set of moments problem To begin with, let us recall that the eigenvalues for parabolic
and hyperbolic parts, namely Λ𝑝 and Λℎ given by (4.20) are simple. Also, recall that the set of
eigenfunctions

E(𝐴∗) =
{
Φ𝜆

𝑝

𝑘
, 𝑘 ≥ 𝑘0

}
∪

{
𝑘𝑠Φ𝜆ℎ

𝑘
, |𝑘 | ≥ 𝑘0

}
∪

{
Φ𝑖
𝜆
; 𝜆 ∈ Λ0, 𝑖 = 0, ...,𝑚𝜆 − 1

}
of 𝐴∗ defines a Riesz basis in ( ¤𝐻𝑠

♯
(0, 1))′ × 𝐿2(0, 1) for any 𝑠 > 0, thanks to Corollary 4.3.1. Thus, it is

enough to check the control problem (4.107) for the eigenfunctions of 𝐴∗. In what follows, the problem
(4.5) is null-controllable at given time 𝑇 > 1 if and only if there exists some 𝑝 ∈ 𝐿2(0,𝑇 ) such that we
have the following:

−
∫ 𝑇

0
𝑒𝜆

𝑝

𝑘
(𝑇−𝑡 )𝑝 (𝑡) 𝑑𝑡 =𝑚1,𝑘 , ∀𝑘 ≥ 𝑘0,

−
∫ 𝑇

0
(𝑇 − 𝑡) 𝑗𝑒𝜆 (𝑇−𝑡 )𝑝 (𝑡) 𝑑𝑡 =𝑚

𝑗

𝜆
, ∀𝜆 ∈ Λ0, 𝑗 = 0, 1, . . . ,𝑚𝜆 − 1,

(4.118)

and

−
∫ 𝑇

0
𝑒𝜆

ℎ
𝑘
(𝑇−𝑡 )𝑝 (𝑡) 𝑑𝑡 =𝑚2,𝑘 , ∀|𝑘 | ≥ 𝑘0, (4.119)

where 

𝑚1,𝑘 =

𝑒𝜆
𝑝

𝑘
𝑇

〈(
𝜉𝜆𝑝

𝑘

𝜂𝜆𝑝
𝑘

)
,

(
𝜌0

𝑢0

)〉
( ¤𝐻𝑠

♯
) ′×𝐿2, ¤𝐻𝑠

♯
×𝐿2

𝜉𝜆𝑝
𝑘
(1)

, ∀𝑘 ≥ 𝑘0,

𝑚
𝑗

𝜆
=

𝑒𝜆𝑇

〈(
𝜉
𝑗

𝜆

𝜂
𝑗

𝜆

)
,

(
𝜌0

𝑢0

)〉
( ¤𝐻𝑠

♯
) ′×𝐿2, ¤𝐻𝑠

♯
×𝐿2

𝜉
𝑗

𝜆
(1)

, ∀𝜆 ∈ Λ0, 𝑗 = 0, 1 . . . ,𝑚𝜆 − 1,

(4.120)
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and

𝑚2,𝑘 =

𝑒𝜆
ℎ
𝑘
𝑇

〈(
𝜉𝜆ℎ

𝑘

𝜂𝜆ℎ
𝑘

)
,

(
𝜌0

𝑢0

)〉
( ¤𝐻𝑠

♯
) ′×𝐿2, ¤𝐻𝑠

♯
×𝐿2

𝜉𝜆ℎ
𝑘
(1)

, ∀|𝑘 | ≥ 𝑘0. (4.121)

(4.122)

The above set of equations (4.118)–(4.119) are the so-called moments problem which are well-defined
since B∗

𝜌Φ = 𝜉 (1) ≠ 0 for any (generalized) eigenfunction Φ ∈ E(𝐴∗) as proved in Proposition 4.4.1–Part

1 under the assumption 𝑐4 + 8𝑐2 + 5 < 4𝜋2. Let us now study the solvability of those equations.

Proof of the null-controllability result in ¤𝐻𝑠
♯
× 𝐿2, 𝑠 > 1

2 Let any parameter 𝑠 > 1/2, initial
data (𝜌0, 𝑢0) ∈ 𝐻𝑠

♯
(0, 1) ×𝐿2(0, 1) and time 𝑇 > 1 be given. We now consider the finitely many complex

numbers (𝜆𝑛𝑙 )
𝑙0
𝑙=1

introduced earlier (see eq. (4.115)) in the above moments problem (hyperbolic part)

−
∫ 𝑇

0
𝑒𝜆𝑛𝑙 (𝑇−𝑡 )𝑝 (𝑡)𝑑𝑡 =𝑚2,𝑙 , ∀ 𝑙 = 1, . . . , 𝑙0, (4.123)

where 𝑚2,𝑙 ∈ C for all 𝑙 = 1, . . . , 𝑙0. Then, our goal is to apply the result of Theorem 4.7.4 to solve the
set of moments problem (4.118)–(4.119)-(4.123). To do this, it suffices to show the following facts: for
any 𝑟 > 0

|𝑚1,𝑘 |𝑒𝑟𝑘 → 0 as 𝑘 → +∞, (4.124)

and ∑︁
|𝑘 | ≥𝑘0

|𝑚2,𝑘 |2 < +∞. (4.125)

– Recall the expression of 𝑚1,𝑘 for 𝑘 ≥ 𝑘0 from (4.120). We have

|𝑚1,𝑘 | ≤ 𝐶 ∥(𝜌0, 𝑢0)∥ ¤𝐻𝑠
♯
×𝐿2 𝑒

Re(𝜆𝑝
𝑘
)𝑇
∥𝜉𝜆𝑝

𝑘
∥ ( ¤𝐻𝑠

♯
) ′ + ∥𝜂𝜆𝑝

𝑘
∥𝐿2

|𝜉𝜆𝑝
𝑘
(1) |

(4.126)

≤ 𝐶 ∥(𝜌0, 𝑢0)∥ ¤𝐻𝑠
♯
×𝐿2 𝑒

−𝑘2𝜋2𝑇𝑘𝜋
(
𝑘−𝑠−1 + 1

)
,

thanks to the bounds of the eigenfunctions (4.31) and observation estimate (4.72a). Indeed, the
bound (4.126) directly implies the Claim (4.124) due to the presence of 𝑒−𝑘

2𝜋2𝑇 in the right hand
side of (4.126).

Thus, in view of Proposition 4.7.2, there exists a function 𝑝1 ∈ ℰ := ℰ[0,𝑇 ] that solves the
set of equations (4.118) for the case of simple eigenvalues. To add the finitely many generalized
eigenfunctions, one can adapt the strategy developed for instance in [FCGBdT10] or [BBGBO14],
where the authors have proved the existence of bi-orthogonal family for a general sequence of
type {𝑡 𝑗𝑒𝜆𝑛𝑡 } 𝑗=0,· · · ,𝐽 ;𝑛≥1 for any 𝐽 ∈ N∗, where {𝜆𝑛}𝑛≥1 verifies the properties like (P1) and (P2)
at least for large index 𝑛 ∈ N∗. As a consequence, we can find a 𝑝1 ∈ ℰ0,𝑇 solving the parabolic
moment problem (4.118).

– On the other hand, we show that {𝑚2,𝑘 } |𝑘 | ≥𝑘0 ∈ ℓ2. In this regard, we recall the bounds of the
eigenfunctions given by (4.32) and the observation estimate (4.72b), which yields

∑︁
|𝑘 | ≥𝑘0

|𝑚2,𝑘 |2 ≤ 𝐶 ∥(𝜌0, 𝑢0)∥2¤𝐻𝑠
♯
×𝐿2

∑︁
|𝑘 | ≥𝑘0

∥𝜉𝜆ℎ
𝑘
∥2( ¤𝐻𝑠

♯
) ′ + ∥𝜂𝜆ℎ

𝑘
∥2
𝐿2

|𝜉𝜆ℎ
𝑘
(1) |2
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≤ 𝐶 ∥(𝜌0, 𝑢0)∥2¤𝐻𝑠
♯
×𝐿2

∑︁
|𝑘 | ≥𝑘0

(
|𝑘 |−2𝑠 + |𝑘 |−2

)
≤ 𝐶 ∥(𝜌0, 𝑢0)∥2¤𝐻𝑠

♯
×𝐿2 .

The above series converges due to the sharp choice 𝑠 > 1/2 and indeed, it is clear that for 𝑠 ≤ 1/2,
the series

∑︁
|𝑘 | ≥𝑘0

1

|𝑘 |2𝑠
diverges.

Therefore, in view of Proposition 4.7.1, there exists a function 𝑝2 ∈ W := W[0,𝑇 ] that solves the
set of equations (4.119)–(4.123).

Now, as consequence of Lemma 4.7.3, the space

V :=ℰ +W (4.127)

is closed and thus a Hilbert space with ∥ · ∥V := ∥ · ∥𝐿2 (0,𝑇 ) , so V = ℰ ⊕ W. Likewise, we have
V := ℰ

⊥ ⊕ W⊥. Therefore, the restrictions 𝑃ℰ |W⊥ and 𝑃W |ℰ⊥ are isomorphisms, where 𝑃ℰ and 𝑃W
denote the orthogonal projections from V onto ℰ and W respectively. Let us set

𝑝 := (𝑃ℰ |W⊥)−1𝑝1 + (𝑃W |ℰ⊥)−1𝑝2, (4.128)

which certainly belongs to the space 𝐿2(0,𝑇 ) and simultaneously solves the set of moments problem
(4.118)–(4.119)–(4.123) for 𝑇 > 1 and any 𝜌0 ∈ ¤𝐻𝑠

♯
(0, 1) for 𝑠 > 1/2, 𝑢0 ∈ 𝐿2(0, 1). This concludes the

proof of the result of this section.

4.7.3 Null-controllability result with ¤𝐿2 × 𝐿2 initial data

Proof of Theorem 4.1.2. We start with 𝑐4 +8𝑐2 +5 < 4𝜋2 and pick any initial data (𝜌0, 𝑢0) ∈ ¤𝐿2(0, 1) ×
𝐿2(0, 1) for the system (4.5). We express the initial data as

(𝜌0, 𝑢0) = (𝜌0, 0) + (0, 𝑢0),

and consider the following two systems

𝜌1,𝑡 + 𝜌1,𝑥 + 𝑐𝑢1,𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝑢1,𝑡 − 𝑢1,𝑥𝑥 + 𝑢1,𝑥 + 𝑐𝜌1,𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝜌1(𝑡, 0) = 𝜌1(𝑡, 1) + 𝑝1(𝑡), for 𝑡 ∈ (0,𝑇 ),
𝑢1(𝑡, 0) = 0, 𝑢1(𝑡, 1) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜌1(0, 𝑥) = 𝜌0(𝑥), 𝑢1(0, 𝑥) = 0, in (0, 1),

(4.129)

and 

𝜌2,𝑡 + 𝜌2,𝑥 + 𝑐𝑢2,𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝑢2,𝑡 − 𝑢2,𝑥𝑥 + 𝑢2,𝑥 + 𝑐𝜌2,𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝜌2(𝑡, 0) = 𝜌2(𝑡, 1) + 𝑝2(𝑡), for 𝑡 ∈ (0,𝑇 )
𝑢2(𝑡, 0) = 0, 𝑢2(𝑡, 1) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜌2(0, 𝑥) = 0, 𝑢2(0, 𝑥) = 𝑢0(𝑥), in (0, 1) .

(4.130)

Here 𝑝1, 𝑝2 ∈ 𝐿2(0,𝑇 ) are boundary controls which are to be determined.

Now, from the analysis pursued in Section 4.7.1, if we start with initial data (𝜌0, 0) with 𝜌0 ∈
¤𝐿2(0, 1), then there exists a control 𝑝1 ∈ 𝐿2(0,𝑇 ) such that the solution (𝜌1, 𝑢1) to the system (4.129)
verifies

(𝜌1(𝑇, ·), 𝑢1(𝑇, ·)) = (0, 0), in (0, 1).
On the other hand, it is also known from Section 4.7.2.2 that, starting with initial data (0, 𝑢0) with

𝑢0 ∈ 𝐿2(0, 1), we can find a control 𝑝2 ∈ 𝐿2(0,𝑇 ) such that the solution (𝜌2, 𝑢2) to the system (4.130)
satisfies

(𝜌2(𝑇, ·), 𝑢2(𝑇, ·)) = (0, 0), in (0, 1).
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4.7. Null-controllability for the density case

Let us define 𝑝 (𝑡) = 𝑝1(𝑡) + 𝑝2(𝑡) for 𝑡 ∈ (0,𝑇 ). Then 𝑝 ∈ 𝐿2(0,𝑇 ), and the solution (𝜌,𝑢) to the
main system (4.5), with this control 𝑝 and the prescribed initial state (𝜌0, 𝑢0) ∈ ¤𝐿2(0, 1) × 𝐿2(0, 1),
satisfies

(𝜌 (𝑇 ), 𝑢 (𝑇 )) = (0, 0) in (0, 1) .

Proof of Theorem 4.1.3. Let 𝑇 > 1. We have already shown the existence of a null control 𝑝 ∈
𝐿2(0,𝑇 ) for the system (4.5). Now, to prove the existence of a null control ℎ ∈ 𝐿2(0,𝑇 ) for the control
problem (4.6), all we need to show that 𝜌 (·, 1) ∈ 𝐿2(0,𝑇 ), where 𝜌 is the solution component of the
system (4.5) associated with the control function 𝑝 ∈ 𝐿2(0,𝑇 ). But the proof for 𝜌 (·, 1) ∈ 𝐿2(0,𝑇 )
follows from a hidden regularity result given in Appendix A.1 (Lemma A.1.1). Hence, we define
ℎ(𝑡) = 𝜌 (𝑡, 1) + 𝑝 (𝑡) for all 𝑡 ∈ (0,𝑇 ), which plays the role of a Dirichlet (null) control function for the
main system (4.6).

On the other hand, when 0 < 𝑇 < 1, the system (4.6) cannot be null controllable at time 𝑇 in
𝐿2(0, 1) × 𝐿2(0, 1). If so, then we can find a null control ℎ ∈ 𝐿2(0,𝑇 ) for the system (4.6). By defining
𝑝 (𝑡) := 𝜌 (𝑡, 1) + [ℎ(𝑡) − 𝜌 (𝑡, 1)] for 𝑡 ∈ (0,𝑇 ), we see that 𝑝 ∈ 𝐿2(0,𝑇 ) and is a null control for the system
(4.5), which is a contradiction to Proposition 4.1.1 (see below for the proof of Proposition 4.1.1).

The proof is complete.

4.7.4 Lack of null-controllability at small time

This section is devoted to prove the lack of null-controllability result of the system (4.5) for 0 < 𝑇 < 1,
that is precisely Proposition 4.1.1. In this regard, we mention the work [BKLB20] where the authors
proved the lack of null-controllability for a transport-parabolic system with localized interior control.
Similar result has been treated in [CDM23] in the context of boundary controllability for a transport-
elliptic system (the so-called creeping flow model).

Proof of Proposition 4.1.1. Let 0 < 𝑇 < 1. Consider the transport equation
𝜎𝑡 (𝑡, 𝑥) + 𝜎𝑥 (𝑡, 𝑥) − 𝑐2𝜎 (𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 1),
𝜎 (𝑡, 0) = 𝜎 (𝑡, 1), 𝑡 ∈ (0,𝑇 ),
𝜎 (𝑇, 𝑥) = 𝜎𝑇 (𝑥), 𝑥 ∈ (0, 1),

(4.131)

where 𝜎𝑇 ∈ 𝐿2(0, 1). Since 𝑇 < 1, there exists a nontrivial function 𝜎𝑇 ∈ 𝐶∞(0, 1) with supp(𝜎𝑇 ) ⊂ (𝑇, 1)
such that the associated solution 𝜎 of (4.131) satisfies 𝜎 (𝑡, 0) = 𝜎 (𝑡, 1) = 0 for all 𝑡 ∈ (0,𝑇 ) and 𝜎 ≠ 0
in (0,𝑇 ) × (0, 1). Let 𝑁 > 0 be a fixed integer. We define the polynomial

𝑃𝑁 (𝑥) :=
𝑁∏

𝑙=−𝑁
(𝑥 − 𝑙), 𝑥 ∈ (0, 1)

and the function

𝜎𝑁𝑇 := 𝑃𝑁
(
−𝑖 𝑑
𝑑𝑥

)
𝜎𝑇 .

We now write the terminal state 𝜎𝑇 ∈ 𝐿2(0, 1) as

𝜎𝑇 (𝑥) :=
∑︁
𝑛∈Z

𝑎𝑛𝑒
2𝑖𝑛𝜋𝑥 , 𝑥 ∈ (0, 1).

Then, the above function 𝜎𝑁
𝑇

becomes

𝜎𝑁𝑇 (𝑥) =
∑︁
𝑛∈Z

𝑎𝑛

𝑁∏
𝑙=−𝑁

(
−𝑖 𝑑
𝑑𝑥

− 𝑙
)
𝑒2𝑖𝑛𝜋𝑥 =

∑︁
𝑛∈Z

𝑎𝑛

𝑁∏
𝑙=−𝑁

(𝑛 − 𝑙) 𝑒2𝑖𝑛𝜋𝑥 =
∑︁
𝑛∈Z

𝑎𝑛𝑃
𝑁 (𝑛)𝑒2𝑖𝑛𝜋𝑥 ,

for 𝑥 ∈ (0, 1). Note that 𝑃𝑁 (𝑛) = 0 for all |𝑛 | ≤ 𝑁 and therefore

𝜎𝑁𝑇 (𝑥) =
∑︁

|𝑛 | ≥𝑁+1
𝑎𝑛𝑃

𝑁 (𝑛)𝑒2𝑖𝑛𝜋𝑥 .
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With this 𝜎𝑁
𝑇
, let us now consider the following system

𝜎𝑡 (𝑡, 𝑥) + 𝜎𝑥 (𝑡, 𝑥) − 𝑐2𝜎 (𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 1),
𝜎 (𝑡, 0) = 𝜎 (𝑡, 1), 𝑡 ∈ (0,𝑇 ),
𝜎 (𝑇, 𝑥) = 𝜎𝑁𝑇 (𝑥), 𝑥 ∈ (0, 1) .

(4.132)

Since supp(𝜎𝑁
𝑇
) ⊂ supp(𝜎𝑇 ) ⊂ (𝑇, 1), the solution 𝜎 to (4.132) satisfies 𝜎𝑁 (𝑡, 0) = 𝜎𝑁 (𝑡, 1) = 0 for all

𝑡 ∈ (0,𝑇 ). We now consider the following adjoint system

𝜎𝑡 (𝑡, 𝑥) + 𝜎𝑥 (𝑡, 𝑥) + 𝑐𝑣𝑥 (𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 1),
𝑣𝑡 (𝑡, 𝑥) − 𝑣𝑥𝑥 (𝑡, 𝑥) + 𝑣𝑥 (𝑡, 𝑥) + 𝑐𝜎𝑥 (𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 1),
𝜎 (𝑡, 0) = 𝜎 (𝑡, 1), 𝑡 ∈ (0,𝑇 ),
𝑣 (𝑡, 0) = 0, 𝑣 (𝑡, 1) = 0, 𝑡 ∈ (0,𝑇 ),
𝜎 (𝑇, 𝑥) = 𝜎𝑁𝑇 (𝑥), 𝑣 (𝑇, 𝑥) = 𝑣𝑁𝑇 (𝑥), 𝑥 ∈ (0, 1),

(4.133)

where we choose 𝑣𝑁
𝑇

such that

(𝜎𝑁𝑇 , 𝑣
𝑁
𝑇 )† =

∑︁
|𝑛 | ≥𝑁+1

𝑎ℎ𝑛Φ𝜆ℎ𝑛

with 𝑎ℎ𝑛 := 𝑎𝑛𝑃
𝑁 (𝑛)

𝜉
𝜆ℎ𝑛

(1) for all |𝑛 | ≥ 𝑁 + 1 (note that 𝜉𝜆ℎ𝑛 (1) ≠ 0, thanks to the eigen equation). We write

the solutions to the systems (4.132) and (4.133) respectively as

𝜎𝑁 (𝑡, 𝑥) =
∑︁

|𝑛 | ≥𝑁+1
𝑎𝑛𝑃

𝑁 (𝑛)𝑒 (−2𝑖𝑛𝜋−𝑐2 ) (𝑇−𝑡 )𝑒2𝑖𝑛𝜋𝑥 , (4.134)

𝜎𝑁 (𝑡, 𝑥) =
∑︁

|𝑛 | ≥𝑁+1

𝑎𝑛𝑃
𝑁 (𝑛)

𝜉𝜆ℎ𝑛
(1) 𝑒𝜆

ℎ
𝑛 (𝑇−𝑡 )𝜉𝜆ℎ𝑛 , (4.135)

𝑣𝑁 (𝑡, 𝑥) =
∑︁

|𝑛 | ≥𝑁+1

𝑎𝑛𝑃
𝑁 (𝑛)

𝜉𝜆ℎ𝑛
(1) 𝑒𝜆

ℎ
𝑛 (𝑇−𝑡 )𝜂𝜆ℎ𝑛 , (4.136)

for (𝑡, 𝑥) ∈ [0,𝑇 ] × [0, 2𝜋]. We prove that the solution component 𝜎𝑁 of (4.133) approximates the
solution 𝜎𝑁 of (4.132) at the point 𝑥 = 1. Indeed,

𝜎𝑁 (·, 1) − 𝜎𝑁 (·, 1)



2
𝐿2 (0,𝑇 )

≤
∑︁

|𝑛 | ≥𝑁+1
|𝑎𝑛 |2

��𝑃𝑁 (𝑛)
��2 


𝑒𝜆ℎ𝑛 (𝑇−𝑡 ) − 𝑒 (−2𝑖𝑛𝜋−𝑐2) (𝑇−𝑡 )𝑒2𝑖𝑛𝜋




2
𝐿2 (0,𝑇 )

≤
∑︁

|𝑛 | ≥𝑁+1
|𝑎𝑛 |2

��𝑃𝑁 (𝑛)
��2 


𝑒𝑂 ( 1

𝑛
) (𝑇−𝑡 ) − 1




2
𝐿2 (0,𝑇 )

≤
∑︁

|𝑛 | ≥𝑁+1

1

|𝑛 |2
|𝑎𝑛 |2

��𝑃𝑁 (𝑛)
��2 ,

and therefore 

𝜎𝑁 (·, 1) − 𝜎𝑁 (·, 1)


2
𝐿2 (0,𝑇 ) ≤

𝐶

|𝑁 |2
∑︁

|𝑛 | ≥𝑁+1
|𝑎𝑛 |2

��𝑃𝑁 (𝑛)
��2 .

Let us now suppose that the following observability inequality holds∫ 𝑇

0

��𝜎𝑁 (𝑡, 1)
��2 𝑑𝑡 ≥ 𝐶 

(𝜎𝑁 (0), 𝑣𝑁 (0))



2
(𝐿2 (0,1) )2 . (4.137)

Then, we have 

(𝜎𝑁 (0), 𝑣𝑁 (0))


2
(𝐿2 (0,1) )2 ≤ 𝐶

∫ 𝑇

0

��𝜎𝑁 (𝑡, 1)
��2 𝑑𝑡
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4.8. Detailed spectral analysis of the adjoint operator

≤ 𝐶
∫ 𝑇

0

(��𝜎𝑁 (𝑡, 1) − 𝜎𝑁 (𝑡, 1)
��2 + ��𝜎𝑁 (𝑡, 1)

��2) 𝑑𝑡
≤ 𝐶

𝑁 2

∑︁
|𝑛 | ≥𝑁+1

|𝑎𝑛 |2
��𝑃𝑁 (𝑛)

��2 ,
as we have 𝜎𝑁 (𝑡, 0) = 0 = 𝜎𝑁 (𝑡, 1) for all 𝑡 ∈ (0,𝑇 ). Thus we get

𝜎𝑁 (0)



2
𝐿2 (0,1) ≤



(𝜎𝑁 (0), 𝑣𝑁 (0))


2
(𝐿2 (0,1) )2 ≤ 𝐶

𝑁 2

∑︁
|𝑛 | ≥𝑁+1

|𝑎𝑛 |2
��𝑃𝑁 (𝑛)

��2 ≤ 𝐶

𝑁 2



𝜎𝑁 (0)


2
𝐿2 (0,1) ,

since Re(𝜈ℎ𝑛) is bounded and



𝜉𝜆ℎ𝑛


𝐿2 (0,1) ≥ 𝐶, ���𝜉𝜆ℎ𝑛 (0)��� ≥ 𝐶. Therefore, 1 ≤ 𝐶

𝑁 2 for all 𝑁 and hence the

above inequality is not true. This shows that the observability inequality (4.137) cannot hold; as a
consequence, the system (4.5) is not null controllable at time 𝑇 . This completes the proof.

4.8 Detailed spectral analysis of the adjoint operator

In this section, we study the detailed spectral analysis of the adjoint operator 𝐴∗. We hereby recall
the eigenvalue problem (4.18) from Section 4.3 which has been rewritten below,

𝜉 ′(𝑥) + 𝑐𝜂′(𝑥) = 𝜆𝜉 (𝑥), 𝑥 ∈ (0, 1),
𝜂′′(𝑥) + 𝜂′(𝑥) + 𝑐𝜉 ′(𝑥) = 𝜆𝜂 (𝑥), 𝑥 ∈ (0, 1),

𝜉 (0) = 𝜉 (1),
𝜂 (0) = 0, 𝜂 (1) = 0.

(4.138)

We divide the analysis into several steps. Let us begin by the following results.

Proof of point (ii)-Proposition 4.3.1: all non-trivial eigenvalues have negative real parts
Multiplying the first equation of (4.138) by 𝜉 , the second one by 𝜂 and then integrating, we obtain∫ 1

0
𝜉 (𝑥)𝜉 ′(𝑥)𝑑𝑥 + 𝑐

∫ 1

0
𝜉 (𝑥)𝜂′(𝑥)𝑑𝑥 = 𝜆

∫ 1

0
|𝜉 (𝑥) |2𝑑𝑥∫ 1

0
𝜂 (𝑥)𝜂′′(𝑥)𝑑𝑥 +

∫ 1

0
𝜂 (𝑥)𝜂′(𝑥)𝑑𝑥 + 𝑐

∫ 1

0
𝜂 (𝑥)𝜉 ′(𝑥)𝑑𝑥 = 𝜆

∫ 1

0
|𝜂 (𝑥) |2𝑑𝑥 .

Adding these two equations, we get∫ 1

0
𝜉 (𝑥)𝜉 ′(𝑥)𝑑𝑥 +

∫ 1

0
𝜂 (𝑥)𝜂′(𝑥)𝑑𝑥 + 𝑐

∫ 1

0
𝜉 (𝑥)𝜂′(𝑥)𝑑𝑥 + 𝑐

∫ 1

0
𝜂 (𝑥)𝜉 ′(𝑥)𝑑𝑥

+
∫ 1

0
𝜂 (𝑥)𝜂′′(𝑥)𝑑𝑥 = 𝜆

∫ 1

0
|𝜉 (𝑥) |2𝑑𝑥 + 𝜆

∫ 1

0
|𝜂 (𝑥) |2𝑑𝑥, (4.139)

where we have used the following fact,∫ 1

0
𝜉 (𝑥)𝜉 ′(𝑥)𝑑𝑥 =

1

2

∫ 1

0

𝑑

𝑑𝑥
|𝜉 (𝑥) |2𝑑𝑥 + 𝑖

∫ 1

0
Im(𝜉 (𝑥)𝜉 ′(𝑥))𝑑𝑥 = 𝑖

∫ 1

0
Im(𝜉 (𝑥)𝜉 ′(𝑥))𝑑𝑥, (4.140)

thanks to the boundary condition 𝜉 (0) = 𝜉 (1).
Similarly, we can obtain ∫ 1

0
𝜂 (𝑥)𝜂′(𝑥)𝑑𝑥 = 𝑖

∫ 1

0
Im(𝜂 (𝑥)𝜂′(𝑥))𝑑𝑥. (4.141)

Using the relations (4.140), (4.141) in (4.139) and performing an integration by parts, we deduce
that

𝑖

∫ 1

0

(
Im(𝜉 (𝑥)𝜉 ′(𝑥)) + Im(𝜂 (𝑥)𝜂′(𝑥))

)
𝑑𝑥 + 𝑐

∫ 1

0
𝜉 ′(𝑥)𝜂 (𝑥)𝑑𝑥 − 𝑐

∫ 1

0
𝜉 ′(𝑥)𝜂 (𝑥)𝑑𝑥 −

∫ 1

0
|𝜂′(𝑥) |2𝑑𝑥
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= 𝜆

∫ 1

0
|𝜉 (𝑥) |2𝑑𝑥 + 𝜆

∫ 1

0
|𝜂 (𝑥) |2𝑑𝑥,

from which it is clear that

Re(𝜆) = −
∥𝜂′∥2

𝐿2

∥𝜉 ∥2
𝐿2

+ ∥𝜂∥2
𝐿2

< 0, (4.142)

since 𝜂′ = 0 is not possible. If yes, then from the boundary condition 𝜂 (0) = 𝜂 (1) = 0, we have 𝜂 = 0
and this yields that 𝜉 =constant, which is possible if and only if 𝜆 = 0. Therefore, when 𝜆 ≠ 0, then
one has the condition (4.142).

Remark 4.8.1. It can be easily seen that the first component 𝜉 satisfies
∫ 1

0
𝜉 = 0 provided 𝜆 ≠ 0.

Proof of point (iii)- Proposition 4.3.1: compactness of the resolvent to the adjoint
operator In this section, we are going to prove the part (iii) of Proposition 4.3.1.

For any 𝜆 ∉ 𝜎 (𝐴∗), denote the resolvent operator associated to 𝐴∗ by 𝑅(𝜆,𝐴∗) := (𝜆𝐼 −𝐴∗)−1 (where
𝜎 (𝐴∗) is the spectrum of 𝐴∗ defined by (4.22)).

Let {𝑌𝑛}𝑛 = {(𝑓𝑛, 𝑔𝑛)}𝑛 be a bounded sequence in Z := 𝐿2(0, 1) × 𝐿2(0, 1). Our claim is to prove
that for any 𝜆 > 0 the sequence

{
𝑅(𝜆;𝐴∗)𝑌𝑛

}
𝑛
contains a convergent subsequence. Let 𝑋𝑛 = (𝜎𝑛, 𝑣𝑛) =

𝑅(𝜆;𝐴∗)𝑌𝑛 ∈ 𝐷 (𝐴∗), that is
(𝜆𝐼 −𝐴∗)𝑋𝑛 = 𝑌𝑛 . (4.143)

More explicitly, 
𝜆𝜎𝑛 − (𝜎𝑛)𝑥 − 𝑐 (𝑣𝑛)𝑥 = 𝑓𝑛 in (0, 1),
𝜆𝑣𝑛 − 𝑐 (𝜎𝑛)𝑥 − (𝑣𝑛)𝑥 − (𝑣𝑛)𝑥𝑥 = 𝑔𝑛 in (0, 1),
𝜎𝑛 (0) = 𝜎𝑛 (1), 𝑣𝑛 (0) = 𝑣𝑛 (1) = 0.

(4.144)

Taking inner product with 𝑋𝑛 in the equation (4.143), we get

𝜆 ⟨𝑋𝑛, 𝑋𝑛⟩Z − ⟨𝐴∗𝑋𝑛, 𝑋𝑛⟩Z = ⟨𝑋𝑛, 𝑌𝑛⟩Z .

Considering only the real parts, we see

𝜆 ∥𝑋𝑛 ∥2Z − Re(⟨𝐴∗𝑋𝑛, 𝑋𝑛⟩Z) = Re(⟨𝑋𝑛, 𝑌𝑛⟩Z) .

Now, recall that the operator 𝐴∗ is dissipative, i.e., Re(⟨𝐴∗𝑋𝑛, 𝑋𝑛⟩Z) ≤ 0; in what follows, we have

𝜆 ∥𝑋𝑛 ∥2Z ≤ Re(⟨𝑋𝑛, 𝑌𝑛⟩Z) ≤ |⟨𝑋𝑛, 𝑌𝑛⟩Z | ≤
𝜆

2
∥𝑋𝑛 ∥2Z + 1

2𝜆
∥𝑌𝑛 ∥2Z .

In other words,

∥𝑋𝑛 ∥2Z ≤ 1

𝜆2
∥𝑌𝑛 ∥2Z .

Thus, the sequence {𝑋𝑛}𝑛 is bounded in Z. We now prove that {𝑋𝑛}𝑛 is in fact bounded in 𝐻1
♯
(0, 1) ×

𝐻1
0 (0, 1). Multiplying the second equation of (4.144) by 𝑣𝑛, we get

𝜆

∫ 1

0
|𝑣𝑛 |2 𝑑𝑥 − 𝑐

∫ 1

0
(𝜎𝑛)𝑥𝑣𝑛𝑑𝑥 −

∫ 1

0
(𝑣𝑛)𝑥𝑥𝑣𝑛𝑑𝑥 =

∫ 1

0
𝑔𝑛𝑣𝑛𝑑𝑥.

Performing an integration by parts, we obtain

𝜆

∫ 1

0
|𝑣𝑛 |2 𝑑𝑥 + 𝑐

∫ 1

0
𝜎𝑛 (𝑣𝑛)𝑥𝑑𝑥 +

∫ 1

0
| (𝑣𝑛)𝑥 |2 𝑑𝑥 =

∫ 1

0
𝑔𝑛𝑣𝑛𝑑𝑥,

from which, it follows that

𝜆

∫ 1

0
|𝑣𝑛 |2 𝑑𝑥 +

∫ 1

0
| (𝑣𝑛)𝑥 |2 𝑑𝑥 = Re

(∫ 1

0
𝑔𝑛𝑣𝑛𝑑𝑥

)
− 𝑐Re

(∫ 1

0
𝜎𝑛 (𝑣𝑛)𝑥𝑑𝑥

)
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≤
����∫ 1

0
𝑔𝑛𝑣𝑛𝑑𝑥

���� + 𝑐 ����∫ 1

0
𝜎𝑛 (𝑣𝑛)𝑥𝑑𝑥

����
≤ 1

2𝜆

∫ 1

0
|𝑔𝑛 |2 𝑑𝑥 + 𝜆

2

∫ 1

0
|𝑣𝑛 |2 𝑑𝑥 + 𝑐

2

2

∫ 1

0
|𝜎𝑛 |2 𝑑𝑥 + 1

2

∫ 1

0
| (𝑣𝑛)𝑥 |2 𝑑𝑥.

After simplification, we have

𝜆

2

∫ 1

0
|𝑣𝑛 |2 𝑑𝑥 + 1

2

∫ 1

0
| (𝑣𝑛)𝑥 |2 𝑑𝑥 ≤ 1

2𝜆

∫ 1

0
|𝑔𝑛 |2 𝑑𝑥 + 𝑐

2

2

∫ 1

0
|𝜎𝑛 |2 𝑑𝑥,

that is, the sequence {𝑣𝑛}𝑛 is bounded in 𝐻1
0 (0, 1). Then, the first equation of (4.144) gives

(𝜎𝑛)𝑥 = 𝜆𝜎𝑛 − 𝑐 (𝑣𝑛)𝑥 − 𝑓𝑛,

which shows that the sequence {(𝜎𝑛)𝑥 }𝑛 is bounded in 𝐿2(0, 1).
So, we have proved that {𝑋𝑛}𝑛 is a bounded sequence in 𝐻1

♯
(0, 1) × 𝐻1

0 (0, 1) (which is compactly

embedded in Z) and therefore, {𝑋𝑛}𝑛 is relatively compact in Z.

This completes the proof.

Proof of point (iv)-Proposition 4.3.1: all eigenvalues are geometrically simple. Let 𝑐 > 0
be such that 𝑐4 + 8𝑐2 + 5 < 4𝜋2. On contrary, let us assume that for any eigenvalue 𝜆, there are two
distinct eigenfunctions Φ1 := (𝜉1, 𝜂1) and Φ2 := (𝜉2, 𝜂2) of 𝐴∗. We prove that Φ1 and Φ2 are linearly
dependent.

Let be 𝛼1, 𝛼2 ∈ C \ {0} and consider the linear combination Φ := 𝛼1Φ1 + 𝛼2Φ2. Then Φ := (𝜉, 𝜂) also
satisfies the eigenvalue problem (4.138). We now choose 𝛼1, 𝛼2 in such a way that 𝜉 (0) = 0 (a particular

choice is 𝛼1 = −𝛼2𝜉2 (0)
𝜉1 (0) ). Then, in the same spirit of Proposition 4.4.1–Part 1, we can conclude that

Φ = 0.

This ensures the assumption that each eigenvalue of 𝐴∗ has geometric multiplicity 1.

4.8.1 Determining the eigenvalues for large modulus

We write the set of equations (4.138) satisfied by 𝜉 and 𝜂 into a single equation of 𝜂 as obtained in
(4.40), given by

𝜂′′′(𝑥) − (𝜆 + 𝑐2 − 1)𝜂′′(𝑥) − 2𝜆𝜂′(𝑥) + 𝜆2𝜂 (𝑥) = 0, ∀𝑥 ∈ (0, 1), (4.145a)

𝜂 (0) = 𝜂 (1) = 0, 𝜂′′(0) − (𝑐2 − 1)𝜂′(0) = 𝜂′′(1) − (𝑐2 − 1)𝜂′(1). (4.145b)

Then, the auxiliary equation associated to (4.145a) is

𝑚3 − (𝜆 + 𝑐2 − 1)𝑚2 − 2𝜆𝑚 + 𝜆2 = 0. (4.146)

Introduce 𝜇 = −𝜆 ∈ C and 𝑎1 = 𝜇 − 𝑐2 + 1, 𝑎2 = 2𝜇, 𝑎3 = 𝜇2, so that the roots of cubic polynomial
(4.146) are given by 

𝑚1 = −1
3

(
𝑎1 +𝐶 + 𝐷0

𝐶

)
,

𝑚2 = −1
3

(
𝑎1 +

(−1 + 𝑖
√
3)

2
𝐶 + (−1 − 𝑖

√
3)

2

𝐷0

𝐶

)
,

𝑚3 = −1
3

(
𝑎1 +

(−1 − 𝑖
√
3)

2
𝐶 + (−1 + 𝑖

√
3)

2

𝐷0

𝐶

)
,

(4.147)

with

𝐷0 = 𝑎
2
1 − 3𝑎2, 𝐷1 = 2𝑎31 − 9𝑎1𝑎2 + 27𝑎3, 𝐶 =

©­­«
𝐷1 +

√︃
𝐷2
1 − 4𝐷3

0

2

ª®®¬
1/3

.
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Exerting the values of 𝑎1, 𝑎2, 𝑎3, we can find

𝐷0 = 𝜇
2 + (𝑐2 − 1)2 − 2(2 + 𝑐2)𝜇,

𝐷1 = 2(𝜇 − 𝑐2 + 1)3 − 9(𝜇 − 𝑐2 + 1)2𝜇 + 27𝜇2

= 2(𝜇3 − 𝑐6 + 1 − 3𝑐2𝜇2 + 3𝜇2 + 3𝑐4𝜇 + 3𝜇 + 3𝑐4 − 3𝑐2 − 6𝑐2𝜇)
− 18𝜇2 + 18𝑐2𝜇 − 18𝜇 + 27𝜇2

= 2𝜇3 + (15 − 6𝑐2)𝜇2 + (6𝑐4 + 6𝑐2 − 12)𝜇 − 2𝑐6 + 6𝑐4 − 6𝑐2 + 2.

From the above expressions, we calculate

𝐷2
1 − 4𝐷3

0 = [2𝜇3 + (15 − 6𝑐2)𝜇2 + (6𝑐4 + 6𝑐2 − 12)𝜇 − 2𝑐6 + 6𝑐4 − 6𝑐2 + 2]2

− 4[𝜇2 − 2(𝑐2 + 2)𝜇 + (𝑐2 − 1)2]3

= 4𝜇6 + 4(15 − 6𝑐2)𝜇5 + (60𝑐4 − 156𝑐2 + 177)𝜇4 +𝑂 (𝜇3)
− 4[𝜇6 − 6(𝑐2 + 2)𝜇5 + (15𝑐4 + 42𝑐2 + 51)𝜇4 +𝑂 (𝜇3)]

= 108𝜇5 − (324𝑐2 + 27)𝜇4 +𝑂 (𝜇3) .

Using the binomial expansion and approximating for large |𝜇 |, we obtain√︃
𝐷2
1 − 4𝐷3

0 =
[
108𝜇5 − (324𝑐2 + 27)𝜇4 +𝑂 (𝜇3)

]1/2
= 6

√
3𝜇5/2

[
1 −

(
12𝑐2 + 1

4𝜇
+𝑂 (𝜇−2)

)]1/2
= 6

√
3𝜇5/2

[
1 − 1

2

(
12𝑐2 + 1

4𝜇
+𝑂 (𝜇−2)

)
+𝑂 (𝜇−2)

]
= 6

√
3𝜇5/2

[
1 − 12𝑐2 + 1

8𝜇
+𝑂 (𝜇−2)

]
= 6

√
3𝜇5/2 − 6

√
3

8
(12𝑐2 + 1)𝜇3/2 +𝑂 (𝜇1/2) .

In terms of the above quantities, we have

𝐶 =

[
𝜇3 + 3

√
3𝜇5/2 + (15 − 6𝑐2)

2
𝜇2 − 3

√
3

8
(12𝑐2 + 1)𝜇3/2 +𝑂 (𝜇)

]1/3
Now, using binomial expansion and simplifying, one can obtain for large modulus of 𝜇, that

𝐶 = 𝜇

[
1 + 3

√
3𝜇−1/2 + (15 − 6𝑐2)

2
𝜇−1 − 3

√
3

8
(12𝑐2 + 1)𝜇−3/2 +𝑂 (𝜇−2)

]1/3
= 𝜇

[
1 + 1

3

(
3
√
3𝜇−1/2 + (15 − 6𝑐2)

2
𝜇−1 − 3

√
3

8
(12𝑐2 + 1)𝜇−3/2 +𝑂 (𝜇−2)

)
− 1

9

(
3
√
3𝜇−1/2 + (15 − 6𝑐2)

2
𝜇−1 − 3

√
3

8
(12𝑐2 + 1)𝜇−3/2 +𝑂 (𝜇−2)

)2
+ 5

81

(
3
√
3𝜇−1/2 + (15 − 6𝑐2)

2
𝜇−1 − 3

√
3

8
(12𝑐2 + 1)𝜇−3/2 +𝑂 (𝜇−2)

)3
+𝑂 (𝜇−2)

]
= 𝜇

[
1 +

(
√
3𝜇−1/2 + (15 − 6𝑐2)

6
𝜇−1 −

√
3

8
(12𝑐2 + 1)𝜇−3/2 +𝑂 (𝜇−2)

)
− 1

9

(
27𝜇−1 + 3

√
3(15 − 6𝑐2)𝜇−3/2 +𝑂 (𝜇−2)

)
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+ 5

81

(
81
√
3𝜇−3/2 +𝑂 (𝜇−2)

)
+𝑂 (𝜇−2)

]
= 𝜇

[
1 +

√
3𝜇−1/2 − 2𝑐2 + 1

2
𝜇−1 +

√
3

8
(4𝑐2 − 1)𝜇−3/2 +𝑂 (𝜇−2)

]
= 𝜇 +

√
3𝜇1/2 − 2𝑐2 + 1

2
+
√
3

8
(4𝑐2 − 1)𝜇−1/2 +𝑂 (𝜇−1).

Similarly we have,

𝐷0

𝐶
=

©­­«
𝐷1 −

√︃
𝐷2
1 − 4𝐷3

0

2

ª®®¬
1
3

=

[
𝜇3 − 3

√
3𝜇5/2 + (15 − 6𝑐2)

2
𝜇2 + 3

√
3

8
(12𝑐2 + 1)𝜇3/2 +𝑂 (𝜇)

]1/3
= 𝜇

[
1 − 3

√
3𝜇−1/2 + (15 − 6𝑐2)

2
𝜇−1 + 3

√
3

8
(12𝑐2 + 1)𝜇−3/2 +𝑂 (𝜇−2)

]1/3
= 𝜇

[
1 + 1

3

(
−3

√
3𝜇−1/2 + (15 − 6𝑐2)

2
𝜇−1 + 3

√
3

8
(12𝑐2 + 1)𝜇−3/2 +𝑂 (𝜇−2)

)
− 1

9

(
−3

√
3𝜇−1/2 + (15 − 6𝑐2)

2
𝜇−1 + 3

√
3

8
(12𝑐2 + 1)𝜇−3/2 +𝑂 (𝜇−2)

)2
+ 5

81

(
−3

√
3𝜇−1/2 + (15 − 6𝑐2)

2
𝜇−1 + 3

√
3

8
(12𝑐2 + 1)𝜇−3/2 +𝑂 (𝜇−2)

)3
+𝑂 (𝜇−2)

]
= 𝜇

[
1 +

(
−
√
3𝜇−1/2 + (15 − 6𝑐2)

6
𝜇−1 +

√
3

8
(12𝑐2 + 1)𝜇−3/2 +𝑂 (𝜇−2)

)
−1
9

(
27𝜇−1 − 3

√
3(15 − 6𝑐2)𝜇−3/2 +𝑂 (𝜇−2)

)
+ 5

81

(
−81

√
3𝜇−3/2 +𝑂 (𝜇−2)

)
+𝑂 (𝜇−2)

]
= 𝜇

[
1 −

√
3𝜇−1/2 − 2𝑐2 + 1

2
𝜇−1 −

√
3

8
(4𝑐2 − 1)𝜇−3/2 +𝑂 (𝜇−2)

]
= 𝜇 −

√
3𝜇1/2 − 2𝑐2 + 1

2
−
√
3

8
(4𝑐2 − 1)𝜇−1/2 +𝑂 (𝜇−1).

So, the characteristic roots are (recall (4.147))

𝑚1 = −1
3

[
𝜇 − 𝑐2 + 1 +

(
𝜇 +

√
3𝜇1/2 − 2𝑐2 + 1

2
+
√
3

8
(4𝑐2 − 1)𝜇−1/2 +𝑂 (𝜇−1)

)
+

(
𝜇 −

√
3𝜇1/2 − 2𝑐2 + 1

2
−
√
3

8
(4𝑐2 − 1)𝜇−1/2 +𝑂 (𝜇−1)

) ]
= −1

3

(
3𝜇 − 3𝑐2 +𝑂 (𝜇−1)

)
= −𝜇 + 𝑐2 +𝑂 (𝜇−1),

𝑚2 = −1
3

[
𝜇 − 𝑐2 + 1 + −1 + 𝑖

√
3

2

(
𝜇 +

√
3𝜇1/2 − 2𝑐2 + 1

2
+
√
3

8
(4𝑐2 − 1)𝜇−1/2 +𝑂 (𝜇−1)

)
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+−1 − 𝑖
√
3

2

(
𝜇 −

√
3𝜇1/2 − 2𝑐2 + 1

2
−
√
3

8
(4𝑐2 − 1)𝜇−1/2 +𝑂 (𝜇−1)

)]
= −1

3

[
3

2
+ 3𝑖𝜇1/2 +𝑂 (𝜇−1/2)

]
= −1

2
− 𝑖𝜇1/2 +𝑂 (𝜇−1/2),

𝑚3 = −1
3

(
𝑎 + (−1 − 𝑖

√
3)

2
𝐶 + (−1 + 𝑖

√
3)

2

𝐷0

𝐶

)
= −1

3

[
𝜇 − 𝑐2 + 1 + −1 − 𝑖

√
3

2

(
𝜇 +

√
3𝜇1/2 − 2𝑐2 + 1

2
+
√
3

8
(4𝑐2 − 1)𝜇−1/2 +𝑂 (𝜇−1)

)
+−1 + 𝑖

√
3

2

(
𝜇 −

√
3𝜇1/2 − 2𝑐2 + 1

2
−
√
3

8
(4𝑐2 − 1)𝜇−1/2 +𝑂 (𝜇−1)

)]
= −1

3

[
3

2
− 3𝑖𝜇1/2 +𝑂 (𝜇−1/2)

]
= −1

2
+ 𝑖𝜇1/2 +𝑂 (𝜇−1/2) .

Together, we write 
𝑚1 = −𝜇 + 𝑐2 +𝑂 (𝜇−1),

𝑚2 = −1
2
− 𝑖𝜇1/2 +𝑂 (𝜇−1/2),

𝑚3 = −1
2
+ 𝑖𝜇1/2 +𝑂 (𝜇−1/2),

(4.148)

with 𝜇 = −𝜆 as mentioned earlier. Since, for large modulus of 𝜇, the roots 𝑚1,𝑚2 and 𝑚3 are distinct,
we can write the general solution to the equation (4.145a) as

𝜂 (𝑥) = 𝐶1𝑒
𝑚1𝑥 +𝐶2𝑒

𝑚2𝑥 +𝐶3𝑒
𝑚3𝑥 , 𝑥 ∈ (0, 1), (4.149)

for some constants 𝐶1,𝐶2,𝐶3 ∈ C.
Using the boundary conditions (4.145b), we get a system of linear equations in 𝐶1, 𝐶2 and 𝐶3,

given by 
𝐶1 +𝐶2 +𝐶3 = 0,

𝐶1𝑒
𝑚1 +𝐶2𝑒

𝑚2 +𝐶3𝑒
𝑚3 = 0,

𝐶1𝑚
2
1 (1 − 𝑒𝑚1) +𝐶2𝑚

2
2 (1 − 𝑒𝑚2) +𝐶3𝑚

2
3 (1 − 𝑒𝑚3) = 0.

(4.150)

These system of equations (4.150) has a nontrivial solution if and only if

det
©­­«

1 1 1

𝑒𝑚1 𝑒𝑚2 𝑒𝑚3

𝑚2
1 (1 − 𝑒𝑚1) 𝑚2

2 (1 − 𝑒𝑚2) 𝑚2
3 (1 − 𝑒𝑚3)

ª®®¬ = 0.

Expanding the determinant, we obtain

𝑚2
1 (1 − 𝑒𝑚1) (𝑒𝑚3 − 𝑒𝑚2) +𝑚2

2 (1 − 𝑒𝑚2) (𝑒𝑚1 − 𝑒𝑚3) +𝑚2
3 (1 − 𝑒𝑚3) (𝑒𝑚2 − 𝑒𝑚1) = 0. (4.151)

We shall now compute the determinant term by term for large |𝜇 |.
• Plugging the values of 𝑚1, 𝑚2 and 𝑚3 as given in (4.148), we obtain

𝑚2
1 (1 − 𝑒𝑚1) (𝑒𝑚3 − 𝑒𝑚2) (4.152)
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=

(
−𝜇 + 𝑐2 +𝑂 (𝜇−1/2)

)2 (
1 − 𝑒−𝜇+𝑐2+𝑂 (𝜇−1/2 )

) (
𝑒−1/2+𝑖𝜇

1/2+𝑂 (𝜇−1/2 ) − 𝑒−1/2−𝑖𝜇1/2+𝑂 (𝜇−1/2 )
)

=

(
𝜇2 − 2𝑐2𝜇 +𝑂 (𝜇1/2)

) (
1 − 𝑒−𝜇+𝑐2+𝑂 (𝜇−1 )

) (
𝑒−1/2+𝑂 (𝜇−1/2 )

(
cos(𝜇1/2) + 𝑖 sin(𝜇1/2)

)
−𝑒−1/2+𝑂 (𝜇−1/2 )

(
cos(𝜇1/2) − 𝑖 sin(𝜇1/2)

))
=

(
𝜇2 − 2𝑐2𝜇 +𝑂 (𝜇1/2)

) (
1 − 𝑒−𝜇+𝑐2+𝑂 (𝜇−1 )

) [
𝑂 (𝜇−1/2)𝑒−1/2+𝑂 (𝜇−1/2 ) cos(𝜇1/2)

+𝑖 (2 +𝑂 (𝜇− 1
2 ))𝑒−1/2+𝑂 (𝜇−1/2 ) sin(𝜇1/2)

]
,

where we have used the facts that

𝑒−1/2+𝑂 (𝜇−1/2 ) − 𝑒−1/2+𝑂 (𝜇−1/2 ) = 𝑒−1/2+𝑂 (𝜇−1/2 )
(
1 − 𝑒𝑂 (𝜇−

1
2 )

)
= 𝑒−1/2+𝑂 (𝜇−1/2 ) ×𝑂 (𝜇− 1

2 ),

and

𝑒−1/2+𝑂 (𝜇−1/2 ) + 𝑒−1/2+𝑂 (𝜇−1/2 ) = 𝑒−1/2+𝑂 (𝜇−1/2 )
(
1 + 𝑒𝑂 (𝜇−

1
2 )

)
= 𝑒−1/2+𝑂 (𝜇−1/2 ) × (2 +𝑂 (𝜇− 1

2 )) .

• We also compute

𝑚2
2 (1 − 𝑒𝑚2) (𝑒𝑚1 − 𝑒𝑚3)

=

(
−1
2
− 𝑖𝜇1/2 +𝑂 (𝜇− 1

2 )
)2 (

1 − 𝑒−1/2−𝑖𝜇1/2+𝑂 (𝜇−1/2 )
) (
𝑒−𝜇+𝑐

2+𝑂 (𝜇−1 ) − 𝑒− 1
2+𝑖𝜇

1
2 +𝑂 (𝜇−

1
2 )

)
=

(
−𝜇 + 𝑖𝜇 1

2 +𝑂 (1)
) (
𝑒−𝜇+𝑐

2+𝑂 (𝜇−1 ) + 𝑒−1+𝑂 (𝜇−
1
2 ) − 𝑒−𝜇+𝑐2− 1

2−𝑖𝜇
1
2 +𝑂 (𝜇−

1
2 ) − 𝑒− 1

2+𝑖𝜇
1
2 +𝑂 (𝜇−

1
2 )

)
=

(
−𝜇 + 𝑖𝜇 1

2 +𝑂 (1)
) [
𝑒−𝜇+𝑐

2+𝑂 (𝜇−1 ) + 𝑒−1+𝑂 (𝜇−
1
2 ) − 𝑒−𝜇+𝑐2− 1

2+𝑂 (𝜇−
1
2 )

(
cos(𝜇 1

2 ) − 𝑖 sin(𝜇 1
2 )

)
−𝑒− 1

2+𝑂 (𝜇−
1
2 )

(
cos(𝜇 1

2 ) + 𝑖 sin(𝜇 1
2 )

)]
.

• Finally, we have

𝑚2
3 (1 − 𝑒𝑚3) (𝑒𝑚2 − 𝑒𝑚1)

=

(
−1
2
+ 𝑖𝜇1/2 +𝑂 (𝜇− 1

2 )
)2 (

1 − 𝑒− 1
2+𝑖𝜇

1
2 +𝑂 (𝜇−

1
2 )

)
×

(
𝑒−

1
2−𝑖𝜇

1
2 +𝑂 (𝜇−

1
2 ) − 𝑒−𝜇+𝑐2+𝑂 (𝜇−1 )

)
=

(
−𝜇 − 𝑖𝜇 1

2 +𝑂 (1)
) [

−𝑒−𝜇+𝑐2+𝑂 (𝜇−1 ) − 𝑒−1+𝑂 (𝜇−
1
2 ) + 𝑒−𝜇+𝑐2− 1

2+𝑂 (𝜇−
1
2 )

(
cos(𝜇 1

2 ) + 𝑖 sin(𝜇 1
2 )

)
+𝑒− 1

2+𝑂 (𝜇−
1
2 )

(
cos(𝜇 1

2 ) − 𝑖 sin(𝜇 1
2 )

)]
.

• We add now the last two terms, in what follows

𝑚2
2 (1 − 𝑒𝑚2) (𝑒𝑚1 − 𝑒𝑚3) +𝑚2

3 (1 − 𝑒𝑚3) (𝑒𝑚2 − 𝑒𝑚1) (4.153)

= −𝜇
(
𝑒−𝜇+𝑐

2+𝑂 (𝜇−1 ) + 𝑒−1+𝑂 (𝜇−
1
2 ) − 𝑒−𝜇+𝑐2+𝑂 (𝜇−

1
2 ) − 𝑒−1+𝑂 (𝜇−

1
2 )

)
+ 𝑖𝜇 1

2
(
2 +𝑂 (𝜇− 1

2 )
)
𝑒−𝜇+𝑐

2+𝑂 (𝜇−1 )

+ 𝑖𝜇 1
2 (2 +𝑂 (𝜇− 1

2 ))𝑒−1+𝑂 (𝜇−
1
2 ) + cos 𝜇

1
2

[ (
− 𝜇 − 𝑖𝜇 1

2 +𝑂 (1)
) (
𝑒−𝜇+𝑐

2− 1
2+𝑂 (𝜇−

1
2 ) + 𝑒− 1

2+𝑂 (𝜇−
1
2 )

)
−

(
− 𝜇 + 𝑖𝜇 1

2 +𝑂 (1)
) (
𝑒−𝜇+𝑐

2− 1
2+𝑂 (𝜇−

1
2 ) + 𝑒− 1

2+𝑂 (𝜇−
1
2 )

)]
+ 𝑖 sin 𝜇 1

2

[ (
− 𝜇 − 𝑖𝜇 1

2 +𝑂 (1)
) (
𝑒−𝜇+𝑐

2− 1
2+𝑂 (𝜇−

1
2 ) − 𝑒− 1

2+𝑂 (𝜇−
1
2 )

)
+

(
− 𝜇 + 𝑖𝜇 1

2 +𝑂 (1)
) (
𝑒−𝜇+𝑐

2− 1
2+𝑂 (𝜇−

1
2 ) − 𝑒− 1

2+𝑂 (𝜇−
1
2 )

)]
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= − 𝜇𝑂 (𝜇− 1
2 )𝑒−𝜇+𝑐2+𝑂 (𝜇−1 ) − 𝜇𝑂 (𝜇− 1

2 )𝑒−1+𝑂 (𝜇−
1
2 ) +

(
2𝑖𝜇

1
2 +𝑂 (1)

)
𝑒−𝜇+𝑐

2+𝑂 (𝜇−1 )

+
(
2𝑖𝜇

1
2 +𝑂 (1)

)
𝑒−1+𝑂 (𝜇−

1
2 ) + 𝑖 sin 𝜇 1

2

[ (
− 2𝜇 +𝑂 (𝜇 1

2 )
)
𝑒−𝜇+𝑐

2− 1
2+𝑂 (𝜇−

1
2 )

+ 𝑖𝜇 1
2𝑂 (𝜇− 1

2 )𝑒−𝜇+𝑐2− 1
2+𝑂 (𝜇−

1
2 ) +

(
2𝜇 +𝑂 (𝜇 1

2 )
)
𝑒−

1
2+𝑂 (𝜇−

1
2 ) + 𝑖𝜇 1

2𝑂 (𝜇− 1
2 )𝑒− 1

2+𝑂 (𝜇−
1
2 )

]
+ cos 𝜇

1
2

[ (
𝜇 +𝑂 (1)

)
𝑂 (𝜇− 1

2 )𝑒−𝜇+𝑐2− 1
2+𝑂 (𝜇−

1
2 ) +

(
𝜇 +𝑂 (1)

)
𝑂 (𝜇− 1

2 )𝑒− 1
2+𝑂 (𝜇−

1
2 )

− 𝑖𝜇 1
2 (2 +𝑂 (𝜇− 1

2 ))𝑒−𝜇+𝑐2− 1
2+𝑂 (𝜇−

1
2 ) − 𝑖𝜇 1

2 (2 +𝑂 (𝜇− 1
2 ))𝑒− 1

2+𝑂 (𝜇−
1
2 )

]
.

We get after adding (4.152) and (4.153),

𝑚2
1 (1 − 𝑒𝑚1) (𝑒𝑚3 − 𝑒𝑚2) +𝑚2

2 (1 − 𝑒𝑚2) (𝑒𝑚1 − 𝑒𝑚3) +𝑚2
3 (1 − 𝑒𝑚3) (𝑒𝑚2 − 𝑒𝑚1)

= cos 𝜇
1
2 (𝜇2 − 2𝑐2𝜇 +𝑂 (𝜇 1

2 ))𝑂 (𝜇− 1
2 )

(
𝑒−

1
2+𝑂 (𝜇−

1
2 ) − 𝑒−𝜇+𝑐2− 1

2+𝑂 (𝜇−
1
2 )

)
+𝑖 sin 𝜇 1

2 (2 +𝑂 (𝜇− 1
2 )) (𝜇2 − 2𝑐2𝜇 +𝑂 (𝜇− 1

2 ))
(
𝑒−

1
2+𝑂 (𝜇−

1
2 ) − 𝑒−𝜇+𝑐2− 1

2+𝑂 (𝜇−
1
2 )

)
−𝜇𝑂 (𝜇− 1

2 )𝑒−𝜇+𝑐2+𝑂 (𝜇−1 ) − 𝜇𝑂 (𝜇− 1
2 )𝑒−1+𝑂 (𝜇−

1
2 )

+
(
2𝑖𝜇

1
2 +𝑂 (1)

)
𝑒−𝜇+𝑐

2+𝑂 (𝜇−1 ) +
(
2𝑖𝜇

1
2 +𝑂 (1)

)
𝑒−1+𝑂 (𝜇−

1
2 )

+ cos 𝜇 1
2

[ (
𝜇 +𝑂 (1)

)
𝑂 (𝜇− 1

2 )𝑒−𝜇+𝑐2− 1
2+𝑂 (𝜇−

1
2 ) +

(
𝜇 +𝑂 (1)

)
𝑂 (𝜇− 1

2 )𝑒− 1
2+𝑂 (𝜇−

1
2 )

−𝑖𝜇 1
2 (2 +𝑂 (𝜇− 1

2 ))𝑒−𝜇+𝑐2− 1
2+𝑂 (𝜇−

1
2 ) − 𝑖𝜇 1

2 (2 +𝑂 (𝜇− 1
2 ))𝑒− 1

2+𝑂 (𝜇−
1
2 )

]
+ 𝑖 sin 𝜇 1

2

[ (
− 2𝜇 +𝑂 (𝜇 1

2 )
)
𝑒−𝜇+𝑐

2− 1
2+𝑂 (𝜇−

1
2 ) + 𝑖𝜇 1

2𝑂 (𝜇− 1
2 )𝑒−𝜇+𝑐2− 1

2+𝑂 (𝜇−
1
2 )

+
(
2𝜇 +𝑂 (𝜇 1

2 )
)
𝑒−

1
2+𝑂 (𝜇−

1
2 ) + 𝑖𝜇 1

2𝑂 (𝜇− 1
2 )𝑒− 1

2+𝑂 (𝜇−
1
2 )

]
= − 𝜇𝑂 (𝜇− 1

2 )𝑒−𝜇+𝑐2+𝑂 (𝜇−1 ) − 𝜇𝑂 (𝜇− 1
2 )𝑒−1+𝑂 (𝜇−

1
2 )

+
(
2𝑖𝜇

1
2 +𝑂 (1)

)
𝑒−𝜇+𝑐

2+𝑂 (𝜇−1 ) +
(
2𝑖𝜇

1
2 +𝑂 (1)

)
𝑒−1+𝑂 (𝜇−

1
2 )

+ 𝑖 sin 𝜇 1
2

[(
− 2𝜇2 +𝑂 (𝜇 3

2 )
)
𝑒−𝜇+𝑐

2− 1
2+𝑂 (𝜇−

1
2 ) +

(
2𝜇2 +𝑂 (𝜇 3

2 )
)
𝑒−

1
2+𝑂 (𝜇−

1
2 )

]
+ cos 𝜇

1
2

[(
− 𝜇2𝑂 (𝜇− 1

2 ) + (2𝑐2 + 1)𝜇𝑂 (𝜇− 1
2 ) − 2𝑖𝜇

1
2 +𝑂 (1)

)
𝑒−𝜇+𝑐

2− 1
2+𝑂 (𝜇−

1
2 )

+
(
𝜇2𝑂 (𝜇− 1

2 ) − 𝜇𝑂 (𝜇− 1
2 ) − 2𝑖𝜇

1
2 +𝑂 (1)

)
𝑒−

1
2+𝑂 (𝜇−

1
2 )

]
.

Now, replacing the above quantity in the equation (4.151), and then dividing it by 𝜇2 (since 𝜇 ≠ 0),
we obtain the equation

𝐹 (𝜇) = 0, (4.154)

where

𝐹 (𝜇) = − 2 sin 𝜇
1
2

(
𝑒−𝜇+𝑐

2 − 1
)
+𝑂 (𝜇− 1

2 ) sin 𝜇 1
2 𝑒−𝜇+𝑐

2+𝑂 (𝜇−
1
2 ) +𝑂 (𝜇− 1

2 ) sin 𝜇 1
2 𝑒𝑂 (𝜇−

1
2 )

+ cos 𝜇
1
2

[
𝑂 (𝜇− 1

2 )𝑒−𝜇+𝑐2+𝑂 (𝜇−
1
2 ) +𝑂 (𝜇− 1

2 )𝑒𝑂 (𝜇−
1
2 )

]
+𝑂 (𝜇− 3

2 )𝑒−𝜇+𝑐2+ 1
2+𝑂 (𝜇−

1
2 ) +𝑂 (𝜇− 3

2 )𝑒− 1
2+𝑂 (𝜇−

1
2 ) .
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Application of Rouche’s theorem Let 𝐺 be a function of 𝜇, defined as

𝐺 (𝜇) = −2 sin(𝜇 1
2 )

(
𝑒−𝜇+𝑐

2 − 1
)
.

Then

𝐹 (𝜇) −𝐺 (𝜇) = sin(𝜇 1
2 )

(
𝑂 (𝜇− 1

2 )𝑒−𝜇+𝑐2+𝑂 (𝜇−
1
2 ) +𝑂 (𝜇− 1

2 )𝑒𝑂 (𝜇−
1
2 )

)
︸                                                              ︷︷                                                              ︸

𝐼1

+ cos(𝜇 1
2 )

(
𝑂 (𝜇− 1

2 )𝑒−𝜇+𝑐2+𝑂 (𝜇−
1
2 ) +𝑂 (𝜇− 1

2 )𝑒𝑂 (𝜇−
1
2 )

)
︸                                                              ︷︷                                                              ︸

𝐼2

+𝑂 (𝜇− 3
2 )𝑒−𝜇+𝑐2+ 1

2+𝑂 (𝜇−
1
2 ) +𝑂 (𝜇− 3

2 )𝑒− 1
2+𝑂 (𝜇−

1
2 )︸                                                        ︷︷                                                        ︸

𝐼3

:=𝐼1 + 𝐼2 + 𝐼3.

Since the function 𝐺 has two branches of zeros, we will calculate them separately and in each case, we
use the Rouche’s theorem to talk about the zeros of the function 𝐹 .

Case 1. We first observe that 𝜇 = 𝑘2𝜋2 is a zero of 𝐺 for each 𝑘 ∈ N∗ and consider the following
region in the complex plane

R𝑘 =

{
𝑧 = 𝑥 + 𝑖𝑦 ∈ C : 𝑘𝜋 − 𝜋

2
≤ 𝑥 ≤ 𝑘𝜋 + 𝜋

2
, −𝜋

2
≤ 𝑦 ≤ 𝜋

2

}
, for 𝑘 ∈ N∗. (4.155)

Our goal is to prove that |𝐹 (𝜇) −𝐺 (𝜇) | < |𝐺 (𝜇) | on 𝜕R𝑘 . It is sufficient to prove that����𝐹 (𝜇) −𝐺 (𝜇)
𝐺 (𝜇)

���� → 0 for 𝜇 ∈ 𝜕R𝑘 such that Re(𝜇) → +∞. (4.156)

To avoid difficulties in notations, we denote 𝑤 = 𝜇
1
2 and without loss of generality, we simply write 𝐼1,

𝐼2 and 𝐼3 as the functions 𝑤 . Note that���� 𝐼1(𝑤)
𝐺 (𝑤)

���� = �����𝑂 (𝑤−1)𝑒−𝑤2+𝑐2+𝑂 (𝑤−1 ) +𝑂 (𝑤−1)𝑒𝑂 (𝑤−1 )

𝑒−𝑤2+𝑐2 − 1

����� ≤ 𝐶

|𝑤 |

���𝑒−𝑤2+𝑐2
��� + 1��𝑒−𝑤2+𝑐2 − 1

�� ,
and since

���𝑒−𝑤2+𝑐2
���+1���𝑒−𝑤2+𝑐2−1

��� is bounded when Re(𝑤) → +∞, therefore���� 𝐼1(𝑤)
𝐺 (𝑤)

���� → 0, as Re(𝑤) → +∞.

We now compute���� 𝐼2(𝑤)
𝐺 (𝑤)

���� = ����cos(𝑤)
sin(𝑤)

����
���𝑂 (𝑤−1)𝑒−𝑤2+𝑐2+𝑂 (𝑤−1 ) +𝑂 (𝑤−1)𝑒𝑂 (𝑤−1 )

�����𝑒−𝑤2+𝑐2 − 1
�� ≤ 𝐶

|𝑤 |

����cos(𝑤)
sin(𝑤)

����
���𝑒−𝑤2+𝑐2

��� + 1��𝑒−𝑤2+𝑐2 − 1
�� ,

which yields ���� 𝐼2(𝑤)
𝐺 (𝑤)

���� → 0, for 𝑤 ∈ 𝜕R𝑘 such that Re(𝑤) → +∞,

because of the fact that
��� cos(𝑤 )
sin(𝑤 )

��� is bounded on 𝜕R𝑘 . We can say similarly for the third term that���� 𝐼3(𝑤)
𝐺 (𝑤)

���� → 0, for 𝑤 ∈ 𝜕R𝑘 such that Re(𝑤) → +∞,
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as we have ���� 𝐼3(𝑤)
𝐺 (𝑤)

���� ≤ 𝐶

|𝑤 |3

���� 1

sin(𝑤)

����
���𝑒−𝑤2+𝑐2+ 1

2

��� + 1��𝑒−𝑤2+𝑐2 − 1
�� .

Case 2. When sin(𝜇 1
2 ) ≠ 0, 𝐺 (𝜇) = 0 gives 𝑒−𝜇+𝑐

2 − 1 = 0, that is 𝜇 = 𝑐2 + 2𝑖𝑘𝜋 for 𝑘 ∈ Z. In this
case, we consider the following region in the complex plane

S𝑘 =

{
𝑧 = 𝑥 + 𝑖𝑦 ∈ C : 𝑐2 − 𝜋

2
≤ 𝑥 ≤ 𝑐2 + 𝜋

2
, 2𝑘𝜋 − 𝜋

2
≤ 𝑦 ≤ 2𝑘𝜋 + 𝜋

2

}
. (4.157)

We need to show that |𝐹 (𝜇) −𝐺 (𝜇) | < |𝐺 (𝜇) | on 𝜕S𝑘 . In particular, we prove that����𝐹 (𝜇) −𝐺 (𝜇)
𝐺 (𝜇)

���� → 0 for 𝜇 ∈ 𝜕S𝑘 such that Im(𝜇) → +∞.

We compute���� 𝐼1(𝜇)𝐺 (𝜇)

���� = 1���sin(𝜇 1
2 )

���
������𝑂 (𝜇− 1

2 )𝑒−𝜇+𝑐2+𝑂 (𝜇−
1
2 ) +𝑂 (𝜇−1)𝑒𝑂 (𝜇−

1
2 )

𝑒−𝜇+𝑐2 − 1

������ ≤ 𝐶

|𝜇 |
1
2

1���sin(𝜇 1
2 )

���
���𝑒−𝜇+𝑐2 ��� + 1��𝑒−𝜇+𝑐2 − 1

�� ,
���� 𝐼2(𝜇)𝐺 (𝜇)

���� = �����cos(𝜇 1
2 )

sin(𝜇 1
2 )

�����
����𝑂 (𝜇− 1

2 )𝑒−𝜇+𝑐2+𝑂 (𝜇−
1
2 ) +𝑂 (𝜇− 1

2 )𝑒𝑂 (𝜇−
1
2 )

������𝑒−𝜇+𝑐2 − 1
�� ≤ 𝐶

|𝜇 |
1
2

�����cos(𝜇 1
2 )

sin(𝜇 1
2 )

�����
���𝑒−𝜇+𝑐2 ��� + 1��𝑒−𝜇+𝑐2 − 1

�� ,
and ���� 𝐼3(𝜇)𝐺 (𝜇)

���� ≤ 𝐶

|𝜇 |
3
2

1���sin(𝜇 1
2 )

���
���𝑒−𝜇+𝑐2+ 1

2

��� + 1��𝑒−𝜇+𝑐2 − 1
�� .

On 𝜕S𝑘 ,
���cos(𝜇 1

2 )
��� and ���sin(𝜇 1

2 )
��� has both lower and upper bounds and

���𝑒−𝜇+𝑐2 ���+1���𝑒−𝜇+𝑐2−1��� ,
���𝑒−𝜇+𝑐2+ 1

2

���+1���𝑒−𝜇+𝑐2−1��� are bounded.

Therefore, for each 𝑗 = 1, 2, 3, we have���� 𝐼 𝑗 (𝜇)𝐺 (𝜇)

���� → 0, for 𝜇 ∈ 𝜕S𝑘 such that Im(𝜇) → +∞.

Thus, combining the above two cases, we conclude that there exists some 𝑘0 ∈ N∗ sufficiently large,
such that

|𝐹 (𝜇) −𝐺 (𝜇) | < |𝐺 (𝜇) | , ∀𝜇 ∈ 𝜕R𝑘 ∪ 𝜕S𝑘 and for large 𝑘. (4.158)

Since any two regions R𝑘 and R𝑙 are disjoint for 𝑘 ≠ 𝑙 and in each region R𝑘 , there is exactly one
root of 𝐺 (more precisely, the square-root of 𝜇), the same is true for the function 𝐹 , thanks to the
Rouche’s theorem. Similar phenomenon holds true in the region S𝑘 . To be more precise, we have the
following.

On the region R𝑘 : parabolic part. For 𝑘 ≥ 𝑘0, the function 𝐹 has a unique root in R𝑘 of the
form

𝜇
1
2

𝑘
= (𝑘𝜋 + 𝑐𝑘 ) + 𝑖𝑑𝑘 ,

with |𝑐𝑘 | , |𝑑𝑘 | ≤ 𝜋
2 . Therefore, the first set of eigenvalues are given by

𝜆
𝑝

𝑘
:= −𝜇𝑘 := −𝑘2𝜋2 − 2𝑐𝑘𝑘𝜋 − 2𝑖𝑑𝑘𝑘𝜋 − (𝑐2

𝑘
− 𝑑2

𝑘
) − 2𝑖𝑐𝑘𝑑𝑘 , ∀𝑘 ≥ 𝑘0. (4.159)

On the region S𝑘 : hyperbolic part. On the other hand, for |𝑘 | ≥ 𝑘0, the function 𝐹 has a
unique root in S𝑘 of the form

𝜇𝑘 = 𝑐2 + 𝛼1,𝑘 + 𝑖 (2𝑘𝜋 + 𝛼2,𝑘 ),
with

��𝛼1,𝑘 �� , ��𝛼2,𝑘 �� ≤ 𝜋
2 .

Therefore, the second set of eigenvalues are given by

𝜆ℎ
𝑘
:= −𝜇𝑘 := −𝑐2 − 𝛼1,𝑘 − 𝑖 (2𝑘𝜋 + 𝛼2,𝑘 ), ∀|𝑘 | ≥ 𝑘0. (4.160)

This indeed proves the results (4.19a) and (4.19b) of our Lemma 4.3.1.
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4.8. Detailed spectral analysis of the adjoint operator

4.8.2 Computing the eigenfunctions for large frequencies

From the set of equations (4.150), one can obtain the following values of 𝐶1,𝐶2,𝐶3
𝐶1 = 𝑒

𝑚2 − 𝑒𝑚3,

𝐶2 = 𝑒
𝑚3 − 𝑒𝑚1,

𝐶3 = 𝑒
𝑚1 − 𝑒𝑚2 .

(4.161)

Note that 𝐶1,𝐶2 and 𝐶3 cannot be simultaneously zero for large |𝜇 |. Once we have that, one can easily
obtain the function 𝜂 (𝑥), defined by (4.149),

𝜂 (𝑥) = (𝑒𝑚2 − 𝑒𝑚3)𝑒𝑚1𝑥 + (𝑒𝑚3 − 𝑒𝑚1)𝑒𝑚2𝑥 + (𝑒𝑚1 − 𝑒𝑚2)𝑒𝑚3𝑥 , ∀𝑥 ∈ (0, 1). (4.162)

We now compute the first and second derivatives of 𝜂 which will let us obtain the other component 𝜉
of the set of equations (4.138). We see

𝜂′(𝑥) =𝑚1(𝑒𝑚2 − 𝑒𝑚3)𝑒𝑚1𝑥 +𝑚2(𝑒𝑚3 − 𝑒𝑚1)𝑒𝑚2𝑥 +𝑚3(𝑒𝑚1 − 𝑒𝑚2)𝑒𝑚3𝑥 ,

𝜂′′(𝑥) =𝑚2
1(𝑒𝑚2 − 𝑒𝑚3)𝑒𝑚1𝑥 +𝑚2

2(𝑒𝑚3 − 𝑒𝑚1)𝑒𝑚2𝑥 +𝑚2
3(𝑒𝑚1 − 𝑒𝑚2)𝑒𝑚3𝑥 .

Now, from equation (4.138), one can obtain

𝜂′′(𝑥) + (1 − 𝑐2)𝜂′(𝑥) + 𝑐𝜆𝜉 (𝑥) = 𝜆𝜂 (𝑥),

and therefore, (writing 𝜇 = −𝜆)

𝜉 (𝑥) =𝜂
′′(𝑥) + (1 − 𝑐2)𝜂′(𝑥) + 𝜇𝜂 (𝑥)

𝑐𝜇
(4.163)

=

(𝑚2
1 + (1 − 𝑐2)𝑚1 + 𝜇

𝑐𝜇

)
(𝑒𝑚2 − 𝑒𝑚3)𝑒𝑚1𝑥 +

(𝑚2
2 + (1 − 𝑐2)𝑚2 + 𝜇

𝑐𝜇

)
(𝑒𝑚3 − 𝑒𝑚1)𝑒𝑚2𝑥

+
(𝑚2

3 + (1 − 𝑐2)𝑚3 + 𝜇
𝑐𝜇

)
(𝑒𝑚1 − 𝑒𝑚2)𝑒𝑚3𝑥 .

Set of eigenfunctions associated with 𝜆
𝑝

𝑘
For the set of eigenvalues {𝜆𝑝

𝑘
}𝑘≥𝑘0 given by (4.159),

we denote the eigenfunctions by Φ𝜆
𝑝

𝑘
, ∀𝑘 ≥ 𝑘0, where we shall use the notation

Φ𝜆
𝑝

𝑘
(𝑥) =

(
𝜉𝜆𝑝

𝑘
(𝑥)

𝜂𝜆𝑝
𝑘
(𝑥)

)
, ∀𝑘 ≥ 𝑘0. (4.164)

Computing 𝜂𝜆𝑝
𝑘
. Let us recall the values of 𝑚1, 𝑚2 and 𝑚3 from (4.148) and observe that

𝑂 (𝜇−1/2
𝑘

) = 𝑂 (𝑘−1). In what follows, we have their explicit expressions for all 𝑘 ≥ 𝑘0 large enough,
given by 

𝑚1 = −𝑘2𝜋2 − 2𝑐𝑘𝑘𝜋 − 2𝑖𝑑𝑘𝑘𝜋 +𝑂 (1),

𝑚2 = −1
2
+ 𝑑𝑘 − 𝑖 (𝑘𝜋 + 𝑐𝑘 ) +𝑂 (𝑘−1),

𝑚3 = −1
2
− 𝑑𝑘 + 𝑖 (𝑘𝜋 + 𝑐𝑘 ) +𝑂 (𝑘−1).

(4.165)

where we have used the expression of 𝜇 = 𝜇𝑘 from (4.159).

Recall the values of 𝑚1, 𝑚2, 𝑚3, given by (4.165) and from the expression (4.162), we get that

𝜂𝜆𝑝
𝑘
(𝑥) =

(
𝑒−

1
2+𝑑𝑘−𝑖 (𝑘𝜋+𝑐𝑘 )+𝑂 (𝑘−1 ) − 𝑒− 1

2−𝑑𝑘+𝑖 (𝑘𝜋+𝑐𝑘 )+𝑂 (𝑘−1 )
)
𝑒𝑥 (−𝑘2𝜋2−2𝑐𝑘𝑘𝜋−2𝑖𝑑𝑘𝑘𝜋+𝑂 (1)) (4.166)

+
(
𝑒−

1
2−𝑑𝑘+𝑖 (𝑘𝜋+𝑐𝑘 )+𝑂 (𝑘−1 ) − 𝑒−𝑘2𝜋2−2𝑐𝑘𝑘𝜋−2𝑖𝑑𝑘𝑘𝜋+𝑂 (1)

)
𝑒𝑥 (−𝑖 (𝑘𝜋+𝑐𝑘 )− 1

2+𝑑𝑘+𝑂 (𝑘−1 ))
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+
(
𝑒−𝑘

2𝜋2−2𝑐𝑘𝑘𝜋−2𝑖𝑑𝑘𝑘𝜋+𝑂 (1) − 𝑒− 1
2+𝑑𝑘−𝑖 (𝑘𝜋+𝑐𝑘 )+𝑂 (𝑘−1 )

)
𝑒𝑥 (𝑖 (𝑘𝜋+𝑐𝑘 )− 1

2−𝑑𝑘+𝑂 (𝑘−1 )),

for all 𝑥 ∈ (0, 1) and for all 𝑘 ≥ 𝑘0 large enough.

Computing 𝜉𝜆𝑝
𝑘
. By using the values of 𝑚1,𝑚2,𝑚3 from (4.165), we have



𝑚2
1 =

(
−𝑘2𝜋2 − 2𝑐𝑘𝑘𝜋 − 2𝑖𝑑𝑘𝑘𝜋 +𝑂 (1)

)2
= 𝑘4𝜋4 + 4𝑐𝑘𝑘

3𝜋3 + 4𝑖𝑑𝑘𝑘
3𝜋3 +𝑂 (𝑘2),

𝑚2
2 =

(
−1
2
+ 𝑑𝑘 − 𝑖 (𝑘𝜋 + 𝑐𝑘 ) +𝑂 (𝑘−1)

)2
= −𝑘2𝜋2 − 2𝑐𝑘𝑘𝜋 + 𝑖𝑘𝜋 − 2𝑖𝑑𝑘𝑘𝜋 +𝑂 (1),

𝑚2
3 =

(
−1
2
− 𝑑𝑘 + 𝑖 (𝑘𝜋 + 𝑐𝑘 ) +𝑂 (𝑘−1)

)2
= −𝑘2𝜋2 − 2𝑐𝑘𝑘𝜋 − 𝑖𝑘𝜋 − 2𝑖𝑑𝑘𝑘𝜋 +𝑂 (1),

for all 𝑘 ≥ 𝑘0 large enough.

Also recall that, 𝜇𝑘 = −𝜆𝑝
𝑘
= 𝑘2𝜋2 + 2𝑐𝑘𝑘𝜋 + 2𝑖𝑑𝑘𝑘𝜋 +𝑂 (1), using which we find

𝑚2
1 + (1 − 𝑐2)𝑚1 + 𝜇𝑘

𝑐𝜇𝑘
=
𝑘4𝜋4 + 4𝑐𝑘𝑘

3𝜋3 + 4𝑖𝑑𝑘𝑘
3𝜋3 +𝑂 (𝑘2)

𝑐 (𝑘2𝜋2 + 2𝑐𝑘𝑘𝜋 + 2𝑖𝑑𝑘𝑘𝜋 +𝑂 (1)) (4.167)

=
1

𝑐
𝑘2𝜋2 +𝑂 (𝑘),

𝑚2
2 + (1 − 𝑐2)𝑚2 + 𝜇𝑘

𝑐𝜇𝑘
=

𝑖𝑐2𝑘𝜋 +𝑂 (1)
𝑐 (𝑘2𝜋2 + 2𝑐𝑘𝑘𝜋 + 2𝑖𝑑𝑘𝑘𝜋 +𝑂 (1)) (4.168)

=
𝑖𝑐

𝑘𝜋
+𝑂 (𝑘−2),

𝑚2
3 + (1 − 𝑐2)𝑚3 + 𝜇𝑘

𝑐𝜇𝑘
= − 𝑖𝑐

𝑘𝜋
+𝑂 (𝑘−2), (4.169)

for all 𝑘 ≥ 𝑘0 large enough.

Now, by using the quantities (4.167), (4.168) and (4.169) in the expression (4.163), we obtain

𝜉𝜆𝑝
𝑘
(𝑥) =

(
𝑘2𝜋2

𝑐
+𝑂 (𝑘)

) (
𝑒−𝑖 (𝑘𝜋+𝑐𝑘 )−

1
2+𝑑𝑘+𝑂 (𝑘−1 ) − 𝑒𝑖 (𝑘𝜋+𝑐𝑘 )− 1

2−𝑑𝑘+𝑂 (𝑘−1 )
)
× 𝑒𝑥 (−𝑘2𝜋2−2𝑐𝑘𝑘𝜋−2𝑖𝑑𝑘𝑘𝜋+𝑂 (1))

+
(
𝑖𝑐

𝑘𝜋
+𝑂 ( 1

𝑘2
)
) (
𝑒𝑖 (𝑘𝜋+𝑐𝑘 )+𝑂 (𝑘−1 )− 1

2−𝑑𝑘 − 𝑒−𝑘2𝜋2−2𝑐𝑘𝑘𝜋−2𝑖𝑑𝑘𝑘𝜋+𝑂 (1)
)
𝑒𝑥 (−𝑖 (𝑘𝜋+𝑐𝑘 )− 1

2+𝑑𝑘+𝑂 (𝑘−1 ))

−
(
𝑖𝑐

𝑘𝜋
+𝑂 ( 1

𝑘2
)
) (
𝑒−𝑘

2𝜋2−2𝑐𝑘𝑘𝜋−2𝑖𝑑𝑘𝑘𝜋+𝑂 (1) − 𝑒−𝑖 (𝑘𝜋+𝑐𝑘 )− 1
2+𝑑𝑘+𝑂 (𝑘−1 )

)
𝑒𝑥 (𝑖 (𝑘𝜋+𝑐𝑘 )− 1

2−𝑑𝑘+𝑂 (𝑘−1 )) .

(4.170)

Set of eigenfunctions associated with 𝜆ℎ
𝑘

For the set of eigenvalues {𝜆ℎ
𝑘
} |𝑘 | ≥𝑘0 given by (4.160),

we denote the eigenfunctions by Φ𝜆ℎ
𝑘
, where we shall use the notation

Φ𝜆ℎ
𝑘
(𝑥) =

(
𝜉𝜆ℎ

𝑘
(𝑥)

𝜂𝜆ℎ
𝑘
(𝑥)

)
, ∀|𝑘 | ≥ 𝑘0. (4.171)

Computing 𝜂𝜆ℎ
𝑘
. Recall that 𝜇𝑘 = −𝜆ℎ

𝑘
= 𝑐2 + 𝛼1,𝑘 + 𝑖 (2𝑘𝜋 + 𝛼2,𝑘 ), for all |𝑘 | ≥ 𝑘0, so that Let us

compute 𝜇1/2
𝑘

. Assume 𝜇1/2
𝑘

= 𝑝𝑘 + 𝑖𝑞𝑘 , 𝑝𝑘 , 𝑞𝑘 ∈ R and 𝜇𝑘 = 𝑎𝑘 + 𝑖𝑏𝑘 , 𝑎𝑘 , 𝑏𝑘 ∈ R, so that

(𝑝𝑘 + 𝑖𝑞𝑘 )2 = (𝑝2
𝑘
− 𝑞2

𝑘
) + 𝑖2𝑝𝑘𝑞𝑘 = 𝑎𝑘 + 𝑖𝑏𝑘 ,

174



4.8. Detailed spectral analysis of the adjoint operator

From the fact that 𝑞𝑘 =
𝑏𝑘
2𝑝𝑘

, we have

𝑝2
𝑘
− 𝑞2

𝑘
= 𝑎𝑘 =⇒ 4𝑝4

𝑘
− 4𝑎𝑘𝑝

2
𝑘
− 𝑏2

𝑘
= 0,

and that yields

𝑝𝑘 =
©­­«
√︃
𝑎2
𝑘
+ 𝑏2

𝑘
+ 𝑎𝑘

2

ª®®¬
1
2

, 𝑞𝑘 =
©­­«
√︃
𝑎2
𝑘
+ 𝑏2

𝑘
− 𝑎𝑘

2

ª®®¬
1
2

.

Now, √︃
𝑎2
𝑘
+ 𝑏2

𝑘
=

[
(𝑐2 + 𝛼1,𝑘 )2 + (2𝑘𝜋 + 𝛼2,𝑘 )2

] 1
2 =

[
4𝑘2𝜋2 +𝑂 (𝑘)

] 1
2 = 2|𝑘𝜋 | +𝑂 (1), ∀|𝑘 | ≥ 𝑘0.

Thus, it follows that

𝑝𝑘 =
√︁
|𝑘𝜋 | +𝑂 ( |𝑘 |− 1

2 ), 𝑞𝑘 = ±
√︁
|𝑘𝜋 | +𝑂 ( |𝑘 |− 1

2 ), ∀|𝑘 | ≥ 𝑘0. (4.172)

we get

𝜇
1/2
𝑘

=
√︁
|𝑘𝜋 | + 𝑖 sgn(𝑘)

√︁
|𝑘𝜋 | +𝑂 ( |𝑘 |− 1

2 ), ∀|𝑘 | ≥ 𝑘0, (4.173)

(the sign function sgn has been defined by (4.29)).

Then, using the characteristic roots 𝑚1,𝑚2,𝑚3, given by (4.148), we get that


𝑚1 = −𝛼1,𝑘 − 𝑖 (2𝑘𝜋 + 𝛼2,𝑘 ) +𝑂 ( |𝑘 |−1),

𝑚2 = −1
2
+ sgn(𝑘)

√︁
|𝑘𝜋 | − 𝑖

√︁
|𝑘𝜋 | +𝑂 ( |𝑘 |− 1

2 ),

𝑚3 = −1
2
− sgn(𝑘)

√︁
|𝑘𝜋 | + 𝑖

√︁
|𝑘𝜋 | +𝑂 ( |𝑘 |− 1

2 ),

(4.174)

for all |𝑘 | ≥ 𝑘0 large enough.

Using the above information, we now write the expression of 𝜂𝜆ℎ
𝑘
(𝑥) (we take the formulation after

dividing by 𝑘𝜋𝑒

√
|𝑘𝜋 |+ 1√

|𝑘 | ), given by

𝜂𝜆ℎ
𝑘
(𝑥) = 1

𝑘𝜋𝑒

√
|𝑘𝜋 |+ 1√

|𝑘 |

(
𝑒sgn(𝑘 )

√
|𝑘𝜋 |− 1

2−𝑖
√

|𝑘𝜋 |+𝑂 ( |𝑘 |−
1
2 ) − 𝑒− sgn(𝑘 )

√
|𝑘𝜋 |− 1

2+𝑖
√

|𝑘𝜋 |+𝑂 ( |𝑘 |−
1
2 )

)
(4.175)

× 𝑒−𝑥 (𝛼1,𝑘+𝑖 (2𝑘𝜋+𝛼2,𝑘 )+𝑂 ( |𝑘 |−1 ))

+ 1

𝑘𝜋𝑒

√
|𝑘𝜋 |+ 1√

|𝑘 |

(
𝑒− sgn(𝑘 )

√
|𝑘𝜋 |− 1

2+𝑖
√

|𝑘𝜋 |+𝑂 ( |𝑘 |−
1
2 ) − 𝑒−𝛼1,𝑘−𝑖 (2𝑘𝜋+𝛼2,𝑘 )+𝑂 ( |𝑘 |−1 )

)
× 𝑒𝑥

(
sgn(𝑘 )

√
|𝑘𝜋 |− 1

2−𝑖
√

|𝑘𝜋 |+𝑂 ( |𝑘 |−
1
2 )

)
+ 1

𝑘𝜋𝑒

√
|𝑘𝜋 |+ 1√

|𝑘 |

(
𝑒−𝛼1,𝑘−𝑖 (2𝑘𝜋+𝛼2,𝑘 )+𝑂 ( |𝑘 |−1 ) − 𝑒sgn(𝑘 )

√
|𝑘𝜋 |− 1

2−𝑖
√

|𝑘𝜋 |+𝑂 ( |𝑘 |−
1
2 )

)
× 𝑒𝑥

(
− sgn(𝑘 )

√
|𝑘𝜋 |− 1

2+𝑖
√

|𝑘𝜋 |+𝑂 ( |𝑘 |−
1
2 )

)
,

for all 𝑥 ∈ (0, 1) and for all |𝑘 | ≥ 𝑘0.
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Computing 𝜉𝜆ℎ
𝑘
. By using the values of 𝑚1,𝑚2,𝑚3 from (4.174), we calculate the following quan-

tities for all |𝑘 | ≥ 𝑘0 large enough, namely

𝑚2
1 = (−𝛼1,𝑘 − 𝑖 (2𝑘𝜋 + 𝛼2,𝑘 ) +𝑂 ( |𝑘 |−1))2

= −4𝑘2𝜋2 + 4𝑖𝑘𝜋𝛼1,𝑘 +𝑂 (𝑘),

𝑚2
2 = (−1

2
+ sgn(𝑘)

√︁
|𝑘𝜋 | − 𝑖

√︁
|𝑘𝜋 | +𝑂 ( |𝑘 |− 1

2 ))2

= − sgn(𝑘)
√︁
|𝑘𝜋 | − 2𝑖 sgn(𝑘) |𝑘𝜋 | + 𝑖

√︁
|𝑘𝜋 | +𝑂 (1),

𝑚2
3 = (−1

2
− sgn(𝑘)

√︁
|𝑘𝜋 | + 𝑖

√︁
|𝑘𝜋 | +𝑂 ( |𝑘 |− 1

2 ))2

= sgn(𝑘)
√︁
|𝑘𝜋 | − 2𝑖 sgn(𝑘) |𝑘𝜋 | − 𝑖

√︁
|𝑘𝜋 | +𝑂 (1) .

Next, we compute the following: for all |𝑘 | ≥ 𝑘0 large enough,

𝑚2
1 + (1 − 𝑐2)𝑚1 + 𝜇𝑘

𝑐𝜇𝑘
=
1

𝑐

(−4𝑘2𝜋2 + 4𝑖𝑘𝜋𝛼1,𝑘 +𝑂 (𝑘)) (𝑐2 + 𝛼1,𝑘 − 𝑖 (2𝑘𝜋 + 𝛼2,𝑘 ))
(𝑐2 + 𝛼1,𝑘 )2 + (2𝑘𝜋 + 𝛼2,𝑘 )2

(4.176)

=
1

𝑐

−(𝑐2 + 𝛼1,𝑘 )4𝑘2𝜋2 + 8𝑖𝑘3𝜋3 +𝑂 (𝑘2)
4𝑘2𝜋2 +𝑂 (𝑘)

= −
𝛼1,𝑘

𝑐
+ 2𝑖𝑘𝜋

𝑐
+𝑂 (1),

𝑚2
2 + (1 − 𝑐2)𝑚2 + 𝜇𝑘

𝑐𝜇𝑘
=
−𝑐2 sgn(𝑘)

√︁
|𝑘𝜋 | − 2𝑖 sgn(𝑘) |𝑘𝜋 | + 𝑖𝑐2

√︁
|𝑘𝜋 | + 2𝑖𝑘𝜋 +𝑂 (1)

𝑐 (𝑐2 + 𝛼1,𝑘 + 𝑖 (2𝑘𝜋 + 𝛼2,𝑘 ))
(4.177)

=
1

𝑐

(
− 𝑐2 sgn(𝑘)

√︁
|𝑘𝜋 | − 2𝑖 sgn(𝑘) |𝑘𝜋 | + 𝑖𝑐2

√︁
|𝑘𝜋 | + 2𝑖𝑘𝜋 +𝑂 (1)

) (
𝑐2 + 𝛼1,𝑘 − 𝑖 (2𝑘𝜋 + 𝛼2,𝑘 )

)
(𝑐2 + 𝛼1,𝑘 )2 + (2𝑘𝜋 + 𝛼2,𝑘 )2

=
1

𝑐

2𝑐2(𝑘𝜋)3/2 + 2𝑖𝑐2(𝑘𝜋)3/2 +𝑂 (𝑘)
4𝑘2𝜋2 +𝑂 (𝑘)

= sgn(𝑘) 𝑐

2
√︁
|𝑘𝜋 |

+ 𝑖𝑐

2
√︁
|𝑘𝜋 |

+𝑂
( 1

|𝑘 |

)
,

𝑚2
3 + (1 − 𝑐2)𝑚3 + 𝜇𝑘

𝑐𝜇𝑘
(4.178)

=
1

𝑐

𝑐2
(
sgn(𝑘)

√︁
|𝑘𝜋 | − 2𝑖 sgn(𝑘) |𝑘𝜋 | − 𝑖𝑐2

√︁
|𝑘𝜋 | + 2𝑖𝑘𝜋 +𝑂 (1)

) (
𝑐2 + 𝛼1,𝑘 − 𝑖 (2𝑘𝜋 + 𝛼2,𝑘 )

)
(𝑐2 + 𝛼1,𝑘 )2 + (2𝑘𝜋 + 𝛼2,𝑘 )2

(4.179)

=
1

𝑐

−2𝑐2(𝑘𝜋)3/2 − 2𝑖𝑐2(𝑘𝜋)3/2 +𝑂 (𝑘)
4𝑘2𝜋2 +𝑂 (𝑘)

= − sgn(𝑘) 𝑐

2
√︁
|𝑘𝜋 |

− 𝑖𝑐

2
√︁
|𝑘𝜋 |

+𝑂
( 1

|𝑘 |

)
.

Using the quantities (4.176), (4.177) and (4.178) in the expression (4.163), we obtain the component

𝜉𝜆ℎ
𝑘
(𝑥), for all |𝑘 | ≥ 𝑘0 (upon a division by 𝑘𝜋𝑒

√
|𝑘𝜋 |+ 1√

|𝑘 | ),

𝜉𝜆ℎ
𝑘
(𝑥) =

(
𝑒sgn(𝑘 )

√
|𝑘𝜋 |− 1

2−𝑖
√

|𝑘𝜋 |+𝑂 ( |𝑘 |−
1
2 ) − 𝑒− sgn(𝑘 )

√
|𝑘𝜋 |− 1

2+𝑖
√

|𝑘𝜋 |+𝑂 ( |𝑘 |−
1
2 )

)
×

(−𝛼1,𝑘 + 2𝑖𝑘𝜋 +𝑂 (1))

𝑐𝑘𝜋𝑒

√
|𝑘𝜋 |+ 1√

|𝑘 |

× 𝑒−𝑥 (𝛼1,𝑘+𝑖 (2𝑘𝜋+𝛼2,𝑘 )+𝑂 ( |𝑘 |−1 ))

+
(
𝑒− sgn(𝑘 )

√
|𝑘𝜋 |− 1

2+𝑖
√

|𝑘𝜋 |+𝑂 ( |𝑘 |−
1
2 ) − 𝑒−𝛼1,𝑘−𝑖 (2𝑘𝜋+𝛼2,𝑘 )+𝑂 ( |𝑘 |−1 )

)
× 1

𝑘𝜋𝑒

√
|𝑘𝜋 |+ 1√

|𝑘 |

(
sgn(𝑘) 𝑐

2
√︁
|𝑘𝜋 |

+ 𝑖𝑐

2
√︁
|𝑘𝜋 |

+𝑂
( 1

|𝑘 |

))
× 𝑒𝑥

(
sgn(𝑘 )

√
|𝑘𝜋 |− 1

2−𝑖
√

|𝑘𝜋 |+𝑂 ( |𝑘 |−
1
2 )

)
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+
(
𝑒−𝛼1,𝑘−𝑖 (2𝑘𝜋+𝛼2,𝑘 )+𝑂 ( |𝑘 |−1 ) − 𝑒sgn(𝑘 )

√
|𝑘𝜋 |− 1

2−𝑖
√

|𝑘𝜋 |+𝑂 ( |𝑘 |−
1
2 )

)
× 1

𝑘𝜋𝑒

√
|𝑘𝜋 |+ 1√

|𝑘 |

(
− sgn(𝑘) 𝑐

2
√︁
|𝑘𝜋 |

− 𝑖𝑐

2
√︁
|𝑘𝜋 |

+𝑂
( 1

|𝑘 |

))
× 𝑒𝑥

(
− sgn(𝑘 )

√
|𝑘𝜋 |− 1

2+𝑖
√

|𝑘𝜋 |+𝑂 ( |𝑘 |−
1
2 )

)
,

(4.180)

We can now prove the last part of Lemma 4.3.1.

4.8.3 Proof of Lemma 4.3.1

We have already proved the existence of eigenvalues {𝜆𝑝
𝑘
}𝑘≥𝑘0 (parabolic part) and {𝜆ℎ

𝑘
} |𝑘 | ≥𝑘0 (hyper-

bolic part) by (4.159) and (4.160) respectively, which is the first part of Lemma 4.3.1.

It lefts to show the asymptotic properties of the sequences {𝑐𝑘 }𝑘≥𝑘0 , {𝑑𝑘 }𝑘≥𝑘0 and {𝛼1,𝑘 } |𝑘 | ≥𝑘0 ,
{𝛼1,𝑘 } |𝑘 | ≥𝑘0 .

• Let us use the form of 𝜇𝑘 (i.e., of −𝜆𝑝
𝑘
) in the eigenvalue equation (4.154). Then, for large 𝑘, it

is easy to observe that

𝐹 (𝜇𝑘 ) = 2 sin(𝑘𝜋 + 𝑐𝑘 + 𝑖𝑑𝑘 ) +𝑂 (𝑘−1)
= 2(−1)𝑘 sin(𝑐𝑘 + 𝑖𝑑𝑘 ) +𝑂 (𝑘−1) .

But 𝜇𝑘 is a root of 𝐹 and thus

sin(𝑐𝑘 + 𝑖𝑑𝑘 ) = 𝑂 (𝑘−1), for large 𝑘 ≥ 𝑘0. (4.181)

Now, since |sin(𝑐𝑘 + 𝑖𝑑𝑘 ) |2 = sin2(𝑐𝑘 ) + sinh2(𝑑𝑘 ), we can write

sin2(𝑐𝑘 ), sinh2(𝑑𝑘 ) ≤
𝐶

𝑘2
, ∀𝑘 ≥ 𝑘0 large.

Therefore, |𝑐𝑘 |2 , |𝑑𝑘 |2 ≤ 𝐶

𝑘2
, ∀𝑘 ≥ 𝑘0, that is to say,

𝑐𝑘 , 𝑑𝑘 = 𝑂 (𝑘−1), for large 𝑘 ≥ 𝑘0,

which gives the asymptotic formulation (4.19a) of 𝜆
𝑝

𝑘
given in Lemma 4.3.1.

• For the hyperbolic part {𝜆ℎ
𝑘
} |𝑘 | ≥𝑘0 , using the property 𝜉𝜆ℎ

𝑘
(0) = 𝜉𝜆ℎ

𝑘
(1) (𝜉𝜆ℎ

𝑘
is defined by (4.180)),

we obtain that (
1 − 𝑒−𝛼1,𝑘−𝑖2𝑘𝜋−𝑖𝛼2,𝑘+𝑂 ( |𝑘 |−1 )

)
+𝑂 ( |𝑘 |−1) = 0,

that is,

𝑒−𝛼1,𝑘−𝑖𝛼2,𝑘 = 1 +𝑂 ( |𝑘 |−1), for large |𝑘 | ≥ 𝑘0. (4.182)

that is, there exists a 𝐶 > 0 such that��𝑒−𝛼1,𝑘−𝑖𝛼2,𝑘
�� ≤ (

1 + 𝐶

|𝑘 |

)
, ∀ |𝑘 | ≥ 𝑘0 large.

As a consequence,
𝑒−𝛼1,𝑘−𝑖𝛼2,𝑘 → 1, as |𝑘 | → +∞.

But both 𝛼1,𝑘 and {𝛼2,𝑘 } is bounded and therefore

𝛼1,𝑘 , 𝛼2,𝑘 → 0, as |𝑘 | → ∞. (4.183)
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Since
��𝑒−𝛼1,𝑘−𝑖𝛼2,𝑘

�� = 𝑒−𝛼1,𝑘 , we have
��𝛼1,𝑘 �� ≤ 𝐶

|𝑘 | , ∀ |𝑘 | ≥ 𝑘0 large and that is

𝛼1,𝑘 = 𝑂 (𝑘−1), for large |𝑘 | ≥ 𝑘0.

Using the above result, we get

𝑒−𝑖𝛼2,𝑘 = 1 +𝑂 (𝑘−1), for large |𝑘 | ≥ 𝑘0.

But, one has
��𝑒−𝑖𝛼2,𝑘 − 1

�� = 2| sin(𝛼2,𝑘/2) | and therefore,��𝛼2,𝑘 �� ≤ 𝐶

|𝑘 | , for large |𝑘 | ≥ 𝑘0.

that is, 𝛼2,𝑘 = 𝑂 ( |𝑘 |−1). This yields the asymptotic formulation (4.19b) of 𝜆ℎ
𝑘
given in Lemma

4.3.1.

Finally, we recall that the existence of lower frequencies of eigenvalues are already given in
Section 4.3.3.

Thus, the proof of Lemma 4.3.1 is complete.

4.8.4 Proof of Proposition 4.3.2–Part 1

In this portion, we shall simplify the expressions of the eigenfunctions (for large frequencies) using the
properties of 𝑐𝑘 , 𝑑𝑘 , 𝛼1,𝑘 , 𝛼2,𝑘 obtained in Section 4.8.3.

– The parabolic part. Recall the component 𝜉𝜆𝑝
𝑘
given by (4.170). By using the condition 𝜉𝜆𝑝

𝑘
(0) =

𝜉𝜆𝑝
𝑘
(1), one can deduce that(

𝑒−𝑖 (𝑘𝜋+𝑐𝑘 )−
1
2+𝑑𝑘+𝑂 (𝑘−1 ) − 𝑒𝑖 (𝑘𝜋+𝑐𝑘 )− 1

2−𝑑𝑘+𝑂 (𝑘−1 )
)
= 𝑂

( 1
𝑘3

)
, for large 𝑘 ≥ 𝑘0.

We further observe that (since 𝑐𝑘 and 𝑑𝑘 are or order 𝑂 (1/𝑘))

𝑒𝑖 (1−𝑥 ) (𝑘𝜋+𝑐𝑘+𝑖𝑑𝑘 )+𝑂 (𝑘−1 ) − 𝑒−𝑖 (1−𝑥 ) (𝑘𝜋+𝑐𝑘+𝑖𝑑𝑘 )+𝑂 (𝑘−1 )

= 2𝑖 sin((1 − 𝑥) (𝑘𝜋 + 𝑐𝑘 + 𝑖𝑑𝑘 )) +𝑂 (𝑘−1)
∼+∞ 2𝑖 sin(𝑘𝜋 (1 − 𝑥)) +𝑂 (𝑘−1).

Using the above ingredients in the expressions of 𝜂𝜆𝑝
𝑘
and 𝜉𝜆𝑝

𝑘
given by (4.166) and (4.170), we

conclude that

𝜂𝜆𝑝
𝑘
(𝑥) = 𝑒− 1

2 (1+𝑥 ) sin(𝑘𝜋 (1 − 𝑥)) +𝑂
(
1

𝑘

)
,

𝜉𝜆𝑝
𝑘
(𝑥) = 𝑖𝑐

𝑘𝜋
𝑒−

1
2 (1+𝑥 ) cos(𝑘𝜋 (1 − 𝑥)) + 𝑒𝑥 (−𝑘2𝜋2+𝑂 (1)) ×𝑂

(
1

𝑘

)
+𝑂

(
1

𝑘2

)
𝑒𝑥 (−𝑘2𝜋2−2𝑐𝑘𝑘𝜋−2𝑖𝑑𝑘𝑘𝜋+𝑂 (1)) ×𝑂

(1
𝑘

)
+

(
𝑖𝑐

𝑘𝜋
+𝑂

( 1
𝑘2

) ) (
𝑒𝑖 (𝑘𝜋+𝑐𝑘 )+𝑂 (𝑘−1 )− 1

2−𝑑𝑘 − 𝑒−𝑘2𝜋2−2𝑐𝑘𝑘𝜋−2𝑖𝑑𝑘𝑘𝜋+𝑂 (1)
)
𝑒𝑥 (−𝑖 (𝑘𝜋+𝑐𝑘 )− 1

2+𝑑𝑘+𝑂 (𝑘−1 ))

+
(
− 𝑖𝑐
𝑘𝜋

+𝑂
( 1
𝑘2

) ) (
𝑒−𝑘

2𝜋2−2𝑐𝑘𝑘𝜋−2𝑖𝑑𝑘𝑘𝜋+𝑂 (1) − 𝑒−𝑖 (𝑘𝜋+𝑐𝑘 )− 1
2+𝑑𝑘+𝑂 (𝑘−1 )

)
𝑒𝑥 (𝑖 (𝑘𝜋+𝑐𝑘 )− 1

2−𝑑𝑘+𝑂 (𝑘−1 )),

for all 𝑥 ∈ (0, 1).

– The hyperbolic part. For the hyperbolic part, we simply use the fact: 𝛼1,𝑘 = 𝑂 ( |𝑘 |−1), 𝛼2,𝑘 =

𝑂 ( |𝑘 |−1) in the expression of the eigenfunctions (4.180) and (4.175), to obtain the required
formulations (4.27) and (4.28).
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4.8.5 Proof of Lemma 4.3.2: bounds of the eigenfunctions

In this section, we shall give the sketch of the estimates for 𝜉𝜆𝑝
𝑘
, 𝜂𝜆𝑝

𝑘
for 𝑘 ≥ 𝑘0 and 𝜉𝜆ℎ

𝑘
, 𝜂𝜆ℎ

𝑘
for

|𝑘 | ≥ 𝑘0. We use the interpolation results of Sobolev spaces to find the (𝐻𝑠
♯
)′ and 𝐻−𝑠-norms of the

eigen-components.

We present the proof for 0 < 𝑠 < 1. In a similar way, one can prove the estimates for 𝑠 ≥ 1.

– The parabolic part. Recall the expressions of 𝜉𝜆𝑝
𝑘
and 𝜂𝜆𝑝

𝑘
from (4.24) and (4.25) respectively.

Note that 


𝜉𝜆𝑝
𝑘





𝐿2 (0,1)

≤ 𝐶

𝑘
and




𝜉𝜆𝑝
𝑘





(𝐻1

♯
(0,1) ) ′

≤ 𝐶

𝑘2
, for 𝑘 ≥ 𝑘0 large.

Therefore, using the interpolation between (𝐻1
♯
(0, 1))′ and 𝐿2 spaces, we get for any 0 < 𝑠 < 1

(since −𝑠 = 𝑠 × (−1) + (1 − 𝑠) × 0),


𝜉𝜆𝑝
𝑘





(𝐻𝑠

♯
(0,1) ) ′

≤



𝜉𝜆𝑝

𝑘




1−𝑠
𝐿2 (0,1)




𝜉𝜆𝑝
𝑘




𝑠
(𝐻1

♯
(0,1) ) ′

≤ 𝐶

|𝑘 |1+𝑠
, for 𝑘 ≥ 𝑘0 large.

We also have 


𝜂𝜆𝑝
𝑘





𝐿2 (0,1)

≤ 𝐶 and



𝜂𝜆𝑝

𝑘





𝐻 −1 (0,1)

≤ 𝐶

𝑘
, for 𝑘 ≥ 𝑘0 large.

Thus, for any 0 < 𝑠 < 1, we deduce that


𝜂𝜆𝑝
𝑘





𝐻 −𝑠 (0,1)

≤



𝜂𝜆𝑝

𝑘




1−𝑠
𝐿2 (0,1)




𝜂𝜆𝑝
𝑘




𝑠
𝐻 −1 (0,1)

≤ 𝐶

|𝑘 |𝑠 , for 𝑘 ≥ 𝑘0 large.

On the other hand, to find the lower bounds, first we observe that


𝜉𝜆𝑝
𝑘





𝐿2 (0,1)

≥ 𝐶

𝑘
and




𝜉𝜆𝑝
𝑘





𝐻1
♯
(0,1)

≥ 𝐶, for 𝑘 ≥ 𝑘0 large.

Now, using the interpolation between (𝐻𝑠
♯
(0, 1))′ for 0 < 𝑠 < 1 and 𝐻1

♯
(0, 1), we obtain that (as

0 = 1
1+𝑠 × (−𝑠) + 𝑠

1+𝑠 × 1) 


𝜉𝜆𝑝
𝑘





𝐿2 (0,1)

≤



𝜉𝜆𝑝

𝑘




 1
1+𝑠

(𝐻𝑠
♯
(0,1) ) ′




𝜉𝜆𝑝
𝑘




 𝑠
1+𝑠

𝐻1
♯
(0,1)

,

and therefore 


𝜉𝜆𝑝
𝑘





(𝐻𝑠

♯
(0,1) ) ′

≥



𝜉𝜆𝑝

𝑘




1+𝑠
𝐿2 (0,1)




𝜉𝜆𝑝
𝑘




−𝑠
𝐻1
♯
(0,1)

≥ 𝐶

𝑘1+𝑠
,

for 𝑘 ≥ 𝑘0 large enough.

Next, we have 


𝜂𝜆𝑝
𝑘





𝐿2 (0,1)

≥ 𝐶 and



𝜂𝜆𝑝

𝑘





𝐻1

0 (0,1)
≥ 𝐶𝑘, for 𝑘 ≥ 𝑘0 large,

and thus, by following the similar strategy as previous, we deduce that


𝜂𝜆𝑝
𝑘





𝐻 −𝑠 (0,1)

≥



𝜂𝜆𝑝

𝑘




1+𝑠
𝐿2 (0,1)




𝜂𝜆𝑝
𝑘




−𝑠
𝐻1

0 (0,1)
≥ 𝐶

𝑘𝑠
,

for 𝑘 ≥ 𝑘0 large enough.
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– The hyperbolic part. The steps will be exactly same as we analysed for the parabolic part. In
this case, we have the following estimates:

𝐶1 ≤



𝜉𝜆ℎ

𝑘





𝐿2 (0,1)

≤ 𝐶2,




𝜉𝜆ℎ
𝑘





(𝐻1

♯
(0,1) ) ′

≤ 𝐶

|𝑘 | ,



𝜉𝜆ℎ

𝑘





𝐻1
♯
(0,1)

≥ 𝐶 |𝑘 | ,

𝐶1

|𝑘 | ≤



𝜂𝜆ℎ

𝑘





𝐿2 (0,1)

≤ 𝐶2

|𝑘 | ,



𝜂𝜆ℎ

𝑘





𝐻 −1 (0,1)

≤ 𝐶

|𝑘 |2
,




𝜂𝜆ℎ
𝑘





𝐻1

0 (0,1)
≥ 𝐶,

for large enough 𝑘 ≥ 𝑘0.

Then, by following the interpolation arguments as previous, we can determine the required
norm-estimates of 𝜉𝜆ℎ

𝑘
and 𝜂𝜆ℎ

𝑘
, that is (4.32).

This completes the proof of Lemma 4.3.2.

4.9 Further remarks and conclusion

In the present chapter, we have proved the boundary null-controllability of our linearized 1D com-
pressible Navier-Stokes system when a control acting either on the velocity or density part. For the

velocity case, we have shown that when the initial states are chosen from the space ¤𝐻
1
2

♯
(0, 1) ×𝐿2(0, 1),

the system (4.4) is null-controllable at time 𝑇 > 1. Moreover, for 0 ≤ 𝑠 < 1
2 , the system fails to verify

the null-controllability at any 𝑇 > 0 in the space ¤𝐻𝑠
♯
(0, 1)×𝐿2(0, 1). Thus, the space is ¤𝐻

1
2

♯
(0, 1)×𝐿2(0, 1)

is optimal w.r.t. the null-controllability of the system (4.4).

For the density case, we can even allow the ¤𝐿2(0, 1) × 𝐿2(0, 1) initial states for the systems (4.5)
and (4.6) to be null-controllable at time 𝑇 > 1. We further proved that for small time, that is when
0 < 𝑇 < 1, the system (4.5) is no more null-controllable in the space 𝐿2(0, 1) × 𝐿2(0, 1).

In view of the above discussion, one immediate open question is the (non) null-controllability of
the velocity case (the system (4.4)) or the full Dirichlet density case (system (4.6)) in small time
0 < 𝑇 < 1. We also cannot conclude the (non) null-controllability of the systems (4.4), (4.5) or (4.6)
at the optimal time 𝑇 = 1.

Let us make some final remarks related to our work.

• Backward uniqueness and approximate controllability. The backward uniqueness prop-
erty tells that when the solution of a system (without any control) vanishes at some time 𝑇 > 0,
then it is identically zero at all time. This property plays an important role in the context of
unique continuation and controllability.

In this regard, we mention that the backward uniqueness is well-known for the cases when the
associated operator forms a C0-group (hyperbolic case), for instance the system


𝜌𝑡 + 𝜌𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝜌 (𝑡, 0) = 𝜌 (𝑡, 1), 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑥 ∈ (0, 1),

or an analytic semigroup (parabolic case), for instance the system


𝑢𝑡 − 𝑢𝑥𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝑢 (𝑡, 0) = 𝑢 (𝑡, 1) = 0, 𝑡 ∈ (0,𝑇 ),
𝑢 (0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ (0, 1) .
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Let us come to our problem. Consider the following system without any control input,

𝜌𝑡 + 𝜌𝑥 + 𝑐𝑢𝑥 = 0 in (0,𝑇 ) × (0, 1),
𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢𝑥 + 𝑐𝜌𝑥 = 0 in (0,𝑇 ) × (0, 1),
𝜌 (𝑡, 0) = 𝜌 (𝑡, 1) for 𝑡 ∈ (0,𝑇 ),
𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 1) = 0 for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥) for 𝑥 ∈ (0, 1).

(4.184)

Since the system (4.184) is of mixed nature (coupling between parabolic and hyperbolic com-
ponents), the backward uniqueness question is interesting from the mathematical point of view.
In fact, it has been indicated in [LRT01, AT08, AT10], that the backward uniqueness property
is a delicate issue for the coupled parabolic-hyperbolic systems.

But in our case, the advantage is that the (generalized) eigenfunctions of the operator 𝐴 forms
a Riesz basis in 𝐿2(0, 1) × 𝐿2(0, 1) (see Remark 4.3.1). Also, we have that (𝐴, 𝐷 (𝐴)) defines a
strongly continuous semigroup in 𝐿2(0, 1) × 𝐿2(0, 1). As a result, we have the following: if the
solution (𝜌,𝑢) to the system (4.184) satisfies

𝜌 (𝑇, ·) = 𝑢 (𝑇, ·) = 0 in (0, 1),

then we necessarily have

𝜌0 = 𝑢0 = 0, in (0, 1), i.e., 𝜌 (𝑡, 𝑥) = 𝑢 (𝑡, 𝑥) = 0 in (0,𝑇 ) × (0, 1) .

The above backward uniqueness property of (4.184), that is the free system of (4.4) (resp. (4.5)),
together with the null-controllability of (4.4) (resp. (4.5)), we deduce the approximate control-

lability of the system (4.4) (resp. (4.5)) at time 𝑇 > 1 in the space ¤𝐻
1
2

♯
(0, 1) × 𝐿2(0, 1) (resp.

¤𝐿2(0, 1) × 𝐿2(0, 1)).

Finally, the approximate controllability of the system (4.6) at time 𝑇 > 1 in the space ¤𝐿2(0, 1) ×
𝐿2(0, 1) follows from the null-controllability result Theorem 4.1.3 and the backward uniqueness
of the free system associated to (4.6) (as proved in [Ren15]).

• Growth bound of the semigroup and a stability result when (𝜌0, 𝑢0) ∈ ¤𝐿2(0, 1) ×𝐿2(0, 1).
Recall the space

¤𝐿2(0, 1) :=
{
𝜙 ∈ 𝐿2(0, 1) :

∫ 1

0
𝜙 = 0

}
.

We shall point out some stability result associated with the system (4.184) (that is, without any
control) when the initial data (𝜌0, 𝑢0) ∈ ¤𝐿2(0, 1) × 𝐿2(0, 1).

In this case, the operator 𝐴 with its formal expression (4.7) has the domain

D(𝐴) =
{
Φ = (𝜉, 𝜂) ∈ ¤𝐻1(0, 1) × 𝐻2(0, 1) : 𝜉 (0) = 𝜉 (1), 𝜂 (0) = 𝜂 (1) = 0

}
, (4.185)

where ¤𝐻1(0, 1) contains all the functions in 𝐻1(0, 1) with mean zero. Similarly, 𝐴∗ has its formal
expression as (4.9) with the same domain D(𝐴∗) = D(𝐴) as of (4.185).

It is enough to obtain the growth bound of the semigroup {𝑆∗(𝑡)}𝑡≥0 generated by (𝐴∗,D(𝐴∗))
in 𝐿2(0, 1) × 𝐿2(0, 1). Then, using the fact ∥𝑆 (𝑡)∥ = ∥𝑆∗(𝑡)∥ we can deduce the growth of the
semigroup {𝑆 (𝑡)}𝑡≥0 generated by (𝐴,D(𝐴)) (in 𝐿2(0, 1) × 𝐿2(0, 1)).

We first ensure that 𝜆 = 0 cannot be an eigenvalue of 𝐴∗ (or 𝐴) with the domain (4.185). If
yes, then the associated eigenfunction will be (1, 0), but this is not possible since (1, 0) ∉ D(𝐴∗).
Also, observe that the first component of the eigenfunction of 𝐴∗ (or 𝐴) corresponding to any
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eigenvalue has mean zero (in the light of Remark 4.8.1). As a consequence, in this case we can
prove that the set of eigenfunctions of 𝐴∗ (or 𝐴) with the domain given by (4.185) forms a Riesz
basis for ¤𝐿2(0, 1) × 𝐿2(0, 1) (using Theorem 4.3.1). So, (𝐴∗,D(𝐴∗)) (or (𝐴,D(𝐴))) is indeed a
Riesz-spectral operator since there is no accumulation point of the set of eigenvalues of 𝐴∗ (or
𝐴), see [CZ20, Chapter 3].

Now in one hand, since 𝜆 ≠ 0, all the eigenvalues of 𝐴∗ with domain (4.185) have negative real
parts (see (4.142)), i.e.,

Re(𝜆) < 0, ∀𝜆 ∈ 𝜎 (𝐴∗) .

On the other hand, thanks to Lemma 4.3.1, the set of parabolic and hyperbolic branches of the
eigenvalues of 𝐴∗ with domain (4.185) have the following asymptotics properties:

𝜆
𝑝

𝑘
= −𝑘2𝜋2 +𝑂 (1), for large 𝑘 ≥ 𝑘0,

𝜆ℎ
𝑘
= −𝑐2 − 2𝑖𝑘𝜋 +𝑂 ( |𝑘 |−1), for large |𝑘 | ≥ 𝑘0.

Thus, there exists some 𝜔0 ∈ [−𝑐2, 0) such that

𝜔0 = sup
{
Re(𝜆) : 𝜆 ∈ 𝜎 (𝐴)

}
< 0.

Now recall that (𝐴∗,D(𝐴∗)) is a Riesz-spectral operator and so the semigroup {𝑆∗(𝑡)}𝑡≥0 gener-
ated by (𝐴∗,D(𝐴∗)) has the following growth

∥𝑆∗(𝑡)∥ ≤ 𝐶𝑒𝜔0𝑡 , ∀𝑡 ≥ 0.

But, ∥𝑆 (𝑡)∥ = ∥𝑆∗(𝑡)∥ and therefore

∥𝑆 (𝑡)∥ ≤ 𝐶𝑒𝜔0𝑡 , ∀𝑡 ≥ 0.

with −𝑐2 ≤ 𝜔0 < 0, which gives the exponential stability of the system (4.184) with initial data
(𝜌0, 𝑢0) ∈ ¤𝐿2(0, 1) × 𝐿2(0, 1).

• Characterization of the coefficient 𝑐. We have proved the null-controllability of linearized
compressible Navier-Stokes systems (4.4), (4.5) and (4.6) at a large time provided the coefficient
𝑏 is small, in particular 𝑏4 + 8𝑏2 + 5 < 4𝜋2. This condition ensures that all the eigenvalues of
𝐴∗ has geometric multiplicity 1, thanks to Proposition 4.3.1-Part (iv). However, this is not a
necessary condition for achieving null-controllability of the systems (4.4), (4.5) and (4.6). To
be more precise, characterization of all 𝑏 > 0 such that the systems (4.4), (4.5) and (4.6) are
null-controllable at a large time is not obtained and it is a very difficult problem due to the
complicated cubic polynomial (4.41). Equivalently, one can say that finding all 𝑏 > 0 such that
all the eigenvalues of 𝐴∗ are geometrically simple is unknown.

• A Dirichlet-Dirichlet system with control on velocity. Recall that, when we considered
a Dirichlet boundary control on velocity, then we have the assumption 𝜌 (𝑡, 0) = 𝜌 (𝑡, 1) for the
density part. It would be really interesting to deal with the full Dirichlet case when a control 𝑞
acts on the velocity, that is the following system

𝜌𝑡 + 𝜌𝑥 + 𝑐𝑢𝑥 = 0 in (0,𝑇 ) × (0, 1),
𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢𝑥 + 𝑐𝜌𝑥 = 0 in (0,𝑇 ) × (0, 1),
𝜌 (𝑡, 0) = 0 for 𝑡 ∈ (0,𝑇 ),
𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 1) = 𝑞(𝑡) for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥) for 𝑥 ∈ (0, 1).

(4.186)

This is really a challenging open problem to handle because of the difficulty in analyzing the
spectral properties of the associated adjoint operator. This can be considered as a future work.
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Chapter 5

Nonlinear Two-Parabolic System

This chapter is taken from the article [BKM24]:

“Kuntal Bhandari, Jiten Kumbhakar, and Subrata Majumdar. Local null-controllability of a two-
parabolic nonlinear system with coupled boundary conditions by a Neumann control. Evol. Equ.
Control Theory, 13(2):587–615, 2024.”
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Abstract

This article is concerned with the local boundary null-controllability of a 1-D system of two-
parabolic nonlinear equations (often referred as reaction-diffusion system) with coupled boundary
conditions by means of a scalar control. The control force is exerted on one of the two state com-
ponents through a Neumann condition at the left end of the boundary while the other component
simply satisfies the homogeneous Neumann condition at that point. On the other hand, at the
right end of the boundary, the states are coupled through the so-called 𝛿 ′-type condition. Upon
linearization around the stationary point (0, 0), we apply the well-known moments method to prove
the global null-controllability of the associated linearized system with explicit control cost 𝑀𝑒𝑀/𝑇

as 𝑇 → 0+. Then, we show the local null-controllability of the main system by employing the source
term method developed in [LTT13] followed by the Banach fixed point theorem.
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5. Nonlinear Two-Parabolic System

5.1 Introduction and main results

5.1.1 The system under consideration

In this paper, we address the boundary null-controllability result of a 2×2 nonlinear parabolic system
with coupled boundary conditions by means of one Neumann boundary control. More precisely, for
given finite time 𝑇 > 0, we consider the following system

𝑦𝑡 − 𝑦𝑥𝑥 = 𝑓
(
𝑦, 𝑧,

∫ 1

0
𝑦,

∫ 1

0
𝑧
)
, in (0,𝑇 ) × (0, 1),

𝑧𝑡 − 𝑧𝑥𝑥 = 𝑔
(
𝑦, 𝑧,

∫ 1

0
𝑦,

∫ 1

0
𝑧
)
, in (0,𝑇 ) × (0, 1),

𝑦𝑥 (𝑡, 0) = 𝑞(𝑡), 𝑧𝑥 (𝑡, 0) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑦𝑥 (𝑡, 1) = 𝑧𝑥 (𝑡, 1), for 𝑡 ∈ (0,𝑇 ),
𝑦 (𝑡, 1) + 𝑧 (𝑡, 1) + 𝛼𝑦𝑥 (𝑡, 1) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑦 (0, 𝑥) = 𝑦0(𝑥), 𝑧 (0, 𝑥) = 𝑧0(𝑥), in (0, 1),

(5.1)

where 𝛼 ≥ 0 is some real parameter and (𝑦0, 𝑧0) is the given initial data which we choose from the
space [𝐿2(0, 1)]2.

In the above system, a control function 𝑞 ∈ 𝐿2(0,𝑇 ) (to be determined) is applied through the
Neumann condition of only one state (namely 𝑦) while the other state 𝑧 simply satisfies the homoge-
neous Neumann boundary condition at the point 𝑥 = 0. On the other hand, the states are coupled
at the boundary point 𝑥 = 1 in terms of the “equality condition of their normal derivatives” and a
“combined Robin-type condition”. In the literature, this kind of combined conditions (appearing at
the point 𝑥 = 1) is typically called the 𝛿 ′-type condition, see for instance [BK13, p. 26, Chapter 1.4.4]
or [Exn96]. In fact, it has been addressed in [Exn96] that the wavefunction of a quantum mechanical
particle living on a graph often satisfies the 𝛿 ′-type boundary conditions at the junction points.

The nonlinear functions 𝑓 and 𝑔 in (5.1) are given by{
𝑓
(
𝑦, 𝑧,

∫ 1

0
𝑦,

∫ 1

0
𝑧
)

= −𝑦𝑧 + 𝑎𝑦2 + 𝑏𝑧2 + 𝑟1(𝑡)𝑦,

𝑔
(
𝑦, 𝑧,

∫ 1

0
𝑦,

∫ 1

0
𝑧
)

= 𝑦𝑧 + 𝑐𝑦2 + 𝑑𝑧2 + 𝑟2(𝑡)𝑧,
(5.2)

where 𝑎, 𝑏, 𝑐, 𝑑 are 𝐿∞((0,𝑇 ) × (0, 1)) functions and
𝑟1(𝑡) = 𝛼1

∫ 1

0

(
𝜓1,1(𝑥)𝑦 (𝑡, 𝑥) +𝜓2,1(𝑥)𝑧 (𝑡, 𝑥)

)
𝑑𝑥,

𝑟2(𝑡) = 𝛼2
∫ 1

0

(
𝜓1,2(𝑥)𝑦 (𝑡, 𝑥) +𝜓2,2(𝑥)𝑧 (𝑡, 𝑥)

)
𝑑𝑥,

(5.3)

with 𝛼1, 𝛼2 are real constants and 𝜓1, 𝑗 ,𝜓2, 𝑗 ∈ 𝐿∞(0, 1) for 𝑗 = 1, 2.

Observe that the nonlinear model (5.1)–(5.2) is actually a reaction-diffusion system which often
describes several biological phenomenon or chemical reactions. In the literature, such system is com-
monly known as “Lotka-Volterra” model with diffusion (without any boundary conditions and control
for the moment, let say), that sometimes characterize the dynamics of a biological system where two
species: prey and predator interact between each other; see for instance [Per15, Jos14, Mur02]. In our
model, we consider that the two species are interacting in the reference domain (through the nonlinear
functions 𝑓 , 𝑔) as well as at one boundary end (through the coupled conditions at 𝑥 = 1). Then, our
goal is to put an external control force only on one species from the other boundary end to locally
control both the species at a given time 𝑇 . In this regard, we refer the very detailed work [RBZ22],
where several results concerning the controllability of reaction-diffusion systems in biology and social
sciences have been addressed.

5.1.2 Bibliographic comments

The parabolic boundary control systems with less number of control(s) than equations can be a delicate
issue in various situations and that there is lack of enough mathematical tools to tackle with these
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systems. In fact, unlike the scalar problems the boundary controllability for such systems is no longer
equivalent with the distributed one, as it has been proven for instance in [FCGBdT10]. Moreover, the
very powerful Carleman technique is often inefficient in that context. Among some fascinating works
on coupled control systems, we point out [FCGBdT10] where the authors have proved a necessary
and sufficient condition for boundary null-controllability of some 2 × 2 coupled parabolic system with
single Dirichlet control. A more general result regarding the controllability to the trajectories of an
𝑛 × 𝑛 parabolic system with 𝑚(< 𝑛) Dirichlet controls (applied on a part of a boundary) is available
in [AKBGBdT11a]. In those works, the authors actually proved a general Kalman condition which is
necessary and sufficient for their controllability results.

To the best of our knowledge, most of the boundary controllability results for a system with less
controls than the equations are in 1-D and the reason behind is that the spectral analysis of the
associated adjoint elliptic operator helps to deal with the so-called “moments technique” (initially
developed by Fattorini and Russell [FR71, FR75]) to construct a control. In this regard, we mention
that some multi-D (in cylindrical geometry) results have been developed in [BBGBO14, AB20], which
need a sharp estimate of the control cost for the associated 1-D problem and a Lebeau-Robbiano
spectral inequality for higher dimensions. We further refer to [AKBGBdT11b] where the authors
made a survey of several recent results concerning the controllability of coupled parabolic systems.

The above references mainly address the parabolic systems with internal couplings. Let us mention
that several systems with boundary couplings use to appear when one considers the system of pdes on
metric graphs, e.g., [Lum80, KPS08, BK13]. Concerning the controllability issues for such systems,
we first address [DZ06, Chapters 6, 8] where the authors have discussed some controllability results of
wave, heat and Schrödinger systems in the network when some control(s) is (are) exerted on some of the
vertices; see also the survey paper [Avd08]. We also refer the works [CIP18, CCV20, CCM20, ABP23]
where several controllability results have been achieved in the setting of metric graph and certainly, in
those works, the couplings are arisen in the junction points of the graph. Very recently, the boundary
null-controllability of some interior-boundary coupled linear parabolic systems has been addressed in
[BBHS21] where the boundary coupling is chosen by means of a Kirchhoff-type condition.

In the context of controllability of nonlinear systems, let us first mention [FI96, Sec. 4, Chap. I] by
Fursikov and Imanuvilov where a small-time local null-controllability of semilinear heat equations has
been proved using a perturbation argument. In 2000, Barbu [Bar00], independently Fernández-Cara
and Zuazua [FCZ00] proved the small-time global null-controllability of semilinear heat equations
where the nonlinear functions satisfy the growth condition |𝑠 | ln3/2(1 + |𝑠 |). More recently, the large-
time global null-controllability has been established in [LB20a] for the nonlinearities 𝐹 growing slower
than |𝑠 | ln2(1 + |𝑠 |) verifying 𝑠𝐹 (𝑠) ≥ 0 and 1

𝐹
∈ 𝐿1( [0, +∞)). Last but not the least, we mention

[HSLB21] where the local null-controllability of a nonlocal semilinear heat equation has been inten-
sively investigated along with numerical illustrations.

In the present work, we shall deal with the local null-controllability of the parabolic system (5.1)
and, as far as we know, the 𝛿 ′-type condition has not been treated in the literature from the control
theoretic perspective. Moreover, we consider the nonlocal nonlinearities in this work.

5.1.3 Linearized system and functional setting

For any given boundary parameter 𝛼 ≥ 0, the linearized system around the equilibrium point (0, 0) is
given by 

𝑦𝑡 − 𝑦𝑥𝑥 = 0, in (0,𝑇 ) × (0, 1),

𝑧𝑡 − 𝑧𝑥𝑥 = 0, in (0,𝑇 ) × (0, 1),

𝑦𝑥 (𝑡, 0) = 𝑞(𝑡), 𝑧𝑥 (𝑡, 0) = 0, for 𝑡 ∈ (0,𝑇 ),

𝑦𝑥 (𝑡, 1) = 𝑧𝑥 (𝑡, 1), for 𝑡 ∈ (0,𝑇 ),

𝑦 (𝑡, 1) + 𝑧 (𝑡, 1) + 𝛼𝑦𝑥 (𝑡, 1) = 0, for 𝑡 ∈ (0,𝑇 ),

𝑦 (0, 𝑥) = 𝑦0(𝑥), 𝑧 (0, 𝑥) = 𝑧0(𝑥), in (0, 1) .

(5.4)
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The free system, that is the set of equations (5.4) without any control input, can be written in the
form of an infinite dimensional system of ordinary differential equations as follows


𝑌 ′(𝑡) +𝐴𝑌 (𝑡) = 0,

𝑌 (0) = 𝑌0,
(5.5)

where 𝑌 := (𝑦, 𝑧), 𝑌0 := (𝑦0, 𝑧0) and the operator

𝐴 =

(
−𝜕𝑥𝑥 0

0 −𝜕𝑥𝑥

)
, (5.6)

with its domain

D(𝐴) =
{
(𝑢, 𝑣) ∈ [𝐻2(0, 1)]2 | 𝑢′(0) = 0, 𝑣 ′(0) = 0, 𝑢′(1) = 𝑣 ′(1),

𝑢 (1) + 𝑣 (1) + 𝛼𝑢′(1) = 0
}
.

Observe that the operator (𝐴,D(𝐴)) is self-adjoint in nature but still we denote the adjoint of 𝐴 by
𝐴∗ for more clear presentation.

5.1.4 Notations

Throughout the paper, 𝐶 denotes a generic positive constant that may change line to line but does
not depend on the time 𝑇 or on the initial data (𝑦0, 𝑧0). We also denote the following Lebesgue spaces:

(i) 𝑍 := [𝐿2(0, 1)]2 ,

(ii) H := [𝐻1(0, 1)]2,

(iii) H ∗ = dual of the space H with respect to the pivot space 𝑍 ,

(iv) 𝐻1
{𝑎} (0, 1) =

{
𝑢 ∈ 𝐻1(0, 1) : 𝑢 (𝑎) = 0

}
, for 𝑎 ∈ {0, 1},

which shall be intensively used in the present work. The inner product in the space 𝑍 is simply denoted
by (·, ·)𝑍 while we denote the dual product by ⟨·, ·⟩𝑋 ∗,𝑋 between the space 𝑋 and its dual 𝑋 ∗. Sometimes,
we write ⟨·, ·⟩R𝑑 to denote the usual inner product in the space R𝑑 , 𝑑 ≥ 1. The characteristic function
will be denoted by 𝜒 [𝑎,𝑏 ] in the real interval [𝑎, 𝑏] with 𝑎 < 𝑏.

5.1.5 Main results

We now write the main results of our present work.

5.1.5.1 Local null-controllability of the nonlinear system

We have the following controllability result for the system (5.1).

Theorem 5.1.1. Let 𝑓 and 𝑔 be given by (5.2) and 𝛼 ≥ 0. Then, the nonlinear system (5.1) is small-
time locally null-controllable around the equilibrium (0, 0), that is to say, for any given time 𝑇 > 0,
there is a 𝛿 > 0 such that for chosen initial state (𝑦0, 𝑧0) ∈ 𝑍 verifying ∥(𝑦0, 𝑧0)∥𝑍 ≤ 𝛿, there exists a
solution-control pair ((𝑦, 𝑧), 𝑞) with (𝑦, 𝑧) ∈ C0( [0,𝑇 ];𝑍 ) ∩ 𝐿2(0,𝑇 ;H) and 𝑞 ∈ 𝐿2(0,𝑇 ) to the system
(5.1) satisfying

(𝑦 (𝑇, 𝑥), 𝑧 (𝑇, 𝑥)) = (0, 0), ∀𝑥 ∈ (0, 1) . (5.7)
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5.2. Well-posedness of the linearized system

The strategy to prove Theorem 5.1.1 is the following:

– First, we prove the global boundary null-controllability result of the associated linear model
(5.4) by using the method of moments ([FR75, FR71]) with a proper estimation of the control
cost, precisely 𝑀𝑒𝑀/𝑇 ∥(𝑦0, 𝑧0)∥𝑍 , where 𝑀 is independent in 𝑇 and (𝑦0, 𝑧0).

– Next, by applying the source term method introduced in [LTT13], we prove a null-controllability
result of the linearized model with additional source terms in 𝐿2(0,𝑇 ;𝑍 ) which are exponentially
decreasing as 𝑡 → 𝑇 −, and in this step, we notably use the precise control cost as prescribed
earlier.

– Finally, we use the Banach fixed-point theorem to obtain the local (boundary) null-controllability
for our nonlinear system (5.1).

5.1.5.2 Null-controllability of the linear system

Let us now state the global null-controllability result for the linearized system (5.4).

Theorem 5.1.2. Let any 𝑇 > 0, initial data (𝑦0, 𝑧0) ∈ 𝑍 and parameter 𝛼 ≥ 0 be given. Then, there
exists a control 𝑞 ∈ 𝐿2(0,𝑇 ) such that the solution (𝑦, 𝑧) to the system (5.4) satisfies (𝑦 (𝑇, ·), 𝑧 (𝑇, ·)) =
(0, 0) in (0, 1). In addition, 𝑞 satisfies the following estimate

∥𝑞∥𝐿2 (0,𝑇 ) ≤ 𝑀𝑒𝑀/𝑇 ∥(𝑦0, 𝑧0)∥𝑍 , (5.8)

where the constant 𝑀 > 0 neither depends on 𝑇 nor on (𝑦0, 𝑧0).

5.1.6 Organization of the paper

– In Section 5.2, we discuss the required well-posedness results for the linear control problem (5.4)
and its associated adjoint system (without any control input).

– Section 5.3 is devoted to prove the null-controllability of the linearized system (5.4). We study
the spectral analysis for the associated adjoint operator in subsection 5.3.1, which is crucial to
apply the method of moments to construct a null-control 𝑞 ∈ 𝐿2(0,𝑇 ) for the system (5.4) with
a precise control cost as introduced earlier (see subsection 5.3.5).

– In Section 5.4, we prove the main result of our work, that is, Theorem 5.1.1.

– Finally, we conclude our paper by mentioning possible extension of this work to a more general
internal-boundary coupled parabolic system related to the present paper, see Section 5.5.

5.2 Well-posedness of the linearized system

This section is devoted to prove the existence and uniqueness of solution to the linear control system
(5.4).

5.2.1 Existence of analytic semigroup

Let us first prove the well-posedness of the following homogeneous system

𝑦𝑡 − 𝑦𝑥𝑥 = 𝑔1, in (0,𝑇 ) × (0, 1),
𝑧𝑡 − 𝑧𝑥𝑥 = 𝑔2, in (0,𝑇 ) × (0, 1),
𝑦𝑥 (𝑡, 0) = 0, 𝑧𝑥 (𝑡, 0) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑦𝑥 (𝑡, 1) = 𝑧𝑥 (𝑡, 1), for 𝑡 ∈ (0,𝑇 ),
𝑦 (𝑡, 1) + 𝑧 (𝑡, 1) + 𝛼𝑦𝑥 (𝑡, 1) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑦 (0, 𝑥) = 𝑦0(𝑥), 𝑧 (0, 𝑥) = 𝑧0(𝑥), in (0, 1) .

(5.9)
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with given initial data (𝑦0, 𝑧0) ∈ 𝑍 and source term (𝑔1, 𝑔2) ∈ 𝐿2(0,𝑇 ;𝑍 ). We start by proving the
existence of semigroup defined by (−𝐴,D(𝐴)).

Proposition 5.2.1. The operator (−𝐴,D(𝐴)) defined in (5.6) forms an analytic semigroup in the
space 𝑍 .

Proof. We shall present the proof for the boundary parameter 𝛼 > 0. The case 𝛼 = 0 is simpler. We
prove this result into two steps.

Step 1. Let us define the usual norm on H , given by

∥(𝑢, 𝑣)∥H =

(∫ 1

0
( |𝑢 (𝑥) |2 + |𝑢′(𝑥) |2)𝑑𝑥 +

∫ 1

0
( |𝑣 (𝑥) |2 + |𝑣 ′(𝑥) |2)𝑑𝑥

) 1
2

,

and the sesquilinear map ℎ : H ×H → R such that for any (𝑢, 𝑣), (𝜑,𝜓 ) ∈ H

ℎ((𝑢, 𝑣), (𝜑,𝜓 )) =
∫ 1

0
𝑢′(𝑥)𝜑 ′(𝑥)𝑑𝑥 +

∫ 1

0
𝑣 ′(𝑥)𝜓 ′(𝑥)𝑑𝑥

+ 1

𝛼
[𝑢 (1) + 𝑣 (1)] [𝜑 (1) +𝜓 (1)] .

It follows that ℎ is continuous on H ×H with

|ℎ((𝑢, 𝑣), (𝜑,𝜓 )) | ≤ 𝑐 ∥(𝑢, 𝑣)∥H ∥(𝜑,𝜓 )∥H , for all (𝑢, 𝑣), (𝜑,𝜓 ) ∈ H ,

where 𝑐 is a positive constant depending on 𝛼 . We also have

|ℎ((𝑢, 𝑣), (𝑢, 𝑣)) | ≥ ∥(𝑢, 𝑣)∥2H − ∥(𝑢, 𝑣)∥2𝑍 , for all (𝑢, 𝑣) ∈ H .

Therefore, by [Ouh05, Proposition 1.51 & Theorem 1.52], the negative operator associated with ℎ

generates an analytic semigroup in 𝑍 of angle (𝜋/2 − arctan(𝑐)).
It remains to prove that the operator associated to ℎ is indeed 𝐴 with the domain D(𝐴).

Step 2. Let us define the operator (𝐴,D(𝐴)) associated with the map ℎ as follows.
D(𝐴) =

{
(𝑢, 𝑣) ∈ H | ∃ (𝑓1, 𝑓2) ∈ 𝑍 such that

ℎ((𝑢, 𝑣), (𝜑,𝜓 )) = ((𝑓1, 𝑓2), (𝜑,𝜓 ))𝑍 , ∀(𝜑,𝜓 ) ∈ H
}
,

𝐴(𝑢, 𝑣) := (𝑓1, 𝑓2).

Part (i). Here we prove D(𝐴) ⊂ D(𝐴). Let (𝑢, 𝑣) ∈ D(𝐴). Then, for all (𝜑,𝜓 ) ∈ H , we have

ℎ((𝑢, 𝑣), (𝜑,𝜓 )) =
∫ 1

0
𝑢′(𝑥)𝜑 ′(𝑥)𝑑𝑥 +

∫ 1

0
𝑣 ′(𝑥)𝜓 ′(𝑥)𝑑𝑥 + 1

𝛼
[𝑢 (1) + 𝑣 (1)] [𝜑 (1) +𝜓 (1)] .

Integrating by parts, we obtain

ℎ((𝑢, 𝑣), (𝜑,𝜓 )) = −
∫ 1

0
𝑢′′(𝑥)𝜑 (𝑥)𝑑𝑥 −

∫ 1

0
𝑣 ′′(𝑥)𝜓 (𝑥)𝑑𝑥 + 𝑢′(1)𝜑 (1) + 𝑣 ′(1)𝜓 (1)

+ 1

𝛼
[𝑢 (1) + 𝑣 (1)] [𝜑 (1) +𝜓 (1)] . (5.10)

We also have that 𝑢′(1) = 𝑣 ′(1) and 𝑢 (1) + 𝑣 (1) = −𝛼𝑢′(1). Therefore, we get from (5.10)

ℎ((𝑢, 𝑣), (𝜑,𝜓 )) = −
∫ 1

0
𝑢′′(𝑥)𝜑 (𝑥)𝑑𝑥 −

∫ 1

0
𝑣 ′′(𝑥)𝜓 (𝑥)𝑑𝑥

= (𝐴(𝑢, 𝑣), (𝜑,𝜓 ))𝑍 .

Thus, for given (𝑢, 𝑣) ∈ D(𝐴) we found a pair (𝑓1, 𝑓2) = 𝐴(𝑢, 𝑣) ∈ 𝑍 such that ℎ((𝑢, 𝑣), (𝜑,𝜓 )) =

((𝑓1, 𝑓2), (𝜑,𝜓 ))𝑍 for all (𝜑,𝜓 ) ∈ H . This implies (𝑢, 𝑣) ∈ D(𝐴) and consequently, D(𝐴) ⊂ D(𝐴).
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Part (ii). We now show that D(𝐴) ⊂ D(𝐴). Let (𝑢, 𝑣) ∈ D(𝐴). Then, there exists (𝑓1, 𝑓2) ∈ 𝑍 such
that ℎ((𝑢, 𝑣), (𝜑,𝜓 )) = ((𝑓1, 𝑓2), (𝜑,𝜓 ))𝑍 , for all (𝜑,𝜓 ) ∈ H with 𝐴(𝑢, 𝑣) = (𝑓1, 𝑓2), and accordingly,∫ 1

0
𝑢′(𝑥)𝜑 ′(𝑥)𝑑𝑥 +

∫ 1

0
𝑣 ′(𝑥)𝜓 ′(𝑥)𝑑𝑥 + 1

𝛼
[𝑢 (1) + 𝑣 (1)] [𝜑 (1) +𝜓 (1)]

=

∫ 1

0
𝑓1(𝑥)𝜑 (𝑥)𝑑𝑥 +

∫ 1

0
𝑓2(𝑥)𝜓 (𝑥)𝑑𝑥,

for all (𝜑,𝜓 ) ∈ H . Since 𝑓1, 𝑓2 ∈ 𝐿2(0, 1), by elliptic regularity theory, we have 𝑢, 𝑣 ∈ 𝐻2(0, 1). Thus, an
integration by parts yields

−
∫ 1

0
𝑢′′(𝑥)𝜑 (𝑥)𝑑𝑥 −

∫ 1

0
𝑣 ′′(𝑥)𝜓 (𝑥)𝑑𝑥 + 𝑢′(1)𝜑 (1) − 𝑢′(0)𝜑 (0) + 𝑣 ′(1)𝜓 (1)

− 𝑣 ′(0)𝜓 (0) + 1

𝛼
[𝑢 (1) + 𝑣 (1)] [𝜑 (1) +𝜓 (1)] =

∫ 1

0
𝑓1(𝑥)𝜑 (𝑥)𝑑𝑥 +

∫ 1

0
𝑓2(𝑥)𝜓 (𝑥)𝑑𝑥, (5.11)

for all (𝜑,𝜓 ) ∈ H .

Let us first choose any (𝜑,𝜓 ) ∈ [𝐻1
0 (0, 1)]2 ⊂ H in (5.11) and as a result we deduce

𝑓1(𝑥) = −𝑢′′(𝑥), 𝑓2(𝑥) = −𝑣 ′′(𝑥), for a.a. 𝑥 ∈ (0, 1) .

Once we have this, going back to (5.11), one has

𝑢′(1)𝜑 (1) − 𝑢′(0)𝜑 (0) + 𝑣 ′(1)𝜓 (1) − 𝑣 ′(0)𝜓 (0) + 1

𝛼
[𝑢 (1) + 𝑣 (1)] [𝜑 (1) +𝜓 (1)] = 0, (5.12)

for all (𝜑,𝜓 ) ∈ H . Now consider any (𝜑,𝜓 ) ∈ 𝐻1
{0} (0, 1) × 𝐻

1
0 (0, 1) ⊂ H , so that we have(

𝑢′(1) + 1

𝛼
[𝑢 (1) + 𝑣 (1)]

)
𝜑 (1) = 0,

that is,

𝑢 (1) + 𝑣 (1) + 𝛼𝑢′(1) = 0. (5.13)

Next, by choosing any (𝜑,𝜓 ) ∈ 𝐻1
{1} (0, 1) × 𝐻

1
0 (0, 1) ⊂ H in (5.12) we obtain the condition

𝑢′(0) = 0, (5.14)

and similarly, the choice of any (𝜑,𝜓 ) ∈ 𝐻1
0 (0, 1) × 𝐻1

{1} (0, 1) ⊂ H leads to the condition

𝑣 ′(0) = 0. (5.15)

Finally, by considering any (𝜑,𝜓 ) ∈ H and utilizing the previous boundary conditions (5.13), (5.14)
and (5.15), the equality (5.12) reduces to

(𝑣 ′(1) − 𝑢′(1))𝜓 (1) = 0,

for all 𝜓 ∈ 𝐻1(0, 1) and this yields

𝑢′(1) = 𝑣 ′(1) . (5.16)

Therefore (𝑢, 𝑣) ∈ D(𝐴), which proves D(𝐴) ⊂ D(𝐴).
Hence, the operator associated with the sesquilinear form ℎ is indeed (𝐴,D(𝐴)). This completes

the proof.

We hereby denote the associated semigroup by (𝑒−𝑡𝐴)𝑡≥0 and the following results hold.
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Proposition 5.2.2. Let any parameter 𝛼 ≥ 0 be given. Then, for any 𝑌0 := (𝑦0, 𝑧0) ∈ D(𝐴) and 𝐺 :=
(𝑔1, 𝑔2) ∈ C1( [0,𝑇 ];𝑍 ), there exists unique strong solution 𝑌 := (𝑦, 𝑧) ∈ C0( [0,𝑇 ];D(𝐴)) ∩ C1( [0,𝑇 ];𝑍 )
to the system (5.9), given by

𝑌 (𝑡) = 𝑒−𝑡𝐴𝑌0 +
∫ 𝑡

0
𝑒−(𝑡−𝑠 )𝐴𝐺 (𝑠) 𝑑𝑠. (5.17)

Proposition 5.2.3. Let any parameter 𝛼 ≥ 0 be given. Then, for any (𝑦0, 𝑧0) ∈ 𝑍 and (𝑔1, 𝑔2) ∈
𝐿2(0,𝑇 ;𝑍 ), there exists a unique weak solution

(𝑦, 𝑧) ∈ C0( [0,𝑇 ];𝑍 ) ∩ 𝐿2(0,𝑇 ;H) ∩ 𝐻1(0,𝑇 ;H ∗)

to the system (5.9) which satisfies the following energy estimate

∥(𝑦, 𝑧)∥C0 ( [0,𝑇 ];𝑍 ) + ∥(𝑦, 𝑧)∥𝐿2 (0,𝑇 ;H) + ∥(𝑦𝑡 , 𝑧𝑡 )∥𝐿2 (0,𝑇 ;H∗ )

≤ 𝐶𝑒𝐶𝑇
(
∥(𝑦0, 𝑧0)∥𝑍 + ∥(𝑔1, 𝑔2)∥𝐿2 (0,𝑇 ;𝑍 )

)
, (5.18)

where 𝐶 > 0 is a constant that does not depend in 𝑇 > 0.

Proof. For given initial state (𝑦0, 𝑧0) ∈ 𝑍 and source term (𝑔1, 𝑔2) ∈ 𝐿2(0,𝑇 ;𝑍 ), the existence of a
unique weak solution (𝑦, 𝑧) ∈ C0( [0,𝑇 ];𝑍 ) can be ensured by applying Proposition 5.2.1. We just need
to prove the energy estimate (5.18).

– We start with (𝑦0, 𝑧0) ∈ D(𝐴) and (𝑔1, 𝑔2) ∈ C1( [0,𝑇 ];𝑍 ). Then, the system (5.9) has a unique
strong solution (𝑦, 𝑧) in the space C0( [0,𝑇 ];D(𝐴))∩C1( [0,𝑇 ];𝑍 ) as per Proposition 5.2.2. Taking
the inner product in 𝑍 of (5.9) with (𝑦, 𝑧), we get

1

2

𝑑

𝑑𝑡
∥(𝑦 (𝑡), 𝑧 (𝑡))∥2𝑍 + (𝐴(𝑦 (𝑡), 𝑧 (𝑡)), (𝑦 (𝑡), 𝑧 (𝑡)))𝑍 = ((𝑔1(𝑡), 𝑔2(𝑡)), (𝑦 (𝑡), 𝑧 (𝑡)))𝑍 , ∀𝑡 ∈ [0,𝑇 ] .

Integrating by parts w.r.t. space and by applying the Cauchy-Schwarz and Young’s inequalities,
we have

1

2

𝑑

𝑑𝑡
∥(𝑦 (𝑡), 𝑧 (𝑡))∥2𝑍 + ∥(𝑦 (𝑡), 𝑧 (𝑡))∥2H + 𝛼 |𝑦′(𝑡, 1) |2

≤ 𝐶
(
∥(𝑔1(𝑡), 𝑔2(𝑡))∥2𝑍 + ∥(𝑦 (𝑡), 𝑧 (𝑡))∥2𝑍

)
, ∀𝑡 ∈ [0,𝑇 ] . (5.19)

Here we recall that 𝛼 ≥ 0, and then using Gronwall’s lemma (see [Eva10, Appendix B.2]) one
can obtain the required estimate (5.18) for the quantity ∥(𝑦, 𝑧)∥C0 ( [0,𝑇 ];𝑍 ) . Then, by integrating
(5.19) over [0,𝑇 ] and using the previous estimate, we get the required bound for ∥(𝑦, 𝑧)∥𝐿2 (0,𝑇 ;H) .

– To obtain the estimate for (𝑦𝑡 , 𝑧𝑡 ) in 𝐿2(0,𝑇 ;H ∗), we consider any (𝜑,𝜓 ) ∈ H and from (5.9) we
have 〈

(𝑦𝑡 (𝑡), 𝑧𝑡 (𝑡)), (𝜑,𝜓 )
〉
H∗,H +

(
𝐴(𝑦 (𝑡), 𝑧 (𝑡)), (𝜑,𝜓 )

)
𝑍
=

(
(𝑔1(𝑡), 𝑔2(𝑡)), (𝜑,𝜓 )

)
𝑍
, ∀𝑡 ∈ [0,𝑇 ],

which implies��〈(𝑦𝑡 (𝑡), 𝑧𝑡 (𝑡)), (𝜑,𝜓 )〉H∗,H
�� ≤ 𝐶 (

∥(𝑦 (𝑡), 𝑧 (𝑡))∥H + ∥(𝑔1(𝑡), 𝑔2(𝑡))∥𝑍
)
∥(𝜑,𝜓 )∥H, ∀𝑡 ∈ [0,𝑇 ],

and this gives the estimation of ∥(𝑦𝑡 , 𝑧𝑡 )∥𝐿2 (0,𝑇 ;H∗ ) as stated in (5.18).

Finally, by applying the usual density argument, we shall obtain the same estimate (5.18) for given
data (𝑦0, 𝑧0) ∈ 𝑍 and (𝑔1, 𝑔2) ∈ 𝐿2(0,𝑇 ;𝑍 ). The proof is finished.
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5.2.2 The homogeneous adjoint system: Backward in time

The adjoint system to the linearized model (5.9) is given by

−𝜁𝑡 − 𝜁𝑥𝑥 = 0, in (0,𝑇 ) × (0, 1),
−𝜃𝑡 − 𝜃𝑥𝑥 = 0, in (0,𝑇 ) × (0, 1),
𝜁𝑥 (𝑡, 0) = 0, 𝜃𝑥 (𝑡, 0) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜁𝑥 (𝑡, 1) = 𝜃𝑥 (𝑡, 1), for 𝑡 ∈ (0,𝑇 ),
𝜁 (𝑡, 1) + 𝜃 (𝑡, 1) + 𝛼𝜁𝑥 (𝑡, 1) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜁 (𝑇, 𝑥) = 𝜁𝑇 (𝑥), 𝜃 (𝑇, 𝑥) = 𝜃𝑇 (𝑥), in (0, 1),

(5.20)

with given final data (𝜁𝑇 , 𝜃𝑇 ) ∈ 𝑍 . In fact, we have the following result.

Proposition 5.2.4. Let any parameter 𝛼 ≥ 0 and final data (𝜁𝑇 , 𝜃𝑇 ) ∈ 𝑍 be given. Then, the system
(5.20) possesses a unique weak solution

(𝜁 , 𝜃 ) ∈ C0( [0,𝑇 ];𝑍 ) ∩ 𝐿2(0,𝑇 ;H) ∩ 𝐻1(0,𝑇 ;H ∗)

with the following energy estimate:

∥(𝜁 , 𝜃 )∥C0 ( [0,𝑇 ];𝑍 ) + ∥(𝜁 , 𝜃 )∥𝐿2 (0,𝑇 ;H) + ∥(𝜁𝑡 , 𝜃𝑡 )∥𝐿2 (0,𝑇 ;H∗ ) ≤ 𝐶𝑒𝐶𝑇 ∥(𝜁𝑇 , 𝜃𝑇 )∥𝑍 , (5.21)

where 𝐶 > 0 is a constant independent in 𝑇 > 0.

Thanks to Proposition 5.2.1, the adjoint operator (−𝐴∗,D(𝐴∗)) (which is the same as (−𝐴,D(𝐴))
but we use a different notation for better understanding) defines a strongly continuous semigroup in
𝑍 , which ensures the existence and uniqueness of solution (𝜁 , 𝜃 ) ∈ C0( [0,𝑇 ];𝑍 ) to (5.20) and moreover
it can be expressed as

(𝜁 , 𝜃 ) (𝑡, 𝑥) = 𝑒−(𝑇−𝑡 )𝐴∗ (𝜁𝑇 , 𝜃𝑇 ) (𝑥), ∀(𝑡, 𝑥) ∈ (0,𝑇 ) × (0, 1),

where
(
𝑒−𝑡𝐴

∗ )
𝑡≥0 denotes the semigroup defined by (−𝐴∗,D(𝐴∗)).

Then the energy estimate (5.21) can be obtained by applying similar technique as described in the
proof of Proposition 5.2.3.

5.2.3 The nonhomogeneous linearized system

We now address the notion of solution to the following nonhomogeneous system (which is forward in
time) in the sense of transposition as introduced in [Cor07, TW09]. Consider the system

𝑦𝑡 − 𝑦𝑥𝑥 = 𝑔1, in (0,𝑇 ) × (0, 1),
𝑧𝑡 − 𝑧𝑥𝑥 = 𝑔2, in (0,𝑇 ) × (0, 1),
𝑦𝑥 (𝑡, 0) = 𝑞1(𝑡), 𝑧𝑥 (𝑡, 0) = 𝑞2(𝑡), for 𝑡 ∈ (0,𝑇 ),
𝑦𝑥 (𝑡, 1) = 𝑧𝑥 (𝑡, 1), for 𝑡 ∈ (0,𝑇 ),
𝑦 (𝑡, 1) + 𝑧 (𝑡, 1) + 𝛼𝑦𝑥 (𝑡, 1) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑦 (0, 𝑥) = 𝑦0(𝑥), 𝑧 (0, 𝑥) = 𝑧0(𝑥), in (0, 1),

(5.22)

and we write the following definition.

Definition 5.2.1 (Solution by transposition). Let 𝛼 ≥ 0 be a given parameter. Then, for given initial
state (𝑦0, 𝑧0) ∈ 𝑍 , boundary data (𝑞1, 𝑞2) ∈ 𝐿2(0,𝑇 ;R2) and source term (𝑔1, 𝑔2) ∈ 𝐿2(0,𝑇 ;𝑍 ), a function
(𝑦, 𝑧) ∈ C0( [0,𝑇 ];𝑍 ) is said to be a solution to the system (5.22), if for any 𝑡 ∈ [0,𝑇 ] and (𝜁𝑇 , 𝜃𝑇 ) ∈ 𝑍 ,
the following relation holds:(

(𝑦 (𝑡), 𝑧 (𝑡)), (𝜁𝑇 , 𝜃𝑇 )
)
𝑍
=
(
(𝑦0, 𝑧0), 𝑒−𝑡𝐴

∗ (𝜁𝑇 , 𝜃𝑇 )
)
𝑍
+

∫ 𝑡

0

(
(𝑔1(𝑠), 𝑔2(𝑠)), 𝑒−(𝑡−𝑠 )𝐴∗ (𝜁𝑇 , 𝜃𝑇 )

)
𝑍

−
∫ 𝑡

0

〈
(𝑞1(𝑠), 𝑞2(𝑠)),

(
𝑒−(𝑡−𝑠 )𝐴∗ (𝜁𝑇 , 𝜃𝑇 )

)
(0)

〉
R2
. (5.23)
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Let us now write the following result.

Theorem 5.2.1. Let 𝛼 ≥ 0 be a given parameter and (𝑦0, 𝑧0) ∈ 𝑍 , (𝑔1, 𝑔2) ∈ 𝐿2(0,𝑇 ;𝑍 ), (𝑞1, 𝑞2) ∈
𝐿2(0,𝑇 ;R2) be given data. Then the system (5.22) has a unique solution (𝑦, 𝑧) ∈ C0( [0,𝑇 ];𝑍 ) in the
sense of transposition as given by Definition 5.2.1.

Furthermore, (𝑦, 𝑧) ∈ 𝐿2(0,𝑇 ;H) ∩ 𝐻1(0,𝑇 ;H ∗) and it satisfies the natural energy estimate

∥(𝑦, 𝑧)∥C0 ( [0,𝑇 ];𝑍 ) + ∥(𝑦, 𝑧)∥𝐿2 (0,𝑇 ;H) + ∥(𝑦𝑡 , 𝑧𝑡 )∥𝐿2 (0,𝑇 ;H∗ )

≤ 𝐶𝑒𝐶𝑇
(
∥(𝑦0, 𝑧0)∥𝑍 + ∥(𝑔1, 𝑔2)∥𝐿2 (0,𝑇 ;𝑍 ) + ∥(𝑞1, 𝑞2)∥𝐿2 (0,𝑇 ;R2 )

)
, (5.24)

where the constant 𝐶 > 0 does not depend on 𝑇 .

The proof for the energy estimate can be done using a similar technique as implemented in the
proof of Proposition 5.2.3. We skip the details.

Remark 5.2.1. For the nonhomogeneous system (5.22), we can achieve the usual energy estimate
(5.24) since the nonhomogeneous 𝐿2(0,𝑇 )-boundary terms 𝑞1, 𝑞2 appear through the Neumann condi-
tions. This phenomenon has been broadly studied in [Nit14] in the context of parabolic equations with
nonhomogeneous Neumann data. We also refer [BB21, Proposition 2.4] where the usual energy esti-
mate for parabolic equations with nonhomogeneous Robin condition (with 𝐿2 boundary data) has been
obtained.

5.3 Controllability of the linearized system: The method of
moments

This section is devoted to the proof of null-controllability for our linearized system (5.4), that is
the Theorem 5.1.2. As mentioned earlier, the method of moments helps us to construct a boundary
null-control for our system and as it is well-known, to deal with this method we first need to study
the spectral analysis of the corresponding (adjoint) spatial operator. We discuss about this in the
following section.

5.3.1 Spectral analysis of the operator 𝐴∗

The eigenvalue problem associated with the operator 𝐴∗ is

𝐴∗𝑈 = 𝜆𝑈 , for 𝜆 ∈ C,

with 𝑈 := (𝑢, 𝑣), which explicitly looks like

−𝑢′′(𝑥) = 𝜆𝑢 (𝑥), for 𝑥 ∈ (0, 1),
−𝑣 ′′(𝑥) = 𝜆𝑣 (𝑥), for 𝑥 ∈ (0, 1),
𝑢′(0) = 0, 𝑣 ′(0) = 0,

𝑢′(1) = 𝑣 ′(1),
𝑢 (1) + 𝑣 (1) + 𝛼𝑢′(1) = 0, 𝛼 ≥ 0.

(5.25)

We divide the analysis into several parts.

• Observe that the spatial operator (defined by (5.6)) is self-adjoint and thus, all eigenvalues are real.

• From the set of equations (5.25), it is clear that 𝑢 = 0 ⇔ 𝑣 = 0 for any 𝜆 ∈ R.

• 𝜆 = 0 is an eigenvalue of the operator 𝐴∗ associated with the eigenfunction

(
1
−1

)
.

We denote this particular eigenfunction by Φ𝜆0,1 associated with the eigenvalue 𝜆0,1 := 0 just to be
consistent with the notations introduced for the first set of eigenfunctions given by (5.27).

• Assume now that 𝜆 ≠ 0 and denote 𝜇 =
√
𝜆 ∈ R+. Thanks to the boundary condition 𝑢′(0) = 𝑣 ′(0),

we expect the solutions to (5.25) as

𝑢 (𝑥) = 𝐴1 cos(𝜇𝑥), 𝑣 (𝑥) = 𝐴2 cos(𝜇𝑥), ∀𝑥 ∈ [0, 1] .
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Then, the boundary conditions 𝑢′(1) = 𝑣 ′(1) and 𝑢 (1) + 𝑣 (1) + 𝛼𝑢′(1) = 0 respectively gives

𝐴1𝜇 sin 𝜇 = 𝐴2𝜇 sin 𝜇, (5.26a)

𝐴1 cos 𝜇 +𝐴2 cos 𝜇 − 𝛼𝐴1𝜇 sin 𝜇 = 0. (5.26b)

The case when 𝐴1 ≠ 𝐴2, the equation (5.26a) yields 𝜇 = 𝑘𝜋 for any 𝑘 ≥ 1, since 𝜇 ≠ 0. Using this
information in (5.26b), we deduce 𝐴1 = −𝐴2. Therefore, the eigenfunctions of the first family, denote
them as Φ𝜆𝑘,1 , are given by

Φ𝜆𝑘,1 :=

(
cos(𝑘𝜋𝑥)
− cos(𝑘𝜋𝑥)

)
, (5.27)

associated with the eigenvalues 𝜆𝑘,1 := 𝑘
2𝜋2 for all 𝑘 ≥ 1.

In the case when sin 𝜇 ≠ 0, that is 𝐴1 = 𝐴2 (≠ 0 since we seek for non-trivial 𝜇), we have from
(5.26b) that

ℎ(𝜇) := 2 cos 𝜇 − 𝛼𝜇 sin 𝜇 = 0, 𝛼 ≥ 0. (5.28)

(i) The case 𝛼 = 0 is straightforward; we have the eigenfunctions Φ𝜆0
𝑘,2

as follows:

Φ𝜆0
𝑘,2

:=

(
cos((𝑘 + 1

2 )𝜋𝑥)
cos((𝑘 + 1

2 )𝜋𝑥)

)
, (5.29)

associated with the eigenvalues 𝜆0
𝑘,2

:= (𝑘 + 1
2 )

2𝜋2 for all 𝑘 ≥ 0.

(ii) The case when 𝛼 ≠ 0, we compute that

ℎ(𝑘𝜋) = (−1)𝑘2 and ℎ

(
(𝑘 + 1

2
)𝜋

)
= (−1)𝑘+1𝛼

(
(𝑘 + 1

2
)𝜋

)
have different signs which ensures the existence of at least one root of ℎ in the interval

(
𝑘𝜋, (𝑘 +

1
2 )𝜋

)
for all 𝑘 ≥ 0.

To prove the uniqueness, we compute

ℎ′(𝜇) = −(𝛼 + 2) sin 𝜇 − 𝛼𝜇 cos 𝜇

which has the same sign throughout the interval
(
𝑘𝜋, (𝑘+ 1

2 )𝜋
)
for any 𝑘 ≥ 0 and thus the required

claim follows.

We denote this unique root by 𝜇𝛼
𝑘,2

and the eigenvalues by 𝜆𝛼
𝑘,2

:= (𝜇𝛼
𝑘,2

)2 ∈
(
𝑘2𝜋2, (𝑘 + 1

2 )
2𝜋2) for

any 𝑘 ≥ 0. The associated eigenfunctions will be then

Φ𝜆𝛼
𝑘,2

:=
©­«
cos(

√︃
𝜆𝛼
𝑘,2
𝑥)

cos(
√︃
𝜆𝛼
𝑘,2
𝑥)

ª®¬ , ∀𝑘 ≥ 0. (5.30)

We now write the following lemma concerning the eigen-elements of 𝐴∗.

Lemma 5.3.1. Let any 𝛼 ≥ 0 be given. Then, we have the following.

1. The spectrum of the operator 𝐴∗ consists of only real simple eigenvalues and it is given by

Λ𝛼 :=
{
𝜆𝑘,1, 𝜆

𝛼
𝑘,2

}
𝑘≥0, (5.31)
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where

𝜆𝑘,1 = 𝑘
2𝜋2 and 𝜆𝛼

𝑘,2

= (𝑘 + 1
2 )

2𝜋2, when 𝛼 = 0,

∈
(
𝑘2𝜋2, (𝑘 + 1

2 )
2𝜋2

)
, when 𝛼 > 0.

(5.32)

The associated eigenfunctions are

Φ𝜆𝑘,1 (𝑥) =
(
cos(𝑘𝜋𝑥)
− cos(𝑘𝜋𝑥)

)
and Φ𝜆𝛼

𝑘,2
(𝑥) = ©­«

cos(
√︃
𝜆𝛼
𝑘,2
𝑥)

cos(
√︃
𝜆𝛼
𝑘,2
𝑥)

ª®¬ , (5.33)

for the eigenvalues 𝜆𝑘,1 and 𝜆𝛼
𝑘,2

respectively for all 𝑘 ≥ 0.

2. Moreover, the set of eigenfunctions
{
Φ𝜆𝑘,1,Φ𝜆𝛼

𝑘,2

}
𝑘≥0 forms an orthogonal basis in 𝑍 = [𝐿2(0, 1)]2.

The formal proof of part 1 has been already discussed before the statement of Lemma 5.3.1.
Further, we note that the operator 𝐴∗ is self-adjoint and it can be proved that 𝐴∗ has compact
resolvent. Consequently, the result of part 2 follows.

Lemma 5.3.2 (Asymptotics of the eigenvalues for 𝛼 > 0). For each 𝛼 > 0, the asymptotic of the
second set of eigenvalues 𝜆𝛼

𝑘,2
are

𝜆𝛼
𝑘,2 = 𝑘

2𝜋2 + 4

𝛼
+𝑂

(
1

𝑘2

)
, for large enough 𝑘 ∈ N∗. (5.34)

Proof. Recall that 𝜇𝛼
𝑘,2

∈
(
𝑘𝜋, (𝑘 + 1

2 )𝜋
)
which uniquely satisfies the equation

2 cos 𝜇𝛼
𝑘,2 − 𝛼𝜇

𝛼
𝑘,2 sin 𝜇

𝛼
𝑘,2 = 0, for each 𝑘 ≥ 0. (5.35)

We set 𝜇𝛼
𝑘,2

= 𝑘𝜋 + 𝛿𝛼
𝑘
with 𝛿𝛼

𝑘
∈ [0, 𝜋2 ]. Then, from (5.35) we have

(−1)𝑘2 cos𝛿𝛼
𝑘
− (−1)𝑘𝛼

(
𝑘𝜋 + 𝛿𝛼

𝑘

)
sin𝛿𝛼

𝑘
= 0, (5.36)

⇒ tan𝛿𝛼
𝑘
=

2

𝛼 (𝑘𝜋 + 𝛿𝛼
𝑘
) → 0 as 𝑘 → +∞

⇒ 𝛿𝛼
𝑘
→ 0 as 𝑘 → +∞. (5.37)

Using the fact (5.37) in (5.36), one has

𝛿𝛼
𝑘
∼+∞

2

𝛼𝑘𝜋
,

and thus,

𝜇𝛼
𝑘,2 ∼+∞ 𝑘𝜋 + 2

𝛼𝑘𝜋
.

Thereafter, expressing 𝜇𝛼
𝑘,2

= 𝑘𝜋 + 2
𝛼𝑘𝜋

+ 𝛿𝛼
𝑘
and substituting this in (5.35), one can obtain

𝛼𝛿𝛼
𝑘
𝑘𝜋 = − 4

𝛼𝑘2𝜋2
− 𝛼 (𝛿𝛼

𝑘
)2 −

4𝛿𝛼
𝑘

𝑘𝜋
,

which asymptotically gives 𝛿𝛼
𝑘
∼+∞ 𝑂 (1/𝑘3). So, finally we have

𝜇𝛼
𝑘,2 = 𝑘𝜋 + 2

𝛼𝑘𝜋
+𝑂

(
1

𝑘3

)
, for large enough 𝑘 ∈ N∗,

and that the asymptotic expression (5.34) follows.
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5.3.2 Formulation of the control problem and approximate controllability

We first present an equivalent criterion for the null-controllability of the linear model (5.4).

Proposition 5.3.1 (Formulation of the control problem). Let any (𝑦0, 𝑧0) ∈ 𝑍 , time 𝑇 > 0 and
parameter 𝛼 ≥ 0 be given. Then a function 𝑞 ∈ 𝐿2(0,𝑇 ) is said to be a null-control for the system (5.4)
if and only if it satisfies: for any (𝜁𝑇 , 𝜃𝑇 ) ∈ 𝑍 ,(

(𝑦0, 𝑧0), 𝑒−𝑇𝐴
∗ (𝜁𝑇 , 𝜃𝑇 )

)
𝑍
=

∫ 𝑇

0
𝑞(𝑡)

〈 (
1
0

)
,
(
𝑒−(𝑇−𝑡 )𝐴∗ (𝜁𝑇 , 𝜃𝑇 )

)
(0)

〉
R2
. (5.38)

We hereby introduce the observation operator

B∗ := 1{𝑥=0}

(
1
0

)
: H ↦→ R (5.39)

(recall that H = [𝐻1(0, 1)]2) and to this end, we have the following result.

Proposition 5.3.2 (Approximate controllability). Let 𝛼 ≥ 0 be given. Then, the linearized system
(5.4) is approximately controllable at any given time 𝑇 > 0 in the space 𝑍 .

Proof. Note that B∗Φ𝜆𝑘,1 = B∗Φ𝜆𝛼
𝑘,2

= 1 for all 𝛼 ≥ 0 and 𝑘 ≥ 0. Then, by applying the Fattorini-Hautus

criterion (see [Fat66, Oli14]), we conclude the proposition.

5.3.3 The moments problem

Recall that for any parameter 𝛼 ≥ 0, the set of eigenfunctions {Φ𝜆}𝜆∈Λ𝛼 of 𝐴∗ forms an orthogonal basis
in 𝑍 (see Lemma 5.3.1). Thus, it is enough to check the control problem (5.38) for all Φ𝜆 ∈ {Φ𝜆}𝜆∈Λ𝛼 .
This gives us the following.

• For any (𝑦0, 𝑧0) ∈ 𝑍 and parameter 𝛼 ≥ 0, a function 𝑞 ∈ 𝐿2(0,𝑇 ) is a null-control for the system
(5.4) if and only if we have∫ 𝑇

0
𝑒−𝜆 (𝑇−𝑡 )𝑞(𝑡) = 𝑒−𝜆𝑇

B∗Φ𝜆

(
(𝑦0, 𝑧0),Φ𝜆

)
𝑍
, for all 𝜆 ∈ Λ𝛼 . (5.40)

Here, we have used the fact that

𝑒−𝑡𝐴
∗
Φ𝜆 = 𝑒−𝑡𝜆Φ𝜆, ∀𝜆 ∈ Λ𝛼 .

We also recall that B∗Φ𝜆 = 1 for all 𝜆 ∈ Λ𝛼 which ensures that the set of moment problems (5.40) is
well-defined and we shall solve those in the next subsections.

5.3.4 Existence of bi-orthogonal family

In the framework of parabolic control theory, the existence of bi-orthogonal families to the family of
exponential functions in 𝐿2(0,𝑇 ) has been extensively studied from the pioneer work [FR75] up to the
very recent developments. In this paper, we use [Boy23, Theorem V.4.26 & Corollary V.4.27] (which
is similar to [BBGBO14, Theorem 1.5] but with a more general set of assumptions) to establish the
following result.

Lemma 5.3.3. For any 𝛼 ≥ 0 recall the set Λ𝛼 given by (5.31). Then, there exists a family (𝑝𝜆)𝜆∈Λ𝛼 ⊂
𝐿2(0,𝑇 ) bi-orthogonal to (𝑒−𝜆 (𝑇−·) )𝜆∈Λ𝛼 , i.e.,∫ 𝑇

0
𝑝𝜆 (𝑡)𝑒−𝜆 (𝑇−𝑡 ) = 𝛿

𝜆,𝜆
, for any 𝜆, 𝜆 ∈ Λ𝛼 . (5.41)

In addition, they satisfy the following estimate

∥𝑝𝜆 ∥𝐿2 (0,𝑇 ) ≤ 𝐶𝑒
𝐶
𝑇 𝑒

𝑇
2 𝜆+𝐶

√
𝜆, ∀𝜆 ∈ Λ𝛼 , (5.42)

where the constant 𝐶 > 0 is independent in 𝑇 .
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Remark 5.3.1. Without loss of generality, we assume that all the eigenvalues are positive. In fact,
we can choose some 𝑐0 > 0 such that 𝜆 + 𝑐0 > 0 for all 𝜆 ∈ Λ𝛼 . In what follows, an extra factor 𝑒𝑇𝑐0

will appear in the estimation of control cost, but without any consequences on our analysis.

Now, as mentioned earlier, we shall use [Boy23, Theorem V.4.26] in order to prove Lemma 5.3.3,
and for that we need to show that the set of eigenvalues Λ𝛼 defined by (5.31), belongs to some sector
of the complex half-plane, satisfies a uniform gap property and some asymptotic conditions on the
counting function.

• The sector condition. For any 𝜈 > 0, we define the sector

𝒮𝜈 := {𝑧 ∈ C | Re𝑧 > 0, and |Im𝑧 | < (sinh𝜈)Re𝑧} .

In our case, the set of eigenvalues Λ𝛼 is real and so it is clear that there exists some 𝜈 > 0 such
that

Λ𝛼 ⊂ 𝒮𝜈 , (5.43)

for any 𝛼 ≥ 0.

• The gap condition.

Recall the set of eigenvalues given by (5.31) and the asymptotics of the eigenvalues 𝜆𝛼
𝑘,2

for 𝛼 > 0
from Lemma 5.3.2. Then it can be seen that there exists some 𝑐1 > 0 such that we have

|𝜆𝑘+1,1 − 𝜆𝑘,1 | ≥ 𝑐1𝑘, ∀𝑘 ≥ 1,

|𝜆𝛼
𝑘+1,2 − 𝜆

𝛼
𝑘,2 | ≥ 𝑐1𝑘, ∀𝑘 ≥ 1 and 𝛼 ≥ 0,

and there is some 𝑘𝛼 ∈ N∗ such that

|𝜆0
𝑘,2 − 𝜆𝑘,1 | ≥ 𝑐1𝑘, ∀𝑘 ≥ 1,

|𝜆𝛼
𝑘,2 − 𝜆𝑘,1 | ≥

𝑐1

𝛼
, ∀𝑘 ≥ 𝑘𝛼 .

Remark 5.3.2. Unlike the case of 𝛼 = 0, we note that for 𝛼 > 0 the gap between 𝜆𝛼
𝑘,2

and 𝜆𝑘,1
tends to a finite positive number as 𝑘 goes to infinity but does not tend to infinity like for the
other cases. This is the reason why we needed to compute the precise asymptotic expansions of
the eigenvalues 𝜆𝛼

𝑘,2
for 𝛼 > 0.

Using the above lower bounds of the differences of eigenvalues and the fact that the spectrum
is discrete, we can say that there is some 𝜌 > 0 such that

|𝜆 − 𝜆 | ≥ 𝜌, for any 𝜆, 𝜆 ∈ Λ𝛼 with 𝜆 ≠ 𝜆, (5.44)

which is the uniform spectral gap property.

• The condition on counting function. Let N𝛼 be the counting function associated with the set of
eigenvalues Λ𝛼 (for any 𝛼 ≥ 0) defined by

N𝛼 (𝑟 ) := # {𝜆 ∈ Λ𝛼 , s.t. |𝜆 | ≤ 𝑟 } , ∀𝑟 > 0.

Our goal is to show that there exists some 𝜅0 > 0 independent in the set of eigenvalues such that

N𝛼 (𝑟 ) ≤ 𝜅0𝑟1/2, ∀𝑟 > 0, (5.45a)

|N𝛼 (𝑟 ) − N𝛼 (𝑠) | ≤ 𝜅0
(
1 + |𝑟 − 𝑠 |1/2

)
, ∀𝑟, 𝑠 > 0. (5.45b)

From (5.31), we recall that

Λ𝛼 =
{
𝜆𝑘,1, 𝜆

𝛼
𝑘,2

}
𝑘≥0.
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As it is shown for instance in [Boy23, Lemma V.4.20], it is enough to establish the required
results (5.45) for each of the two sets {𝜆𝑘,1}𝑘≥0 and {𝜆𝛼

𝑘,2
}𝑘≥0. We shall show this for {𝜆𝛼

𝑘,2
}𝑘≥0

when 𝛼 > 0 since the same reasoning will be applicable for the set {𝜆0
𝑘,2

}𝑘≥0 or {𝜆𝑘,1}𝑘≥0.
We denote the associated counting function by N𝛼,2.

– Let 𝑟 > 0 be fixed. Then, N𝛼,2(𝑟 ) = 𝑘 (𝑘 ∈ N∗) implies

𝜆𝛼
𝑘−1,2 ≤ 𝑟,

since {𝜆𝛼
𝑘,2

}𝑘≥0 is increasing. But we have 𝜆𝛼
𝑘−1,2 ∈

(
(𝑘 − 1)2𝜋2, (𝑘 − 1

2 )
2𝜋2

)
for any 𝑘 ≥ 1,

which gives

(𝑘 − 1)2𝜋2 ≤ 𝑟, i.e., 𝑘 ≤ 1 + 1

𝜋

√
𝑟,

and the first condition (5.45a) follows for the counting function.

– Let any 0 < 𝑠 < 𝑟 be given. Assume that 𝑙 = N𝛼,2(𝑠) and 𝑘 = N𝛼,2(𝑟 ) for some 𝑙, 𝑘 ∈ N∗

(certainly, 𝑘 > 𝑙). Then, using the properties of the set {𝜆𝛼
𝑘,2

}𝑘≥0, one has

(𝑘 − 1)𝜋 ≤
√︃
𝜆𝛼
𝑘−1,2 ≤

√
𝑟, (𝑙 + 1

2
)𝜋 >

√︃
𝜆𝛼
𝑙,2

>
√
𝑠,

which yields

𝑘 − 𝑙 ≤ 3

2
+ 1

𝜋

(√
𝑟 −

√
𝑠
)
≤ 3

2
+ 1

𝜋

√
𝑟 − 𝑠,

and that the second condition (5.45b) on the counting function is true.

Since the three conditions (5.43), (5.44) and (5.45) are now satisfied, by using [Boy23, Theorem
V.4.16], we can ensure the existence of a bi-orthogonal family (𝑝𝜆)𝜆∈Λ𝛼 ⊂ 𝐿2(0,𝑇 ) to (𝑒−𝜆 (𝑇−·) )𝜆Λ𝛼
satisfying the sharp estimate as mentioned in Lemma 5.3.3.

5.3.5 Existence of a boundary null-control

Now, we are in position to solve the set of moments problem (5.40) to find a control for the system
(5.4).

Proof of Theorem 5.1.2. For any 𝛼 ≥ 0 and initial data (𝑦0, 𝑧0) ∈ 𝑍 , we consider

𝑞(𝑡) =
∑︁
𝜆∈Λ𝛼

𝑞𝜆 (𝑡), ∀𝑡 ∈ [0,𝑇 ], (5.46a)

with 𝑞𝜆 (𝑡) =
𝑒−𝜆𝑇

B∗Φ𝜆

(
(𝑦0, 𝑧0),Φ𝜆

)
𝑍
𝑝𝜆 (𝑡), ∀𝑡 ∈ [0,𝑇 ], ∀𝜆 ∈ Λ𝛼 (5.46b)

where 𝑝𝜆 are given by Lemma 5.3.3. Observe that, the above choice of function 𝑞 formally solves the
set of moments problem (5.40), thanks to the property (5.41) verified by 𝑝𝜆 for each 𝜆 ∈ Λ𝛼 .

Now, recall that B∗Φ𝜆 = 1 for all 𝜆 ∈ Λ𝛼 (see Proposition 5.3.2). Also, from the expressions of the
eigenfunctions given by (5.27)–(5.29)–(5.30), we have ∥Φ𝜆 ∥𝑍 ≤ 𝐶 for any 𝜆 ∈ Λ𝛼 . Using these and the
𝐿2(0,𝑇 )-estimates of bi-orthogonal family (𝑝𝜆)𝜆∈Λ𝛼 given by (5.42), we obtain 𝜆 ∈ Λ𝛼 , that

∥𝑞𝜆 ∥𝐿2 (0,𝑇 ) ≤ 𝐶𝑒−𝜆𝑇𝑒
𝐶
𝑇 𝑒

𝑇
2 𝜆+𝐶

√
𝜆 ∥(𝑦0, 𝑧0)∥𝑍 ≤ 𝐶𝑒 𝐶

𝑇 𝑒−
𝑇
2 𝜆𝑒

𝑇
4 𝜆+

𝐶2

𝑇 ∥(𝑦0, 𝑧0)∥𝑍 ≤ 𝐶𝑒 𝐶
𝑇 𝑒−

𝑇
4 𝜆 ∥(𝑦0, 𝑧0)∥𝑍 , (5.47)

where we have used the Young’s inequality

𝐶
√
𝜆 ≤ 𝑇

4
𝜆 + 𝐶

2

𝑇
, ∀𝜆 ∈ Λ𝛼 .
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Using (5.47) we have

∥𝑞∥𝐿2 (0,𝑇 ) ≤
∑︁
𝜆∈Λ𝛼

∥𝑞𝜆 ∥𝐿2 (0,𝑇 ) ≤ 𝐶𝑒
𝐶
𝑇 ∥(𝑦0, 𝑧0)∥𝑍

∑︁
𝜆∈Λ𝛼

𝑒−
𝑇
4 𝜆 ≤ 𝑀𝑒

𝑀
𝑇 ∥(𝑦0, 𝑧0)∥𝑍 ,

thanks to the fact that Λ𝛼 is an increasing sequence of order 𝑘2 (see (5.31)). Moreover, it is clear that
the constant 𝑀 > 0 does not depend on 𝑇 or (𝑦0, 𝑧0).

The proof is complete.

5.4 Local null-controllability of the nonlinear system

This section is devoted to prove the local null-controllability result for the nonlinear system (5.1), i.e.,
Theorem 5.1.1. The proof will be based on the so-called source term method developed in [LTT13]
followed by a Banach fixed point argument and to employ this we shall extensively use the control
cost 𝑀𝑒

𝑀
𝑇 ∥(𝑦0, 𝑧0)∥𝑍 for the linear system, given by Theorem 5.1.2.

5.4.1 The source term method

Let us discuss the source term method for our problem. We first consider the following system:

𝑦𝑡 − 𝑦𝑥𝑥 = 𝜉, in (0,𝑇 ) × (0, 1),
𝑧𝑡 − 𝑧𝑥𝑥 = 𝜂, in (0,𝑇 ) × (0, 1),
𝑦𝑥 (𝑡, 0) = 𝑞(𝑡), 𝑧𝑥 (𝑡, 0) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑦𝑥 (𝑡, 1) = 𝑧𝑥 (𝑡, 1), for 𝑡 ∈ (0,𝑇 ),
𝑦 (𝑡, 1) + 𝑧 (𝑡, 1) + 𝛼𝑦𝑥 (𝑡, 1) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑦 (0, 𝑥) = 𝑦0(𝑥), 𝑧 (0, 𝑥) = 𝑧0(𝑥), in (0, 1) .

(5.48)

Then, our goal is to establish the null-controllability of the above system for any given parameter 𝛼 ≥ 0,
initial data (𝑦0, 𝑧0) ∈ 𝑍 and source terms (𝜉, 𝜂) which belong to some certain weighted 𝐿2(0,𝑇 ;𝑍 ) space.
Let us discuss it at length in the next couple of subsections.

5.4.1.1 Construction of weight functions and weighted spaces

Assume the constants 𝛽 > 0, 𝛾 > 1 in such a way that

1 < 𝛾 <
√
2, and 𝛽 >

𝛾2

2 − 𝛾2 . (5.49)

We now define the weight functions
𝜌0(𝑡) = 𝑒−

𝛽𝑀

(𝛾−1) (𝑇 −𝑡 ) ,

𝜌S (𝑡) = 𝑒−
(1+𝛽 )𝛾2𝑀
(𝛾−1) (𝑇 −𝑡 ) ,

∀𝑡 ∈
[
𝑇

(
1 − 1

𝛾2

)
,𝑇

]
, (5.50)

and extended them in a constant way in

[
0,𝑇

(
1 − 1

𝛾2

) ]
such that they are continuous and non-

increasing in [0,𝑇 ]. Note that 𝜌0(𝑇 ) = 𝜌S (𝑇 ) = 0 and further, we compute that

𝜌20 (𝑡)
𝜌S (𝑡)

= 𝑒
𝛾2𝑀+𝛽𝑀 (𝛾2−2)

(𝛾−1) (𝑇 −𝑡 ) , ∀𝑡 ∈
[
𝑇

(
1 − 1

𝛾2

)
,𝑇

]
.

Due to the choices of 𝛾, 𝛽 in (5.49), we have 𝑀
(
𝛾2+𝛽 (𝛾2−2)

)
< 0, (𝛾 −1) > 0 and therefore we conclude

that

𝜌20 (𝑡)
𝜌S (𝑡)

≤ 1, ∀𝑡 ∈ [0,𝑇 ] . (5.51)
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Let us now define the following weighted spaces:

S :=

{
𝜉 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 1)) | 𝜉

𝜌S
∈ 𝐿2(0,𝑇 ;𝐿2(0, 1))

}
(5.52)

Y :=

{
(𝑦, 𝑧) ∈ 𝐿2(0,𝑇 ;𝑍 ) |

(
𝑦

𝜌0
,
𝑧

𝜌0

)
∈ 𝐿2(0,𝑇 ;𝑍 )

}
(5.53)

Q :=

{
𝑞 ∈ 𝐿2(0,𝑇 ) | 𝑞

𝜌0
∈ 𝐿2(0,𝑇 )

}
, (5.54)

where the functions 𝜌0 and 𝜌S are defined in (5.50). The inner product on the spaces S,Y and Q are
respectively given by 〈

𝜉, 𝜉

〉
S
:=

∫ 𝑇

0

1

𝜌2S (𝑡)

〈
𝜉 (𝑡), 𝜉 (𝑡)

〉
𝐿2 (0,1)

𝑑𝑡, ∀ 𝜉, 𝜉 ∈ S,

⟨(𝑦, 𝑧), (𝑦, 𝑧)⟩Y :=

∫ 𝑇

0

1

𝜌20 (𝑡)
⟨(𝑦 (𝑡), 𝑧 (𝑡)), (𝑦 (𝑡), 𝑧 (𝑡))⟩𝑍 𝑑𝑡, ∀ (𝑦, 𝑧), (𝑦, 𝑧) ∈ Y,

⟨𝑞, 𝑞⟩Q :=

∫ 𝑇

0

1

𝜌20 (𝑡)
𝑞(𝑡)𝑞(𝑡)𝑑𝑡, ∀𝑞, 𝑞 ∈ Q .

Accordingly, the associated norms on the spaces S,Y and Q are respectively

∥𝜉 ∥2S :=

∫ 𝑇

0

1

𝜌2S (𝑡)
∥𝜉 (𝑡)∥2

𝐿2 (0,1) 𝑑𝑡, ∀ 𝜉 ∈ S, (5.55)

∥(𝑦, 𝑧)∥2Y :=

∫ 𝑇

0

1

𝜌20 (𝑡)
∥(𝑦 (𝑡), 𝑧 (𝑡))∥2𝑍 𝑑𝑡, ∀ (𝑦, 𝑧) ∈ Y, (5.56)

∥𝑞∥2Q :=

∫ 𝑇

0

1

𝜌20 (𝑡)
|𝑞(𝑡) |2 𝑑𝑡, ∀𝑞 ∈ Q . (5.57)

5.4.1.2 Null-controllability of the linearized system with source terms

Our next result addresses the null-controllability of the inhomogeneous linear system (5.48) with given
source terms 𝜉, 𝜂 from the space S and by definition of S, it is clear that the function 𝜉 or 𝜂 vanishes
exponentially near 𝑡 = 𝑇 . With the above choice of source functions in hand, and then by utilizing the
explicit control cost 𝑀𝑒

𝑀
𝑇 for the homogeneous control system (see Section 5.3.5), we shall eventually

show that there exists a solution-control pair ((𝑦, 𝑧), 𝑞) in the space Y×Q to the system (5.48). Then,
by definitions of the space Y and weight function 𝜌0 (see (5.53) and (5.50) resp.), one can conclude
that the solution (𝑦, 𝑧) has to be “zero” at 𝑡 = 𝑇 . Precisely we prove the following proposition.

Proposition 5.4.1. Let any parameter 𝛼 ≥ 0 be given. Then, for any given initial state (𝑦0, 𝑧0) ∈ 𝑍
and source terms (𝜉, 𝜂) ∈ 𝐿2(0,𝑇 ;𝑍 ), there exists a linear map T : 𝑍 × 𝐿2(0,𝑇 ;𝑍 ) → Y × Q such that
T ((𝑦0, 𝑧0), (𝜉, 𝜂)) := ((𝑦, 𝑧), 𝑞) solves the system (5.48).

In addition, we have the following estimate



( 𝑦𝜌0 , 𝑧𝜌0
)





C0 ( [0,𝑇 ];𝑍 )
+





( 𝑦𝜌0 , 𝑧𝜌0
)





𝐿2 (0,𝑇 ;H)
+





 𝑞𝜌0





𝐿2 (0,𝑇 )

≤ 𝐶𝑒𝐶𝑇+𝐶
𝑇

(
∥(𝑦0, 𝑧0)∥𝑍 +





( 𝜉𝜌S , 𝜂𝜌S
)





𝐿2 (0,𝑇 ;𝑍 )

)
,

(5.58)

for some constant 𝐶 > 0 that is independent in 𝑇 .

Proof. For the given time 𝑇 > 0, let us define a sequence (𝑇𝑘 )𝑘≥0 given by

𝑇𝑘 := 𝑇 − 𝑇

𝛾𝑘
, ∀𝑘 ≥ 0, (5.59)
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where 𝛾 is introduced in (5.49), and it can be easily seen that

(0,𝑇 ) = ∪𝑘≥0(𝑇𝑘 ,𝑇𝑘+1) .

We also note that with this choice of 𝑇𝑘 , one has

𝜌0(𝑇𝑘+2) = 𝑒
𝑀

𝑇𝑘+2−𝑇𝑘+1 𝜌S (𝑇𝑘 ), ∀𝑘 ≥ 0, (5.60)

where 𝜌0 and 𝜌S have been defined by (5.50) .

Now, our goal is to decompose (5.48) in (𝑇𝑘 ,𝑇𝑘+1) for each 𝑘 ≥ 0, into two parts: one is only with
forcing terms and zero initial data, and the other one is a homogeneous control system along with the
initial data.

• Inhomogeneous system without control input.
Let us define a sequence (𝑎𝑘 )𝑘≥0 such that

𝑎0 := (𝑦0, 𝑧0) ∈ 𝑍 and 𝑎𝑘+1 :=
(
𝑦 (𝑇 −

𝑘+1), 𝑧 (𝑇
−
𝑘+1)

)
, ∀𝑘 ≥ 0, (5.61)

where (𝑦, 𝑧) is the unique weak solution to the system

𝑦𝑡 − 𝑦𝑥𝑥 = 𝜉, in (𝑇𝑘 ,𝑇𝑘+1) × (0, 1),
𝑧𝑡 − 𝑧𝑥𝑥 = 𝜂, in (𝑇𝑘 ,𝑇𝑘+1) × (0, 1),
𝑦𝑥 (𝑡, 0) = 0, 𝑧𝑥 (𝑡, 0) = 0, for 𝑡 ∈ (𝑇𝑘 ,𝑇𝑘+1),
𝑦𝑥 (𝑡, 1) = 𝑧𝑥 (𝑡, 1), for 𝑡 ∈ (𝑇𝑘 ,𝑇𝑘+1),
𝑦 (𝑡, 1) + 𝑧 (𝑡, 1) + 𝛼𝑦𝑥 (𝑡, 1) = 0, for 𝑡 ∈ (𝑇𝑘 ,𝑇𝑘+1),
𝑦 (𝑇 +

𝑘
, ·) = 0, 𝑧 (𝑇 +

𝑘
, ·) = 0, in (0, 1),

(5.62)

for all 𝑘 ≥ 0. Thanks to the estimate (5.18) in Proposition 5.2.3, we get

∥(𝑦, 𝑧)∥C0 ( [𝑇𝑘 ,𝑇𝑘+1 ];𝑍 ) + ∥(𝑦, 𝑧)∥𝐿2 (𝑇𝑘 ,𝑇𝑘+1;H) ≤ 𝐶𝑒𝐶𝑇 ∥(𝜉, 𝜂)∥𝐿2 (𝑇𝑘 ,𝑇𝑘+1;𝑍 ) , ∀𝑘 ≥ 0. (5.63)

In particular, by means of (5.61), we have

∥𝑎𝑘+1∥𝑍 ≤ 𝐶𝑒𝐶𝑇 ∥(𝜉, 𝜂)∥𝐿2 (𝑇𝑘 ,𝑇𝑘+1;𝑍 ) , ∀𝑘 ≥ 0. (5.64)

• Control system without the source terms. We now consider the following homogeneous control
system: 

𝑦𝑡 − 𝑦𝑥𝑥 = 0, in (𝑇𝑘 ,𝑇𝑘+1) × (0, 1),
𝑧𝑡 − 𝑧𝑥𝑥 = 0, in (𝑇𝑘 ,𝑇𝑘+1) × (0, 1),
𝑦𝑥 (𝑡, 0) = 𝑞𝑘 (𝑡), 𝑧𝑥 (𝑡, 0) = 0, for 𝑡 ∈ (𝑇𝑘 ,𝑇𝑘+1),
𝑦𝑥 (𝑡, 1) = 𝑧𝑥 (𝑡, 1), for 𝑡 ∈ (𝑇𝑘 ,𝑇𝑘+1),
𝑦 (𝑡, 1) + 𝑧 (𝑡, 1) + 𝛼𝑦𝑥 (𝑡, 1) = 0, for 𝑡 ∈ (𝑇𝑘 ,𝑇𝑘+1),(
𝑦 (𝑇 +

𝑘
, ·), 𝑧 (𝑇 +

𝑘
, ·)

)
= 𝑎𝑘 , in (0, 1),

(5.65)

for all 𝑘 ≥ 0. Using Theorem 5.1.2, we have the existence of a control 𝑞𝑘 ∈ 𝐿2(𝑇𝑘 ,𝑇𝑘+1) with the
estimate

∥𝑞𝑘 ∥𝐿2 (𝑇𝑘 ,𝑇𝑘+1 ) ≤ 𝑀𝑒
𝑀

𝑇𝑘+1−𝑇𝑘 ∥𝑎𝑘 ∥𝑍 , (5.66)

such that the associated solution (𝑦, 𝑧) to (5.65) satisfies(
𝑦 (𝑇 −

𝑘+1, 𝑥), 𝑧 (𝑇
−
𝑘+1, 𝑥)

)
= (0, 0), ∀𝑥 ∈ (0, 1) and ∀𝑘 ≥ 0.

Combining (5.66) with (5.64), we have

∥𝑞𝑘+1∥𝐿2 (𝑇𝑘+1,𝑇𝑘+2 ) ≤ 𝑀𝑒
𝑀

𝑇𝑘+2−𝑇𝑘+1 ∥𝑎𝑘+1∥𝑍 ≤ 𝐶𝑒𝐶𝑇𝑒
𝑀

𝑇𝑘+2−𝑇𝑘+1 ∥(𝜉, 𝜂)∥𝐿2 (𝑇𝑘 ,𝑇𝑘+1;𝑍 ) , ∀𝑘 ≥ 0.
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But 𝜌S is a non-increasing function in [𝑇𝑘 ,𝑇𝑘+1]; in what follows we have

∥𝑞𝑘+1∥𝐿2 (𝑇𝑘+1,𝑇𝑘+2 ) ≤ 𝐶𝑒
𝐶𝑇𝑒

𝑀
𝑇𝑘+2−𝑇𝑘+1 𝜌S (𝑇𝑘 )





( 𝜉𝜌S , 𝜂𝜌S
)





𝐿2 (𝑇𝑘 ,𝑇𝑘+1;𝑍 )
, ∀𝑘 ≥ 0.

Then, using the relation (5.60) between the weight functions 𝜌0 and 𝜌S, we get

∥𝑞𝑘+1∥𝐿2 (𝑇𝑘+1,𝑇𝑘+2 ) ≤ 𝐶𝑒
𝐶𝑇 𝜌0(𝑇𝑘+2)





( 𝜉𝜌S , 𝜂𝜌S
)





𝐿2 (𝑇𝑘 ,𝑇𝑘+1;𝑍 )
, ∀𝑘 ≥ 0. (5.67)

Again, since 𝜌0 is non-increasing, we deduce



𝑞𝑘+1𝜌0






𝐿2 (𝑇𝑘+1,𝑇𝑘+2 )

≤ 1

𝜌0(𝑇𝑘+2)
∥𝑞𝑘+1∥𝐿2 (𝑇𝑘+1,𝑇𝑘+2 ) ≤ 𝐶𝑒

𝐶𝑇





( 𝜉𝜌S , 𝜂𝜌S
)





𝐿2 (𝑇𝑘 ,𝑇𝑘+1;𝑍 )
, ∀𝑘 ≥ 0. (5.68)

We now define the control function 𝑞 as follows:

𝑞 :=
∑︁
𝑘≥0

𝑞𝑘 𝜒 (𝑇𝑘 ,𝑇𝑘+1 ) in (0,𝑇 ) . (5.69)

Recall that we have already established the 𝐿2-estimates of
𝑞𝑘

𝜌0
for all 𝑘 ≥ 1 by (5.68). It only remains

to find the 𝐿2-estimate of
𝑞0

𝜌0
. But from the bound (5.66), we get

∥𝑞0∥𝐿2 (0,𝑇1 ) ≤ 𝑀𝑒
𝑀
𝑇1 ∥𝑎0∥𝑍 = 𝑀𝑒

𝑀
𝑇1 ∥(𝑦0, 𝑧0)∥𝑍 ,

and then using the fact that 𝜌0 is non-increasing, one has



𝑞0𝜌0





𝐿2 (0,𝑇1 )

≤ 1

|𝜌0(𝑇1) |
∥𝑞0∥ ≤ 𝑀

𝜌0(𝑇1)
𝑒

𝑀
𝑇1 ∥(𝑦0, 𝑧0)∥𝑍 = 𝑀𝑒

𝑀𝛾 (1+𝛽𝛾 )
(𝛾−1)𝑇 ∥(𝑦0, 𝑧0)∥𝑍 , (5.70)

where in the last inclusion, we have used the fact that 𝑇2 = 𝑇 − 𝑇

𝛾2
and 𝜌0(𝑇1) = 𝜌0(𝑇2) = 𝑒−

𝛾2𝛽𝑀
(𝛾−1)𝑇 . Now,

the quantity
𝑀𝛾 (1+𝛽𝛾 )

(𝛾−1) being positive, we eventually obtain (by combining (5.68) and (5.70))



 𝑞𝜌0





𝐿2 (0,𝑇 )

≤ 𝐶𝑒𝐶𝑇+𝐶
𝑇

(
∥(𝑦0, 𝑧0)∥𝑍 +





( 𝜉𝜌S , 𝜂𝜌S
)





𝐿2 (0,𝑇 ;𝑍 )

)
, (5.71)

where the constant 𝐶 > 0 is independent in 𝑇 > 0.

• Control system with the source terms. We now define

(𝑦, 𝑧) = (𝑦, 𝑧) + (𝑦, 𝑧) . (5.72)

Then (𝑦, 𝑧) satisfies the following system

𝑦𝑡 − 𝑦𝑥𝑥 = 𝜉, in (𝑇𝑘 ,𝑇𝑘+1) × (0, 1),
𝑧𝑡 − 𝑧𝑥𝑥 = 𝜂, in (𝑇𝑘 ,𝑇𝑘+1) × (0, 1),
𝑦𝑥 (𝑡, 0) = 𝑞𝑘 (𝑡), 𝑧𝑥 (𝑡, 0) = 0, for 𝑡 ∈ (𝑇𝑘 ,𝑇𝑘+1),
𝑦𝑥 (𝑡, 1) = 𝑧𝑥 (𝑡, 1), for 𝑡 ∈ (𝑇𝑘 ,𝑇𝑘+1),
𝑦 (𝑡, 1) + 𝑧 (𝑡, 1) + 𝛼𝑦𝑥 (𝑡, 1) = 0, for 𝑡 ∈ (𝑇𝑘 ,𝑇𝑘+1),
(𝑦 (𝑇𝑘 , ·), 𝑧 (𝑇𝑘 , ·)) = 𝑎𝑘 , in (0, 1),

(5.73)

for all 𝑘 ≥ 0. Note that, the solution (𝑦, 𝑧) satisfies

(𝑦 (𝑇0), 𝑧 (𝑇0)) = 𝑎0 = (𝑦0, 𝑧0),
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and, for all 𝑘 ≥ 0 we have(
𝑦 (𝑇 −

𝑘+1), 𝑧 (𝑇
−
𝑘+1)

)
=

(
𝑦 (𝑇 −

𝑘+1), 𝑧 (𝑇
−
𝑘+1)

)
+

(
𝑦 (𝑇 −

𝑘+1), 𝑧 (𝑇
−
𝑘+1)

)
= 𝑎𝑘+1,(

𝑦 (𝑇 +
𝑘+1), 𝑧 (𝑇

+
𝑘+1)

)
=

(
𝑦 (𝑇 +

𝑘+1), 𝑧 (𝑇
+
𝑘+1)

)
+

(
𝑦 (𝑇 +

𝑘+1), 𝑧 (𝑇
+
𝑘+1)

)
= 𝑎𝑘+1.

Therefore (𝑦, 𝑧) is continuous at 𝑇𝑘 for all 𝑘 ≥ 0.

Now, applying the energy estimate (5.24) for the system (5.73), and using the estimations for 𝑎𝑘+1
from (5.64) and 𝑞𝑘+1 from (5.66), we have

∥(𝑦, 𝑧)∥C0 ( [𝑇𝑘+1,𝑇𝑘+2 ];𝑍 ) + ∥(𝑦, 𝑧)∥𝐿2 (𝑇𝑘+1,𝑇𝑘+2;H)

≤ 𝐶𝑒𝐶𝑇
(
∥𝑎𝑘+1∥𝑍 + ∥(𝜉, 𝜂)∥𝐿2 (𝑇𝑘+1,𝑇𝑘+2;𝑍 ) + ∥𝑞𝑘+1∥𝐿2 (𝑇𝑘+1,𝑇𝑘+2 )

)
≤ 𝐶𝑒𝐶𝑇

(
∥𝑎𝑘+1∥𝑍 + ∥(𝜉, 𝜂)∥𝐿2 (𝑇𝑘+1,𝑇𝑘+2;𝑍 ) +𝑀𝑒

𝑀
𝑇𝑘+2−𝑇𝑘+1 ∥𝑎𝑘+1∥𝑍

)
≤ 𝐶𝑒𝐶𝑇 ∥(𝜉, 𝜂)∥𝐿2 (𝑇𝑘 ,𝑇𝑘+2;𝑍 ) +𝐶𝑒𝐶𝑇𝑒

𝑀
𝑇𝑘+2−𝑇𝑘+1 ∥(𝜉, 𝜂)∥𝐿2 (𝑇𝑘 ,𝑇𝑘+1;𝑍 )

≤ 𝐶𝑒𝐶𝑇𝑒
𝑀

𝑇𝑘+2−𝑇𝑘+1 ∥(𝜉, 𝜂)∥𝐿2 (𝑇𝑘 ,𝑇𝑘+2;𝑍 ) ,

for all 𝑘 ≥ 0.

Since 𝜌S is non-increasing in [𝑇𝑘 ,𝑇𝑘+2], we obtain from above,

∥(𝑦, 𝑧)∥C0 ( [𝑇𝑘+1,𝑇𝑘+2 ];𝑍 ) + ∥(𝑦, 𝑧)∥𝐿2 (𝑇𝑘+1,𝑇𝑘+2;H) ≤ 𝐶𝑒𝐶𝑇𝑒
𝑀

𝑇𝑘+2−𝑇𝑘+1 𝜌S (𝑇𝑘 )




( 𝜉𝜌S , 𝜂𝜌S

)




𝐿2 (𝑇𝑘 ,𝑇𝑘+2;𝑍 )

= 𝐶𝑒𝐶𝑇 𝜌0(𝑇𝑘+2)




( 𝜉𝜌S , 𝜂𝜌S

)




𝐿2 (𝑇𝑘 ,𝑇𝑘+2;𝑍 )

, (5.74)

for all 𝑘 ≥ 0, since 𝜌0(𝑇𝑘+2) = 𝑒
𝑀

𝑇𝑘+2−𝑇𝑘+1 𝜌S (𝑇𝑘 ) (see (5.60)).

Using the fact that 𝜌0 is non-increasing on [𝑇𝑘+1,𝑇𝑘+2], we further deduce from (5.74) that



( 𝑦𝜌0 , 𝑧𝜌0
)





C0 ( [𝑇𝑘+1,𝑇𝑘+2 ];𝑍 )
+





( 𝑦𝜌0 , 𝑧𝜌0
)





𝐿2 (𝑇𝑘+1,𝑇𝑘+2;H)

≤ 1

𝜌0(𝑇𝑘+2)

(
∥(𝑦, 𝑧)∥C0 ( [𝑇𝑘+1,𝑇𝑘+2 ];𝑍 ) + ∥(𝑦, 𝑧)∥𝐿2 (𝑇𝑘+1,𝑇𝑘+2;H)

)
≤ 𝐶𝑒𝐶𝑇





( 𝜉𝜌S , 𝜂𝜌S
)





𝐿2 (𝑇𝑘 ,𝑇𝑘+2;𝑍 )
, (5.75)

for all 𝑘 ≥ 0.

Now, it remains to find the estimates of (𝑦, 𝑧) in [0,𝑇1]. Again, using the energy estimate (5.24)

we find that (also having in mind 𝜌0(𝑇1) = 𝑒−
𝛾𝛽𝑀

(𝛾−1)𝑇 )

∥(𝑦, 𝑧)∥C0 ( [0,𝑇1 ];𝑍 ) + ∥(𝑦, 𝑧)∥𝐿2 (0,𝑇1;H)

≤ 𝐶𝑒𝐶𝑇
(
∥𝑎0∥𝑍 + ∥𝑞0∥𝐿2 (0,𝑇1 ) + ∥(𝜉, 𝜂)∥𝐿2 (0,𝑇1;𝑍 )

)
≤ 𝐶𝑒𝐶𝑇

(
∥𝑎0∥𝑍 +𝑀𝑒

𝑀
𝑇1 ∥𝑎0∥𝑍 + ∥(𝜉, 𝜂)∥𝐿2 (0,𝑇1;𝑍 )

)
≤ 𝐶𝑒𝐶𝑇𝑒

𝑀𝛾 (1+𝛽 )
(𝛾−1)𝑇 𝜌0(𝑇1)

(
∥(𝑦0, 𝑧0)∥𝑍 +𝑀𝑒

𝑀
𝑇1 ∥𝑎0∥𝑍 + ∥(𝜉, 𝜂)∥𝐿2 (0,𝑇1;𝑍 )

)
.

But, 𝜌0 and 𝜌𝑆 are non-increasing functions in [0,𝑇1] and thus the above estimate follows to:



( 𝑦𝜌0 , 𝑧𝜌0
)





C0 ( [0,𝑇1 ];𝑍 )
+





( 𝑦𝜌0 , 𝑧𝜌0
)





𝐿2 (0,𝑇1;H)
≤ 𝐶𝑒𝐶𝑇+𝐶

𝑇

(
∥(𝑦0, 𝑧0)∥𝑍 +





( 𝜉𝜌S , 𝜂𝜌S
)





𝐿2 (0,𝑇1;𝑍 )

)
. (5.76)

Combining the estimates (5.75) and (5.76), we have



( 𝑦𝜌0 , 𝑧𝜌0
)





C0 ( [0,𝑇 ];𝑍 )
+





( 𝑦𝜌0 , 𝑧𝜌0
)





𝐿2 (0,𝑇 ;H)
≤ 𝐶𝑒𝐶𝑇+𝐶

𝑇

(
∥(𝑦0, 𝑧0)∥𝑍 +





( 𝜉𝜌S , 𝜂𝜌S
)





𝐿2 (0,𝑇 ;𝑍 )

)
, (5.77)
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for some constant 𝐶 > 0 independent in 𝑇 .

The above bound (5.77) along with (5.71), we achieve the required estimate (5.58) of the proposi-
tion. This completes the proof.

5.4.2 Application of Banach fixed point theorem

This section is devoted to prove the local null-controllability result of our nonlinear system (5.1), that
is Theorem 5.1.1.

Let any parameter 𝛼 ≥ 0 be given as earlier and assume any initial data (𝑦0, 𝑧0) ∈ 𝑍 such that
∥(𝑦0, 𝑧0)∥𝑍 ≤ 𝛿, where 𝛿 > 0 will be specified later. We now define the set

𝔖𝛿 :=
{
(𝜉, 𝜂) ∈ S × S : ∥(𝜉, 𝜂)∥S×S ≤ 𝛿

}
,

where the space S is defined in (5.52).

By Proposition 5.4.1, we can say that for any given source term (𝜉, 𝜂) ∈ S×S, there exists a control
𝑞 ∈ 𝐿2(0,𝑇 ) such that the corresponding trajectory (𝑦, 𝑧) of the system (5.48) satisfies the estimate
(5.58). In what follows, we define the map 𝔉 :𝔖𝛿 → 𝐿2(0,𝑇 ;𝑍 ) by

𝔉(𝜉, 𝜂) = ©­«
𝑓
(
𝑦, 𝑧,

∫ 1

0
𝑦,

∫ 1

0
𝑧
)

𝑔
(
𝑦, 𝑧,

∫ 1

0
𝑦,

∫ 1

0
𝑧
) ª®¬ , (5.78)

for all (𝜉, 𝜂) ∈ 𝔖𝛿 , where we recall that the nonlinear functions 𝑓 and 𝑔 are givem by{
𝑓
(
𝑦, 𝑧,

∫ 1

0
𝑦,

∫ 1

0
𝑧
)

= −𝑦𝑧 + 𝑎𝑦2 + 𝑏𝑧2 + 𝑟1(𝑡)𝑦,

𝑔
(
𝑦, 𝑧,

∫ 1

0
𝑦,

∫ 1

0
𝑧
)

= 𝑦𝑧 + 𝑐𝑦2 + 𝑑𝑧2 + 𝑟2(𝑡)𝑧,
(5.79)

where 𝑎, 𝑏, 𝑐, 𝑑 are 𝐿∞((0,𝑇 ) × (0, 1)) functions and
𝑟1(𝑡) = 𝛼1

∫ 1

0

(
𝜓1,1(𝑥)𝑦 (𝑡, 𝑥) +𝜓2,1(𝑥)𝑧 (𝑡, 𝑥)

)
𝑑𝑥,

𝑟2(𝑡) = 𝛼2
∫ 1

0

(
𝜓1,2(𝑥)𝑦 (𝑡, 𝑥) +𝜓2,2(𝑥)𝑧 (𝑡, 𝑥)

)
𝑑𝑥,

(5.80)

with 𝛼1, 𝛼2 ∈ R and 𝜓1, 𝑗 ,𝜓2, 𝑗 ∈ 𝐿∞(0, 1), 𝑗 = 1, 2.

Our goal is to prove that there exists some 𝛿 > 0 such that the map 𝔉 has a unique fixed point in
the set 𝔖𝛿 and to do so, we shall apply the Banach fixed point theorem. We begin with the following
lemma.

Lemma 5.4.1 (Stability). There exists some 𝛿 > 0 such that 𝔖𝛿 ⊂ S × S is stable under the map 𝔉.

Proof. We have for (𝜉, 𝜂) ∈ 𝔖𝛿 ,

∥𝔉(𝜉, 𝜂)∥2S×S =







©­«
𝑓
(
𝑦, 𝑧,

∫ 1

0
𝑦,

∫ 1

0
𝑧
)

𝑔
(
𝑦, 𝑧,

∫ 1

0
𝑦,

∫ 1

0
𝑧
) ª®¬








2

S×S

≤


−𝑦𝑧 + 𝑎𝑦2 + 𝑏𝑧2 + 𝑟1(𝑡)𝑦

2S +



𝑦𝑧 + 𝑐𝑦2 + 𝑑𝑧2 + 𝑟2(𝑡)𝑧

2S .
Using the definition of norm in S (see (5.55)), we deduce from above that,

∥𝔉(𝜉, 𝜂)∥2S×S ≤𝐶
∫ 𝑇

0

1

𝜌2S (𝑡)

(
∥𝑦 (𝑡)𝑧 (𝑡)∥2

𝐿2 (0,1) +


𝑦2(𝑡)

2

𝐿2 (0,1) +


𝑧2(𝑡)

2

𝐿2 (0,1)

+ ∥𝑟1(𝑡)𝑦 (𝑡)∥2𝐿2 (0,1) + ∥𝑟2(𝑡)𝑧 (𝑡)∥2𝐿2 (0,1)
)
𝑑𝑡, (5.81)
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where 𝐶 := 𝐶 (∥𝑎∥𝐿∞ , ∥𝑏∥𝐿∞ , ∥𝑐 ∥𝐿∞, ∥𝑑 ∥𝐿∞) > 0. We now estimate the terms appearing in the r.h.s. of
(5.81). Note that,

∥𝑦 (𝑡)𝑧 (𝑡)∥2
𝐿2 (0,1) =

∫ 1

0
|𝑦 (𝑡, 𝑥)𝑧 (𝑡, 𝑥) |2 𝑑𝑥 ≤ 2

∫ 1

0

(
|𝑦 (𝑡, 𝑥) |4 + |𝑧 (𝑡, 𝑥) |4

)
𝑑𝑥 . (5.82)

and 

𝑦2(𝑡)

2
𝐿2 (0,1) =

∫ 1

0
|𝑦 (𝑡, 𝑥) |4 𝑑𝑥,



𝑧2(𝑡)

2
𝐿2 (0,1) =

∫ 1

0
|𝑧 (𝑡, 𝑥) |4 𝑑𝑥. (5.83)

We also have for 𝑗 = 1, 2



𝑟 𝑗 (𝑡)𝑦 (𝑡)

2𝐿2 (0,1) = ��𝛼 𝑗

��2 ∫ 1

0

����𝑦 (𝑡, 𝑥) ∫ 1

0
(𝜓1, 𝑗 (𝑥)𝑦 (𝑡, 𝑥) +𝜓2, 𝑗 (𝑥)𝑧 (𝑡, 𝑥))𝑑𝑥

����2 𝑑𝑥
≤ 𝐶

(∫ 1

0
( |𝑦 (𝑡, 𝑥) |2 + |𝑧 (𝑡, 𝑥) |2)𝑑𝑥

) ∫ 1

0
|𝑦 (𝑡, 𝑥) |2 𝑑𝑥, (5.84)

where 𝐶 := 𝐶 ( |𝛼1 |, |𝛼2 |,


𝜓1,1




𝐿∞ ,



𝜓1,2




𝐿∞ ,



𝜓2,1




𝐿∞ ,



𝜓2,2




𝐿∞) > 0.

Combining the above estimates (5.82), (5.83) and (5.84), we obtain from (5.81),

∥𝔉(𝜉, 𝜂)∥2S×S ≤ 𝐶
∫ 𝑇

0

1

𝜌2S (𝑡)

(∫ 1

0

(
|𝑦 (𝑡, 𝑥) |4 + |𝑧 (𝑡, 𝑥) |4

)
𝑑𝑥

)
𝑑𝑡

= 𝐶

∫ 𝑇

0

∫ 1

0

𝜌40 (𝑡)
𝜌2S (𝑡)

����𝑦 (𝑡, 𝑥)𝜌0(𝑡)

����4 𝑑𝑥𝑑𝑡 +𝐶 ∫ 𝑇

0

∫ 1

0

𝜌40 (𝑡)
𝜌2S (𝑡)

����𝑧 (𝑡, 𝑥)𝜌0(𝑡)

����4 𝑑𝑥𝑑𝑡 . (5.85)

Thanks to the fact (5.51), we get from (5.85) that

∥𝔉(𝜉, 𝜂)∥2S×S ≤ 𝐶
∫ 𝑇

0





 𝑦 (𝑡)𝜌0(𝑡)





2
𝐿∞ (0,1)

(∫ 1

0

����𝑦 (𝑡, 𝑥)𝜌0(𝑡)

����2 𝑑𝑥) 𝑑𝑡 +𝐶 ∫ 𝑇

0





 𝑧 (𝑡)𝜌0(𝑡)





2
𝐿∞ (0,1)

(∫ 1

0

����𝑧 (𝑡, 𝑥)𝜌0(𝑡)

����2 𝑑𝑥) 𝑑𝑡
≤ 𝐶

∫ 𝑇

0

(



 𝑦 (𝑡)𝜌0(𝑡)





2
𝐻1 (0,1)





 𝑦 (𝑡)𝜌0(𝑡)





2
𝐿2 (0,1)

+




 𝑧 (𝑡)𝜌0(𝑡)





2
𝐻1 (0,1)





 𝑧 (𝑡)𝜌0(𝑡)





2
𝐿2 (0,1)

)
𝑑𝑡

≤ 𝐶




( 𝑦𝜌0 , 𝑧𝜌0

)



2
C0 ( [0,𝑇 ];𝑍 )





( 𝑦𝜌0 , 𝑧𝜌0
)



2

𝐿2 (0,𝑇 ;H)
.

Using the estimate (5.58) in above, we finally arrive to the following:

∥𝔉(𝜉, 𝜂)∥S×S ≤ 𝐶
(



( 𝑦𝜌0 , 𝑧𝜌0

)




C0 ( [0,𝑇 ];𝑍 )

+




( 𝑦𝜌0 , 𝑧𝜌0

)




𝐿2 (0,𝑇 ;H)

)2
≤ 𝐶𝑒𝐶𝑇+𝐶

𝑇
(
∥(𝑦0, 𝑧0)∥𝑍 + ∥(𝜉, 𝜂)∥S×S

)2
≤ 𝐶𝑒𝐶𝑇+𝐶

𝑇 𝛿2, (5.86)

due to our choices of initial data ∥(𝑦0, 𝑧0)∥𝑍 ≤ 𝛿 and source terms (𝜉, 𝜂) ∈ 𝔖𝛿 .

Now, one can choose 𝛿 > 0 small enough in (5.86) so that we have ∥𝔉(𝜉, 𝜂)∥S×S ≤ 𝛿 for all
(𝜉, 𝜂) ∈ 𝔖𝛿 . This concludes our lemma.

The following lemma shows that 𝔉 :𝔖𝛿 →𝔖𝛿 is a contraction map.

Lemma 5.4.2 (Contraction). There exists a 𝛿 > 0 such that the map 𝔉 defined by (5.78) is a con-
traction map on the closed ball 𝔖𝛿 .
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Proof. Consider any two pairs (𝜉𝑖 , 𝜂𝑖) ∈ 𝔖𝛿 for 𝑖 = 1, 2. Then, by means of Proposition 5.4.1, there
exist control functions 𝑞𝑖 ∈ Q for the system (5.48) with solutions (𝑦𝑖 , 𝑧𝑖) ∈ Y associated to (𝜉𝑖 , 𝜂𝑖) ∈ 𝔖𝛿

for 𝑖 = 1, 2.
Accordingly, we use the notations 𝑓𝑖 , 𝑔𝑖 for the nonlinear functions (see (5.79)–(5.80)) where{

𝑓𝑖
(
𝑦𝑖 , 𝑧𝑖 ,

∫ 1

0
𝑦𝑖 ,

∫ 1

0
𝑧𝑖

)
= −𝑦𝑖𝑧𝑖 + 𝑎𝑦2𝑖 + 𝑏𝑧2𝑖 + 𝑟𝑖,1(𝑡)𝑦𝑖 ,

𝑔𝑖
(
𝑦𝑖 , 𝑧𝑖 ,

∫ 1

0
𝑦𝑖 ,

∫ 1

0
𝑧𝑖

)
= 𝑦𝑖𝑧𝑖 + 𝑐𝑦2𝑖 + 𝑑𝑧2𝑖 + 𝑟𝑖,2(𝑡)𝑧𝑖 ,

with 
𝑟𝑖,1(𝑡) = 𝛼1

∫ 1

0

(
𝜓1,1(𝑥)𝑦𝑖 (𝑡, 𝑥) +𝜓2,1(𝑥)𝑧𝑖 (𝑡, 𝑥)

)
𝑑𝑥,

𝑟𝑖,2(𝑡) = 𝛼2
∫ 1

0

(
𝜓1,2(𝑥)𝑦𝑖 (𝑡, 𝑥) +𝜓2,2(𝑥)𝑧𝑖 (𝑡, 𝑥)

)
𝑑𝑥,

for 𝑖 = 1, 2. Then, we compute

∥𝔉(𝜉1, 𝜂1) −𝔉(𝜉2, 𝜂2)∥2S×S

=







(
−𝑦1𝑧1 + 𝑎𝑦21 + 𝑏𝑧21 + 𝑟1,1(𝑡)𝑦1
𝑦1𝑧1 + 𝑐𝑦21 + 𝑑𝑧21 + 𝑟1,2(𝑡)𝑧1

)
−

(
−𝑦2𝑧2 + 𝑎𝑦22 + 𝑏𝑧22 + 𝑟2,1(𝑡)𝑦2
𝑦2𝑧2 + 𝑐𝑦22 + 𝑑𝑧22 + 𝑟2,2(𝑡)𝑧2

)




2
S×S

=







(
−(𝑦1𝑧1 − 𝑦2𝑧2) + 𝑎(𝑦21 − 𝑦22) + 𝑏 (𝑧21 − 𝑧22) + 𝑟1,1(𝑡)𝑦1 − 𝑟2,1(𝑡)𝑦2
𝑦1𝑧1 − 𝑦2𝑧2 + 𝑐 (𝑦21 − 𝑦22) + 𝑑 (𝑧21 − 𝑧22) + 𝑟1,2(𝑡)𝑧1 − 𝑟2,2(𝑡)𝑧2

)




2
S×S

≤ 𝐶
∫ 𝑇

0

1

𝜌2S (𝑡)

(
∥𝑦1(𝑡)𝑧1(𝑡) − 𝑦2(𝑡)𝑧2(𝑡)∥2𝐿2 (0,1) +



𝑦21 (𝑡) − 𝑦22 (𝑡)

2𝐿2 (0,1)
+



𝑧21 (𝑡) − 𝑧22 (𝑡)

2𝐿2 (0,1) + 

𝑟1,1(𝑡)𝑦1(𝑡) − 𝑟2,1(𝑡)𝑦2(𝑡)

2𝐿2 (0,1)
+



𝑟1,2(𝑡)𝑧1(𝑡) − 𝑟2,2(𝑡)𝑧2(𝑡)

2𝐿2 (0,1) )𝑑𝑡 . (5.87)

To this end, we find

∥𝑦1(𝑡)𝑧1(𝑡) − 𝑦2(𝑡)𝑧2(𝑡)∥2𝐿2 (0,1) (5.88)

≤ 2
(
∥𝑦1(𝑡) (𝑧1(𝑡) − 𝑧2(𝑡))∥2𝐿2 (0,1) + ∥(𝑦1(𝑡) − 𝑦2(𝑡))𝑧2(𝑡)∥2𝐿2 (0,1)

)
≤ 𝐶 ∥𝑦1(𝑡)∥2𝐿∞ (0,1) ∥𝑧1(𝑡) − 𝑧2(𝑡)∥

2
𝐿2 (0,1) +𝐶 ∥𝑧2(𝑡)∥2𝐿∞ (0,1) ∥𝑦1(𝑡) − 𝑦2(𝑡)∥

2
𝐿2 (0,1)

≤ 𝐶 ∥𝑦1(𝑡)∥2𝐻1 (0,1) ∥𝑧1(𝑡) − 𝑧2(𝑡)∥
2
𝐿2 (0,1) +𝐶 ∥𝑧2(𝑡)∥2𝐻1 (0,1) ∥𝑦1(𝑡) − 𝑦2(𝑡)∥

2
𝐿2 (0,1) . (5.89)

A straightforward computation also gives

𝑦21 (𝑡) − 𝑦22 (𝑡)

2𝐿2 (0,1) ≤ (
∥𝑦1(𝑡)∥2𝐻1 (0,1) + ∥𝑦2(𝑡)∥2𝐻1 (0,1)

)
∥𝑦1(𝑡) − 𝑦2(𝑡)∥2𝐿2 (0,1) , (5.90)

and 

𝑧21 (𝑡) − 𝑧22 (𝑡)

2𝐿2 (0,1) ≤ (
∥𝑧1(𝑡)∥2𝐻1 (0,1) + ∥𝑧2(𝑡)∥2𝐻1 (0,1)

)
∥𝑧1(𝑡) − 𝑧2(𝑡)∥2𝐿2 (0,1) . (5.91)

Next we look at the remaining terms in (5.87), we compute

𝑟1,1(𝑡)𝑦1(𝑡) − 𝑟2,1(𝑡)𝑦2(𝑡)

2𝐿2 (0,1)
≤ 2

∫ 1

0

��𝑟1,1(𝑡) (𝑦1(𝑡, 𝑥) − 𝑦2(𝑡, 𝑥))��2 𝑑𝑥 + 2

∫ 1

0

��(𝑟1,1(𝑡) − 𝑟2,1(𝑡))𝑦2(𝑡, 𝑥)��2 𝑑𝑥
≤ 2 |𝛼1 |2

����∫ 1

0
(𝜓1,1(𝑥)𝑦1(𝑡, 𝑥) +𝜓2,1(𝑥)𝑧1(𝑡, 𝑥))𝑑𝑥

����2 ∫ 1

0
|𝑦1(𝑡, 𝑥) − 𝑦2(𝑡, 𝑥) |2 𝑑𝑥

+ 2

∫ 1

0
|𝑦2(𝑡, 𝑥) |2 𝑑𝑥

����𝛼1 ∫ 1

0
(𝜓1,1(𝑥)𝑦1(𝑡, 𝑥) +𝜓2,1(𝑥)𝑧1(𝑡, 𝑥))𝑑𝑥

207



5. Nonlinear Two-Parabolic System

− 𝛼1
∫ 1

0
(𝜓1,1(𝑥)𝑦2(𝑡, 𝑥) +𝜓2,1(𝑥)𝑧2(𝑡, 𝑥))𝑑𝑥

����2
≤ 𝐶 ∥𝑦1(𝑡) − 𝑦2(𝑡)∥2𝐿2 (0,1)

∫ 1

0
( |𝑦1(𝑡, 𝑥) |2 + |𝑧1(𝑡, 𝑥) |2)𝑑𝑥

+𝐶 ∥𝑦2(𝑡)∥2𝐿2 (0,1)
∫ 1

0

(��𝜓1,1(𝑥)
��2 |𝑦1(𝑡, 𝑥) − 𝑦2(𝑡, 𝑥) |2 + ��𝜓2,1(𝑥)

��2 |𝑧1(𝑡, 𝑥) − 𝑧2(𝑡, 𝑥) |2)
≤ 𝐶

(
∥𝑦1(𝑡)∥2𝐿2 (0,1) + ∥𝑦2(𝑡)∥2𝐿2 (0,1) + ∥𝑧1(𝑡)∥2𝐿2 (0,1)

)
×

(
∥𝑦1(𝑡) − 𝑦2(𝑡)∥2𝐿2 (0,1) + ∥𝑧1(𝑡) − 𝑧2(𝑡)∥2𝐿2 (0,1)

)
. (5.92)

We similarly obtain

𝑟1,2(𝑡)𝑧1(𝑡) − 𝑟2,2(𝑡)𝑧2(𝑡)

2𝐿2 (0,1) ≤ 𝐶 (
∥𝑦1(𝑡)∥2𝐿2 (0,1) + ∥𝑧1(𝑡)∥2𝐿2 (0,1) + ∥𝑧2(𝑡)∥2𝐿2 (0,1)

)
×

(
∥𝑦1(𝑡) − 𝑦2(𝑡)∥2𝐿2 (0,1) + ∥𝑧1(𝑡) − 𝑧2(𝑡)∥2𝐿2 (0,1)

)
. (5.93)

Combining the estimates (5.88), (5.90), (5.91), (5.92) and (5.93), we obtain from (5.87), that

∥𝔉(𝜉1, 𝜂1) −𝔉(𝜉2, 𝜂2)∥2S×S

≤ 𝐶
∫ 𝑇

0

1

𝜌2S (𝑡)
[
∥(𝑦1(𝑡), 𝑧1(𝑡))∥2H + ∥(𝑦2(𝑡), 𝑧2(𝑡))∥2H

]
×



(𝑦1(𝑡) − 𝑦2(𝑡), 𝑧1(𝑡) − 𝑧2(𝑡))

2𝑍 𝑑𝑡
≤ 𝐶

∫ 𝑇

0

𝜌40 (𝑡)
𝜌2S (𝑡)

[



(𝑦1(𝑡)𝜌0(𝑡)
,
𝑧1(𝑡)
𝜌0(𝑡)

)



2
H
+





(𝑦2(𝑡)𝜌0(𝑡)
,
𝑧2(𝑡)
𝜌0(𝑡)

)



2
H

]
×





(𝑦1(𝑡) − 𝑦2(𝑡)𝜌0(𝑡)
,
𝑧1(𝑡) − 𝑧2(𝑡)

𝜌0(𝑡)

)



2
𝑍

𝑑𝑡

≤ 𝐶




(𝑦1𝜌0 , 𝑧1𝜌0

)
−

(
𝑦2

𝜌0
,
𝑧2

𝜌0

)



2
C0 ( [0,𝑇 ];𝑍 )

×
[



(𝑦1𝜌0 , 𝑧1𝜌0

)



2
𝐿2 (0,𝑇 ;H)

+




(𝑦2𝜌0 , 𝑧2𝜌0

)



2
𝐿2 (0,𝑇 ;H)

]
, (5.94)

where we have used the fact that
𝜌2
0 (𝑡 )

𝜌S (𝑡 ) ≤ 1 (see (5.51)).

But, due to the linearity of the solution map (see Proposition 5.4.1), we have the following estimate
(by means of (5.58))



(𝑦1𝜌0 , 𝑧1𝜌0

)
−

(
𝑦2

𝜌0
,
𝑧2

𝜌0

)




C0 ( [0,𝑇 ];𝑍 )

+




(𝑦1𝜌0 , 𝑧1𝜌0

)
−

(
𝑦2

𝜌0
,
𝑧2

𝜌0

)




𝐿2 (0,𝑇 ;H)

≤ 𝐶𝑒𝐶𝑇+𝐶
𝑇 ∥(𝜉1, 𝜂1) − (𝜉2, 𝜂2)∥S×S .

Using the above bound and the estimate (5.58) in (5.94), we get

∥𝔉(𝜉1, 𝜂1) −𝔉(𝜉2, 𝜂2)∥S×S

≤ 𝐶𝑒𝐶𝑇+𝐶
𝑇 ∥(𝜉1, 𝜂1) − (𝜉2, 𝜂2)∥S×S ×

[
∥(𝑦0, 𝑧0)∥𝑍 + ∥(𝜉1, 𝜂1)∥S×S + ∥(𝜉2, 𝜂2)∥S×S

]
≤ 𝐶𝑒𝐶𝑇+𝐶

𝑇 𝛿 ∥(𝜉1, 𝜂1) − (𝜉2, 𝜂2)∥S×S

≤ 1

2
∥(𝜉1, 𝜂1) − (𝜉2, 𝜂2)∥S×S ,

for chosen 0 < 𝛿 ≤ 1
2𝐶𝑒𝐶𝑇+𝐶/𝑇 .

This proves the contraction property of the map 𝔉 in the closed ball 𝔖𝛿 provided we start with
initial data ∥(𝑦0, 𝑧0)∥𝑍 ≤ 𝛿 and source terms in 𝔖𝛿 .

We now conclude the proof of the main result of our work.

Proof of Theorem 5.1.1. Let any boundary parameter 𝛼 ≥ 0 and time 𝑇 > 0 be given. According to
Lemma 5.4.1 and Lemma 5.4.2, there exists some 𝛿 > 0 small enough such that if we choose the initial
data (𝑦0, 𝑧0) ∈ 𝑍 with ∥(𝑦0, 𝑧0)∥𝑍 ≤ 𝛿, then by using Banach fixed point theorem we can ensure that
the map 𝔉 :𝔖𝛿 →𝔖𝛿 (defined by (5.78)) has a unique fixed point (𝜉, 𝜂) ∈ 𝔖𝛿 .
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5.5. Concluding remarks

At this point, by means of Proposition 5.4.1, there exists a solution-control pair ((𝑦, 𝑧), 𝑞) ∈ Y × Q
to the system (5.48) associated with the above source term (𝜉, 𝜂) ∈ 𝔖𝛿 , which in addition satisfy the
estimate (5.58). Then, by construction of the space Y (see (5.53)) and the property lim

𝑡→𝑇 −
𝜌0(𝑡) = 0

force the solution (𝑦, 𝑧) to satisfy

𝑦 (𝑇, 𝑥) = 0, 𝑧 (𝑇, 𝑥) = 0, ∀𝑥 ∈ (0, 1),

which is the required boundary local null-controllability result of our nonlinear system (5.1).

5.5 Concluding remarks

In the present paper, we study the controllability property of a parabolic system where the boundary
couplings are posed in terms of the 𝛿 ′-type condition. The linear model of our work (see (5.4)) simply
consists of the aforementioned boundary couplings, and no internal coupling appears. It would be
interesting if one could impose internal coupling(s) as well, for instance let us consider the following
linear system, 

𝑦𝑡 − 𝑦𝑥𝑥 + 𝑘1𝑧 = 0, in (0,𝑇 ) × (0, 1),
𝑧𝑡 − 𝑧𝑥𝑥 + 𝑘2𝑦 = 0, in (0,𝑇 ) × (0, 1),
𝑦𝑥 (𝑡, 0) = 𝑞(𝑡), 𝑧𝑥 (𝑡, 0) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑦𝑥 (𝑡, 1) = 𝑧𝑥 (𝑡, 1), for 𝑡 ∈ (0,𝑇 ),
𝑦 (𝑡, 1) + 𝑧 (𝑡, 1) + 𝛼𝑦𝑥 (𝑡, 1) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑦 (0, 𝑥) = 𝑦0(𝑥), 𝑧 (0, 𝑥) = 𝑧0(𝑥), in (0, 1),

(5.95)

with some constants (𝑘1, 𝑘2) ≠ (0, 0). In this regard, we mention the work [BBHS21], where the
presence of a zeroth order internal coupling in a parabolic system with Kirchhoff boundary condition
leads to different controllability results depending on the position of the boundary control (i.e., on 𝑦 or,
on 𝑧). To study the controllability of system (5.95), the main work will be to investigate the spectral
properties of the associated adjoint operator, which is not so obvious in the case of 𝛿 ′-type boundary
condition. Thus, this needs further care and it is an interesting open problem in the viewpoint of
controllability of coupled parabolic systems.
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Chapter 6

Conclusion and Future Directions

In this chapter, we will summarize the contents of this thesis and mention some of the open questions
and future directions that can be pursued based on the work in this thesis.

We have first considered the compressible Navier-Stokes systems linearized around some constant
steady states (𝑄0,𝑉0) (with 𝑄0,𝑉0 > 0) for barotropic fluids and around (𝑄0,𝑉0,𝜓0) (with 𝑄0,𝑉0,𝜓0 > 0)
for non-barotropic fluids. In the barotropic case, we have considered three types of boundary conditions
onto the system, namely Periodic, Dirichlet and mixed (Periodic-Dirichlet) type, and studied the null
controllability using only one boundary control acting either in density or velocity. We summarize the
results that we have obtained for the barotropic system in the following table (NC=null controllable);
see Theorems 1.1.1–1.1.5.

Barotropic Case

Boundary
conditions

Controls acting in

density velocity

Periodic
• NC at 𝑇 > 2𝜋

𝑉0
in ¤𝐿2 × ¤𝐿2 iff

2
√︃
𝑏𝑄0−𝑉 2

0

𝜇0
∉ N. • NC at 𝑇 > 2𝜋

𝑉0
in ¤𝐻1 × ¤𝐿2 iff

2
√︃
𝑏𝑄0−𝑉 2

0

𝜇0
∉ N.

• Not NC at 0 < 𝑇 < 2𝜋
𝑉0

in ¤𝐿2 × ¤𝐿2 . • Not NC at any 𝑇 > 0 in ¤𝐻𝑠 × ¤𝐿2 for 0 ≤ 𝑠 < 1.

Dirichlet
• NC at 𝑇 > 1 in ¤𝐿2 × 𝐿2 if 𝑐4 + 8𝑐2 + 5 < 4𝜋2.

Unknown

• Not NC at 0 < 𝑇 < 1 in 𝐿2 × 𝐿2.

Mixed-type
• NC at 𝑇 > 1 in ¤𝐿2 × 𝐿2 if 𝑐4 + 8𝑐2 + 5 < 4𝜋2. • NC at 𝑇 > 1 in ¤𝐻

1
2

♯
× 𝐿2 if 𝑐4 + 8𝑐2 + 5 < 4𝜋2.

• Not NC at 0 < 𝑇 < 1 in 𝐿2 × 𝐿2. • Not NC at any 𝑇 > 0 in ¤𝐻𝑠
♯
×𝐿2 for 0 ≤ 𝑠 < 1

2 .

As a consequence of the above null controllability results, we obtained approximate controllability
of the barotropic system at large time 𝑇 in respective spaces.

On the other hand, for non-barotropic fluids, we have only considered the periodic setup and
studied boundary null controllability properties of the linearized system using only one control acting
either in density, velocity or temperature. Using a boundary control acting only in the density part,
we have proved null controllability of the system at time 𝑇 > 2𝜋

𝑉0
in ( ¤𝐿2(0, 2𝜋))3 under two assumptions;

(i) the eigenvalues of 𝐴∗ have geometric multiplicity 1 and (ii) the coefficients 𝜆0, 𝜅0 satisfies
√︃

𝜆0
𝜅0

∉ Q

and

����√︃𝜆0
𝜅0

− 𝑎
𝑏

���� > 1
𝑏𝑀

for all rationals 𝑎
𝑏
and some 𝑀 > 0 (see Theorem 1.1.6-Part (i)). Further, in

this case, we have proved that null controllability fails when the time is small, that is 0 < 𝑇 <
2𝜋
𝑉0
, in the space (𝐿2(0, 2𝜋))3 (Proposition 1.1.1-Part (i)). When a boundary control acts either in

velocity or temperature, we have proved null controllability of the linearized system at time 𝑇 > 2𝜋
𝑉0

in ¤𝐻1
per(0, 2𝜋) × ( ¤𝐿2(0, 2𝜋))2 under the same two hypotheses mentioned above (see Theorem 1.1.6-Part

(ii)) and that null controllability fails in the space ¤𝐻𝑠
per(0, 2𝜋) × ( ¤𝐿2(0, 2𝜋))2 with 0 ≤ 𝑠 < 1 at any

𝑇 > 0 (Proposition 1.1.1-Part (ii)). In addition, we have proved that the condition
√︃

𝜆0
𝜅0

∉ Q on the

coefficients is not sufficient to conclude null controllability of the linearized system (see Proposition
1.1.2).
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6. Conclusion and Future Directions

Finally, we have considered a coupled system consisting of two nonlinear parabolic equations with
square, product and non-local nonlinearities. In the system, a Neumann boundary control is applied
to only one state while the other satisfies homogeneous Neumann boundary condition at 𝑥 = 0. On
the other hand, the states are coupled at 𝑥 = 1 in terms of “equality condition of their normal
derivatives” and a combined Robin-type condition. In this setup, we have proved small-time local null
controllability of the system in the space (𝐿2(0, 1))2 by applying the so called “source term method”.

In view of all the above discussions, we now make some comments and give future directions on
controllability of the systems considered/ related to this thesis, which will be addressed soon.

6.1 Linearized compressible Navier-Stokes system (barotropic
case)

6.1.1 Optimal in time

We have seen that the system (1.9) is null controllable at time 𝑇 > 2𝜋
𝑉0

and is not null controllable at

0 < 𝑇 < 2𝜋
𝑉0
. The question of null controllability of (1.9) at the optimal time 𝑇 = 2𝜋

𝑉0
is still open. We

mention here that, to prove null controllability of (1.9) at time 𝑇 = 𝑇0 := 2𝜋
𝑉0
, it is sufficient to solve

the following sets of moments problem∫ 𝑇0

0
𝑒𝜈

ℎ
𝑛 (𝑇0−𝑡 )𝑝 (𝑡)𝑑𝑡 = 𝑐𝑛,∫ 𝑇0

0
𝑒𝜈

𝑝
𝑛 (𝑇0−𝑡 )𝑝 (𝑡)𝑑𝑡 = 𝑑𝑛,

for all 𝑛 ∈ Z and for some sequences (𝑐𝑛)𝑛∈Z, (𝑑𝑛)𝑛∈Z, where (𝜈ℎ𝑛)𝑛∈Z and (𝜈𝑝𝑛 )𝑛∈Z are eigenvalues of
𝐴∗, given by (3.22)–(3.23) respectively. To solve these moments problem, one might adapt the ap-
proach of Martin, Rosier and Rouchon [MRR13] to find a suitable biorthogonal sequence of the family{
𝜈ℎ𝑛, 𝜈

𝑝
𝑛 ; 𝑛 ∈ Z

}
, see for instance [CM15]. Since we have explicit expressions of these eigenvalues, this

method might be useful here. However, one might need to take more regular initial states (possibly)

due to the bounds on the biorthogonal family corresponding to
(
𝑒𝜈

ℎ
𝑛 𝑡

)
𝑛∈Z

; see [MRR13, Proposition

2.2] or [CM15, Proposition 3.2]. The same question can be asked for the systems (1.12) and (1.13).

6.1.2 Controllability under Dirichlet boundary conditions

Let 𝑇, 𝐿 > 0 be given. We consider the following system
𝜌𝑡 +𝑉0𝜌𝑥 +𝑄0𝑢𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝑢𝑡 − 𝜇0𝑢𝑥𝑥 +𝑉0𝑢𝑥 + 𝑏𝜌𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝜌 (𝑡, 0) = 0, 𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 𝑞(𝑡), for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 𝐿),

(6.1)

where 𝑞 ∈ 𝐿2(0,𝑇 ) is a boundary control. In this setup, no controllability result is known for the system
(6.1) and in fact, it is a very challenging and interesting open problem. We mention here that the
associated linearized operator has compact resolvent and so we have the existence of spectrum of the
linearized operator. However, finding explicit (or even asymptotic) expression of the eigenfunctions
of the linearized operator is a very challenging task. This difficulty arises due to the fact that the
operator 𝑑

𝑑𝑥
on 𝐻1

{0} (0, 𝐿) do not have any non-trivial spectrum. Thus, to solve this problem, one
need to apply different methods that do not require the explicit spectrum of the associated linearized
operator.

6.1.3 The vanishing viscosity method

As mentioned earlier, controllability results for the system (6.1) at time 𝑇 is unknown. To study
the controllability of (6.1), one may apply the vanishing viscosity method, introduced by Coron and
Guerrero [CG05] in the following way.
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6.1. Linearized compressible Navier-Stokes system (barotropic case)

Let 𝑇, 𝐿 > 0. For given 𝜀 > 0, we consider the following problem
𝜌𝑡 − 𝜀𝜌𝑥𝑥 +𝑉0𝜌𝑥 +𝑄0𝑢𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝑢𝑡 − 𝜇0𝑢𝑥𝑥 +𝑉0𝑢𝑥 + 𝑏𝜌𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝜌 (𝑡, 0) = 0, 𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 𝑞(𝑡), for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 𝐿),

(6.2)

where 𝑞 ∈ 𝐿2(0,𝑇 ) is the control input. Note that, this system is an one parameter family of parabolic
equations having first order coupling. There are several methods to deal with the controllability of this
system, but here we are interested on the explicit dependence of the observability constant/ control
cost in terms of this 𝜀. Then, by passing 𝜀 tends to 0, one may conclude some controllability results for
the Navier-Stokes system (6.1). We note here that the method of moments or some suitable Carleman
estimates might be helpful to find the explicit dependence of the control cost with respect to this 𝜀.

Note that, in the system (6.2), we still have the difficulty related to the (Dirichlet) boundary
conditions. To avoid this, one may consider the following system:

𝜌𝑡 +𝑉0𝜌𝑥 +𝑄0𝑢𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝑢𝑡 − 𝜇0𝑢𝑥𝑥 +𝑉0𝑢𝑥 + 𝑏𝜌𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝜌 (𝑡, 0) = 𝜀𝜌 (𝑡, 𝐿), for 𝑡 ∈ (0,𝑇 ),
𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 𝑞(𝑡), for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 𝐿),

(6.3)

for some 𝜀 > 0 small enough. In the particular case when 𝜀 = 1, we have already studied controllability
of this system using a boundary control acting on velocity, see Chapter 4. The same analysis can be
done by taking this small parameter 𝜀. The only thing one require is a uniform estimate of the control
with respect to this 𝜀. Then, by passing 𝜀 tends to 0, one may conclude some controllability results
for the Dirichlet system (6.1).

6.1.4 Distributed controllability under Dirichlet conditions

Let 𝑇, 𝐿 > 0. We consider the following problem
𝜌𝑡 +𝑉0𝜌𝑥 +𝑄0𝑢𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝑢𝑡 − 𝜇0𝑢𝑥𝑥 +𝑉0𝑢𝑥 + 𝑏𝜌𝑥 = 𝑓 𝜒𝜔 , in (0,𝑇 ) × (0, 𝐿),
𝜌 (𝑡, 0) = 0, 𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 𝐿),

(6.4)

where 𝑓 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)) is a distributed control acting in the velocity equation and supported on
𝜔 := (0, ℓ) ⊂ (0, 𝐿). It is known in [AMM22] that this system is not null controllable in (𝐿2(0, 𝐿))2
when the time is small, that is 0 < 𝑇 < 2𝜋

𝑉0
. Moreover, it is also known in [Cho15] that this system

(6.4) is approximately controllable at large time 𝑇 in the space 𝐿2(0, 𝐿) ×𝐿2(0, 𝐿). However, there is no
known null controllability results available in the literature for large time 𝑇 . We give below an useful
method that might be applicable here to prove null controllability of the system (6.4) at a large time.

Step 1. We first consider the cascade system
𝜌𝑡 +𝑉0𝜌𝑥 +𝑄0𝑢𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝑢𝑡 − 𝜇0𝑢𝑥𝑥 +𝑉0𝑢𝑥 = 𝑓 𝜒𝜔 , in (0,𝑇 ) × (0, 𝐿),
𝜌 (𝑡, 0) = 0, 𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 𝐿),

(6.5)

The method addressed in [FCdT04] might be helpful here to prove null controllability of this
system (6.5), where one can utilize the exact controllability of the transport equation together
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with a suitable Carleman estimate for the parabolic equation to prove the required observability
inequality. We mention here that one may not able to find a basis of the associated adjoint
operator. In fact, (0, 𝜉𝑛), for 𝑛 ∈ N, are the only eigenfunctions of the associated adjoint operator,
where 𝜉𝑛 is the eigenfunction of the (Dirichlet) operator 𝜇0𝜕𝑥𝑥 +𝑉0𝜕𝑥 . Note that, first component
of the eigenfunctions is zero because the operator 𝜕𝑥 on 𝐻1

{𝐿} (0, 𝐿) do not have any non-trivial
spectrum, as mentioned before in Section 6.1.2.

Step 2. We then consider the following system
𝜌𝑡 +𝑉0𝜌𝑥 +𝑄0𝑢𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝑢𝑡 − 𝜇0𝑢𝑥𝑥 +𝑉0𝑢𝑥 + 𝜉 = 𝑓 𝜒𝜔 , in (0,𝑇 ) × (0, 𝐿),
𝜌 (𝑡, 0) = 0, 𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 0, for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 𝐿),

(6.6)

for some function 𝜉 . Once the null controllability of the above system (6.5) is proved, one may
apply some fixed-point method (Banach or Schauder) by defining a map 𝜉 ↦→ 𝑏𝜌𝑥 in some suitable
spaces to conclude null controllability results for the main system (6.4).

This result has an importance in the context of boundary controllability of the Dirichlet system
(6.1). More precisely, for given 𝜀 > 0, if we choose 𝜔 = (𝐿 − 𝜀, 𝐿) in the system (6.4), then boundary
controllability of the system (6.1) can be achieved from distributed controllability of (6.4) by taking
𝜀 tends to 0. In fact, the distributed control supported in the interval (𝐿 − 𝜀, 𝐿) will converge to the
boundary control at 𝑥 = 𝐿 as 𝜀 → 0. This kind of technique has been applied in may works, see for
instance [CSPS20, Fab92].

6.2 Linearized compressible Navier-Stokes system (non-barotropic
case)

Like the barotropic case, one can ask the similar questions for the non-barotropic case also, which we
listed below.

6.2.1 Optimal in time

The question of proving null controllability of the system (1.17) at the optimal time 𝑇 = 2𝜋
𝑉0

will not
be similar to the barotropic case mentioned above (see Section 6.1.1). This is because, in this case, we
don’t have explicit expression of the eigenvalues, and therefore it will not be straightforward to apply
the idea of Martin, Rosier and Rouchon [MRR13] directly. However, one may adapt some modified
techniques to solve the corresponding moments problem to conclude the null controllability at 𝑇 = 2𝜋

𝑉0

in this case.

6.2.2 Controllability under Dirichlet boundary conditions

Let 𝑇, 𝐿 > 0 be given. We consider the following system

𝜌𝑡 +𝑉0𝜌𝑥 +𝑄0𝑢𝑥 = 𝑓 𝜒O1, in (0,𝑇 ) × (0, 𝐿),

𝑢𝑡 − 𝜆0𝑢𝑥𝑥 +
𝑅𝜓0

𝑄0
𝜌𝑥 +𝑉0𝑢𝑥 + 𝑅𝜃𝑥 = 𝑔𝜒O2, in (0,𝑇 ) × (0, 𝐿),

𝜃𝑡 − 𝜅0𝜃𝑥𝑥 +
𝑅𝜓0

𝑐𝜈
𝑢𝑥 +𝑉0𝜃𝑥 = ℎ𝜒O3, in (0,𝑇 ) × (0, 𝐿),

𝜌 (𝑡, 0) = 𝑝 (𝑡), 𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 𝐿) = 𝑞(𝑡), for 𝑡 ∈ (0,𝑇 ),
𝜃 (𝑡, 0) = 0, 𝜃 (𝑡, 𝐿) = 𝑟 (𝑡), for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), 𝜃 (0, 𝑥) = 𝜃0(𝑥), in (0, 𝐿),

(6.7)
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6.3. Nonlinear compressible Navier-Stokes system

where 𝑝, 𝑞, 𝑟 ∈ 𝐿2(0,𝑇 ) are boundary controls and 𝑓 , 𝑔, ℎ ∈ 𝐿2(0,𝑇 ;𝐿2(0, 𝐿)) are distributed controls
supported in the subsets O1,O2,O3 ⊂ (0, 𝐿) respectively. In this setup, one can study similar control-
lability problems using only one control (distributed/ boundary) acting either in density, velocity or
temperature; as mentioned before in Sections 6.1.2–6.1.4. We note here that, in the case of boundary
controllability using only one control 𝑝 ∈ 𝐿2(0,𝑇 ) acting on the density part, one can introduce the
mixed-type boundary conditions as mentioned in the barotropic case, that is, 𝜌 (𝑡, 0) = 𝜌 (𝑡, 𝐿) + ℎ(𝑡)
for 𝑡 ∈ (0,𝑇 ), and by defining 𝑝 (𝑡) = 𝜌 (𝑡, 𝐿) = ℎ(𝑡) for 𝑡 ∈ (0,𝑇 ), one may obtain the desired null
controllability result for the Dirichlet system (6.7).

6.3 Nonlinear compressible Navier-Stokes system

Let 𝑇, 𝐿 > 0 be given. We recall the following nonlinear Navier-Stokes system for compressible
barotropic fluids {

𝜌𝑡 + (𝜌𝑢)𝑥 = 0, in (0,𝑇 ) × (0, 𝐿),
𝜌 (𝑢𝑡 + 𝑢𝑢𝑥 ) + 𝑎𝛾𝜌𝛾−1𝜌𝑥 − (𝜆 + 2𝜇)𝑢𝑥𝑥 = 0, in (0,𝑇 ) × (0, 𝐿) .

(6.8)

In this case, we wish to study small-time local (or global) controllability of the compressible Navier-
Stokes equation (1.1) around a constant steady state using a distributed/ boundary control acting
either in density or velocity. There are some known results available regarding the local exact con-
trollability of the nonlinear system (1.1) around C2-trajectory using two boundary controls, see for
instance the works [EGGP12, ES18]; see also the work [EGG16] in higher dimensional case. However,
no (local) controllability results are known for the system (1.1) using one boundary control (acting
either on density or velocity).

We wish to study the local null controllability of this system at time 𝑇 using only one boundary
control acting either on density or velocity. Recall that, in the periodic setup, we have proved null
controllability of the associated linearized system (using a boundary condition acting either on den-

sity or velocity), provided the coefficients satisfy a necessary and sufficient condition
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∉ N.

Whereas, when a boundary control acts on the velocity component through the mixed-type conditions,
we have obtained null controllability at large time provided the coefficient 𝑐 lies outside a countable
set N . Thus, we can ask local null controllability of the nonlinear system (6.8) when the coefficient

satisfy
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∈ N in the periodic setup and when 𝑐 belong to the critical set N in the mixed-type

boundary conditions. However, due to the complicated nonlinearities 𝜌𝑢𝑢𝑥 and (𝜌𝑢)𝑥 , this problem is
very difficult to tackle and so we first want to study the problem in a simplified setup. The system is
given by 

𝜌𝑡 +𝑉0𝜌𝑥 +𝑄0𝑢𝑥 = 0, in (0,𝑇 ) × (0, 2𝜋),
𝑢𝑡 − 𝜇0𝑢𝑥𝑥 +𝑉0𝑢𝑥 + 𝑏𝜌𝑥 = 𝑢𝑢𝑥 , in (0,𝑇 ) × (0, 2𝜋),
𝜌 (𝑡, 0) = 𝜌 (𝑡, 2𝜋) + 𝑝 (𝑡), for 𝑡 ∈ (0,𝑇 ),
𝑢 (𝑡, 0) = 𝑢 (𝑡, 2𝜋) + 𝑞(𝑡), 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 2𝜋), for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥), in (0, 𝐿),

(6.9)

where 𝑝, 𝑞 ∈ 𝐿2(0,𝑇 ) are boundary controls. We have considered the periodic boundary conditions
to avoid any unnecessary difficulty and also because we have obtained optimal controllability results
(with respect to time, space and coefficients) for the corresponding linearized system in Chapter 3.
Using these known results of the linearized system, some fixed-point argument might be implemented
to get a local controllability result for this system when only one control is acting on the system

(that is, either 𝑝 = 0 or 𝑞 = 0). Further, note that, if
2
√
𝑏𝑄0−𝑉 2

0

𝜇0
∈ N, the corresponding linearized

system is not null controllable at any time 𝑇 in (𝐿2(0, 2𝜋))2 in either cases. Thus, proving some local
controllability results for the nonlinear system (6.9) under this restriction on the coefficients will be a
very interesting problem. In this context, we refer to the works [CMZ20, CC09b, Cer07], where local
controllability of the nonlinear KdV equation is obtained via power series expansion method, when the
linearized system is not controllable, see also the book [Cor07] and the survey articles [RZ09, Cer14].
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Similarly, we can study the local null controllability of the above simplified nonlinear model but
with Dirichlet/ mixed-type boundary conditions when the coefficient belong to the critical set N . We
note here that, full characterization of the set N is still not known and hence the problem is more
difficult to handle. In this context, we refer to the work [Ros97] where similar characterization of the
critical set is known for the linear KdV equation.

Further, the same question can be asked for the non-barotropic case also, that is, for the nonlinear
system (1.16).

On the other hand, there is no global controllability results known for the nonlinear compressible
Navier-stokes systems (barotropic and non-barotropic). In this context, we refer to the work [FI95],
where the authors proved that the viscous Burgers equation in the interval (0, 𝐿) is not globally
approximately controllable in 𝐿2(0, 𝐿) using a localized distributed control; see also the lecture note
[FI96, Chapter 1, Section 6, Page 53].

6.4 Nonlinear coupled parabolic equations

6.4.1 Nonlinear system with space dependent coefficients

Let 𝑇 > 0 be given. We consider the following system:

𝑦𝑡 − (𝛾1𝑦𝑥 )𝑥 + 𝛼1𝑦 + 𝛽1𝑧 = 𝑓1(𝑦, 𝑧), in (0,𝑇 ) × (0, 1),
𝑧𝑡 − (𝛾2𝑧𝑥 )𝑥 + 𝛼2𝑦 + 𝛽2𝑧 = 𝑓2(𝑦, 𝑧), in (0,𝑇 ) × (0, 1),
𝑦𝑥 (𝑡, 0) = 𝑞(𝑡), 𝑧𝑥 (𝑡, 0) = 𝑟 (𝑡), for 𝑡 ∈ (0,𝑇 ),
𝑦𝑥 (𝑡, 1) = 𝑧𝑥 (𝑡, 1), for 𝑡 ∈ (0,𝑇 ),
𝛾1(1)𝑦 (𝑡, 1) + 𝛾2(1)𝑧 (𝑡, 1) + 𝛼𝑦𝑥 (𝑡, 1) = 0, for 𝑡 ∈ (0,𝑇 ),
𝑦 (0, 𝑥) = 𝑦0(𝑥), 𝑧 (0, 𝑥) = 𝑧0(𝑥), in (0, 1),

(6.10)

where 𝑞, 𝑟 ∈ 𝐿2(0,𝑇 ) are boundary controls. Here 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 for 𝑖 = 1, 2 are functions of 𝑥 and 𝑓1, 𝑓2 are
nonlinear functions which are given by (5.2)–(5.3) (as mentioned in Chapter 5). In this setup, we can
study the small-time local null controllability using only one boundary control 𝑞 or 𝑟 by the source
term method. We note here that a suitable Carleman estimate is needed to prove null controllability
of the associated linearized system. Then, with the help of the control cost 𝐶𝑒

𝐶
𝑇 , one may prove

small-time local null controllability of the nonlinear system (6.10) using Banach fixed point. In this
context, we refer to the articles [BBHS21, BB21] (and the references therein) for a detail study of null
controllability of similar linear systems with different boundary conditions.

6.4.2 A nonlinear 3-parabolic system

Let 𝑇 > 0. We consider the following system
𝑢𝑡 − 𝜀1𝑢𝑥𝑥 = 𝛼 (𝑣 − 𝑢𝑣 + 𝑢 − 𝛽𝑢2), in (0,𝑇 ) × (0, 1),

𝑣𝑡 − 𝜀2𝑣𝑥𝑥 =
1

𝛼
(𝛾𝑤 − 𝑣 − 𝑢𝑣), in (0,𝑇 ) × (0, 1),

𝑤𝑡 − 𝜀3𝑤𝑥𝑥 = 𝛿 (𝑢 −𝑤), in (0,𝑇 ) × (0, 1) .

(6.11)

This kind of system is called the Field-Noyes model and serves as a model for Belousov-Zhabotinsky
reactions in chemical kinetics, see for instance [Smo83, Example 4, Page 210]. The functions 𝑢, 𝑣,𝑤
denote the chemical concentrations, 𝜀𝑖 > 0 for 𝑖 = 1, 2, 3 and 𝛼, 𝛽,𝛾, 𝛿 > 0 are constants. For this
system also, one may apply the source term method to study the small-time local controllability for
this system (6.11) using one boundary control. This problem is very interesting in the application
point of view.

6.5 Controllability in higher dimension

All the above controllability questions can be posed for higher dimensional models also, as many in-
teresting physical fluid models appear in several space dimensions. To ease the difficulty, one can start
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with a rectangle in R2 and with suitable boundary conditions so that the knowledge of the spectrum of
the corresponding linearized models helps us understand the control aspects of the linearized systems
and of the total nonlinear system.

We conclude this chapter with the comment that all of the above questions are only a few of the
open problems. The lessons and knowledge learned in this thesis can be kept in mind to progress in
these above directions in future.

“We have not succeeded in answering all our problems. The answers we have found only serve to
raise a whole set of new questions. In some ways we feel we are as confused as ever, but we believe
we are confused on a higher level and about more important things.”

- A quote mentioned in the book [Ok03].
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Appendix A

Proof of the Well-Posedness Results

In this chapter, we prove the well-posedness results for the linearized compressible Navier-Stokes
system (both barotropic and non-barotropic). We first write the related results for the barotropic case
to simplify the presentation.

A.0.1 Existence of semigroup: proof of Lemma 4.2.1

The proof is divided into several parts. Recall the operator (𝐴, 𝐷 (𝐴)) given by (4.7)–(4.8) and denote
Z = 𝐿2(0, 1) × 𝐿2(0, 1) over the field C.

Part 1. The operator 𝐴 is dissipative. We check that, all U = (𝜌,𝑢) ∈ 𝐷 (𝐴)

Re ⟨𝐴U,U⟩Z = Re

〈(
−𝜌𝑥 − 𝑏𝑢𝑥

−𝑏𝜌𝑥 + 𝑢𝑥𝑥 − 𝑢𝑥

)
,

(
𝜌

𝑢

)〉
Z

= Re

(
−

∫ 1

0
𝜌𝜌𝑥𝑑𝑥 − 𝑏

∫ 1

0
𝜌𝑢𝑥𝑑𝑥 − 𝑏

∫ 1

0
𝜌𝑥𝑢𝑑𝑥 +

∫ 1

0
𝑢𝑢𝑥𝑥𝑑𝑥 −

∫ 1

0
𝑢𝑢𝑥𝑑𝑥

)
= −1

2

∫ 1

0

𝑑

𝑑𝑥
( |𝜌 |2)𝑑𝑥 −

∫ 1

0
𝑢𝑥𝑢𝑥𝑑𝑥 − 1

2

∫ 1

0

𝑑

𝑑𝑥
( |𝑢 |2)𝑑𝑥

= −
∫ 1

0
|𝑢𝑥 |2 𝑑𝑥 ≤ 0,

Part 2. The operator 𝐴 is maximal. This is equivalent to the following. For any 𝜆 > 0 and any(
𝑓

𝑔

)
∈ Z we can find a

(
𝜌

𝑢

)
∈ 𝐷 (𝐴) such that

(𝜆𝐼 −𝐴)
(
𝜌

𝑢

)
=

(
𝑓

𝑔

)
(A.1)

that is

𝜆𝜌 + 𝜌𝑥 + 𝑏𝑢𝑥 = 𝑓 ,

𝜆𝑢 + 𝑏𝜌𝑥 − 𝑢𝑥𝑥 + 𝑢𝑥 = 𝑔.

Let 𝜖 > 0. Instead of solving the above problem, we will solve the following regularized problem

𝜆𝜌 + 𝜌𝑥 + 𝑏𝑢𝑥 − 𝜖𝜌𝑥𝑥 = 𝑓 ,

𝜆𝑢 + 𝑏𝜌𝑥 + 𝑢𝑥 − 𝑢𝑥𝑥 = 𝑔,
(A.2)

with the following boundary conditions

𝜌 (0) = 𝜌 (1), 𝜌𝑥 (0) = 𝜌𝑥 (1), 𝑢 (0) = 0, 𝑢 (1) = 0.

We now proceed through the following steps.
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A. Proof of the Well-Posedness Results

Step 1. We consider the space 𝑉 , given by

𝑉 =
{
(𝜌,𝑢) ∈ 𝐻1(0, 1) × 𝐻1(0, 1) : 𝜌 (0) = 𝜌 (1), 𝑢 (0) = 0, 𝑢 (1) = 0

}
.

Using Lax-Milgram theorem, we first prove that the system (A.2) has a unique solution in 𝑉 . Define
the operator 𝐵 : 𝑉 ×𝑉 → C by

𝐵

((
𝜌

𝑢

)
,

(
𝜎

𝑣

))
= 𝜖

∫ 1

0
𝜌𝑥𝜎𝑥𝑑𝑥 + 𝑏

∫ 1

0
𝑢𝑥𝜎𝑑𝑥 +

∫ 1

0
𝜌𝑥𝜎𝑑𝑥 + 𝜆

∫ 1

0
𝜌𝜎𝑑𝑥

+
∫ 1

0
𝑢𝑥𝑣𝑥𝑑𝑥 +

∫ 1

0
𝑢𝑥𝑣𝑑𝑥 + 𝑏

∫ 1

0
𝜌𝑥𝑣𝑑𝑥 + 𝜆

∫ 1

0
𝑢𝑣𝑑𝑥,

for all

(
𝜌

𝑢

)
,

(
𝜎

𝑣

)
∈ 𝑉 . Then, one can show that 𝐵 is continuous and coercive. Thus, by Lax-Milgram

theorem, for every 𝜖 > 0, there exists a unique solution (𝜌𝜖 , 𝑢𝜖 ) ∈ 𝑉 such that

𝐵

((
𝜌𝜖

𝑢𝜖

)
,

(
𝜎

𝑣

))
= 𝐹

((
𝜎

𝑣

))
, ∀

(
𝜎

𝑣

)
∈ 𝑉 ,

where 𝐹 : 𝑉 → C is the linear functional given by

𝐹

((
𝜎

𝑣

))
:=

∫ 1

0
𝑓 𝜎𝑑𝑥 +

∫ 1

0
𝑔𝑣𝑑𝑥 .

Step 2. Now, observe that

Re

(
𝐵

((
𝜌𝜖

𝑢𝜖

)
,

(
𝜌𝜖

𝑢𝜖

)))
≤

∫ 1

0

��𝑓 𝜌𝜖 �� + ∫ 1

0

��𝑔𝑢𝜖 �� ≤ 1

2

∫ 1

0

(
|𝑓 |2 +

��𝜌𝜖 ��2) + 1

2

∫ 1

0

(
|𝑔|2 +

��𝑢𝜖 ��2) ,
which yields

𝜖

∫ 1

0

��𝜌𝜖𝑥 ��2 + 𝜆2 ∫ 1

0
|𝜌𝜖 |2 +

∫ 1

0

��𝑢𝜖𝑥 ��2 + 𝜆2 ∫ 1

0
|𝑢𝜖 |2 ≤ 1

2

∫ 1

0
|𝑓 |2 + 1

2

∫ 1

0
|𝑔 |2

This shows that (𝑢𝜖 )𝜖≥0 is bounded in 𝐻1(0, 1), (𝜌𝜖 )𝜖≥0 is bounded in 𝐿2(0, 1) and (
√
𝜖𝜌𝜖𝑥 )𝜖≥0 is bounded

in 𝐿2(0, 1). Since the spaces 𝐻1(0, 1) and 𝐿2(0, 1) are reflexive, there exist subsequences, still denoted
by (𝑢𝜖 )𝜖≥0, (𝜌𝜖 )𝜖≥0, and functions 𝜌 ∈ 𝐿2(0, 1) and 𝑢 ∈ 𝐻1(0, 1), such that

𝑢𝜖 ⇀ 𝑢 in 𝐻1(0, 1), and 𝜌𝜖 ⇀ 𝜌 in 𝐿2(0, 1) .

Furthermore, we have ∫ 1

0

��𝜖𝜌𝜖𝑥 ��2 = 𝜖 ∫ 1

0

��√𝜖𝜌𝜖 ��2 → 0, as 𝜖 → 0.

Now, since 𝐵

((
𝜌𝜖

𝑢𝜖

)
,

(
𝜎

𝑣

))
= 𝐹

((
𝜎

𝑣

))
, for all

(
𝜎

𝑣

)
∈ 𝑉 , we may take

(
𝜎

0

)
∈ 𝑉 , so that we obtain

𝜖

∫ 1

0
𝜌𝜖𝑥𝜎𝑥 + 𝑏

∫ 1

0
𝑢𝜖𝑥𝜎 +

∫ 1

0
𝜌𝜖𝑥𝜎 + 𝜆

∫ 1

0
𝜌𝜖𝜎 =

∫ 1

0
𝑓 𝜎 . (A.3)

Similarly, by taking

(
0

𝑣

)
∈ 𝑉 , we get

∫ 1

0
𝑢𝜖𝑥𝑣𝑥 +

∫ 1

0
𝑢𝜖𝑥𝑣 + 𝑏

∫ 1

0
𝜌𝜖𝑥𝑣 + 𝜆

∫ 1

0
𝑢𝜖𝑣 =

∫ 1

0
𝑔𝑣. (A.4)
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Integrating by parts, we get from equation (A.3) that,

𝜖

∫ 1

0
𝜌𝜖𝑥𝜎𝑥 + 𝑏

∫ 1

0
𝑢𝜖𝑥𝜎 −

∫ 1

0
𝜌𝜖𝜎𝑥 + 𝜆

∫ 1

0
𝜌𝜖𝜎 =

∫ 1

0
𝑓 𝜎 .

Then, passing to the limit 𝜖 → 0, we obtain

𝑏

∫ 1

0
𝑢𝑥𝜎 −

∫ 1

0
𝜌𝜎𝑥 + 𝜆

∫ 1

0
𝜌𝜎 =

∫ 1

0
𝑓 𝜎,

and the above relation is true ∀𝜎 ∈ C∞
𝑐 (0, 1). As a consequence,

𝑏𝑢𝑥 + 𝜌𝑥 + 𝜆𝜌 = 𝑓 , (A.5)

in the sense of distribution and therefore 𝜌𝑥 = 𝑓 − 𝑏𝑢𝑥 − 𝜆𝜌 ∈ 𝐿2(0, 1); in other words, 𝜌 ∈ 𝐻1(0, 1).
Step 3. We now show 𝑢 (0) = 𝑢 (1) = 0. Since the inclusion map 𝑖 : 𝐻1(0, 1) → C0( [0, 1]) is compact

and 𝑢𝜖 ⇀ 𝑢 in 𝐻1(0, 1), we obtain
𝑢𝜖 → 𝑢 in C0( [0, 1]) .

Thus, (𝑢𝜖 (0), 𝑢𝜖 (1)) → (𝑢 (0), 𝑢 (1)). Since 𝑢𝜖 (0) = 𝑢𝜖 (1) = 0 for all 𝜖 > 0, we have

𝑢 (0) = 𝑢 (1) = 0.

Similarly from the identity (A.4), one can deduce that

−𝑢𝑥𝑥 + 𝑢𝑥 + 𝑏𝜌𝑥 + 𝜆𝑢 = 𝑔, (A.6)

in the sense of distribution and therefore 𝑢𝑥𝑥 ∈ 𝐿2(0, 1), that is 𝑢 ∈ 𝐻2(0, 1).
We now show 𝜌 (0) = 𝜌 (1). Recall that, 𝑏𝑢𝑥 + 𝜌𝑥 + 𝜆𝜌 = 𝑓 and therefore

𝑏

∫ 1

0
𝑢𝑥𝜎 +

∫ 1

0
𝜌𝑥𝜎 + 𝜆

∫ 1

0
𝜌𝜎 =

∫ 1

0
𝑓 𝜎 .

Integrating by parts, we get

𝑏

∫ 1

0
𝑢𝑥𝜎 −

∫ 1

0
𝜌𝜎𝑥 + 𝜌𝜎 |10 + 𝜆

∫ 1

0
𝜌𝜎 =

∫ 1

0
𝑓 𝜎 . (A.7)

From (A.3), we deduce

𝜖

∫ 1

0
𝜌𝜖𝑥𝜎𝑥 + 𝑏

∫ 1

0
𝑢𝜖𝑥𝜎 −

∫ 1

0
𝜌𝜖𝜎𝑥 + 𝜆

∫ 1

0
𝜌𝜖𝜎 =

∫ 1

0
𝑓 𝜎 . (A.8)

Taking 𝜖 → 0, we get

𝑏

∫ 1

0
𝑢𝑥𝜎 −

∫ 1

0
𝜌𝜎𝑥 + 𝜆

∫ 1

0
𝜌𝜎 =

∫ 1

0
𝑓 𝜎 . (A.9)

Comparing (A.7) and (A.9), one has 𝜌 (0)𝜎 (0) = 𝜌 (1)𝜎 (1). But 𝜎 (0) = 𝜎 (1), and thus

𝜌 (0) = 𝜌 (1).

So, we get

(
𝜌

𝑢

)
∈ 𝐷 (𝐴). Hence, the operator 𝐴 is maximal.

A.0.2 Solution by transposition: proof of Theorem 4.2.2

In this section, we are going to proof the existence of solution to our control problem (4.5), more
precisely Theorem 4.2.2. We omit the proof for Theorem 4.2.1, when a control acts on the velocity
part.
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A. Proof of the Well-Posedness Results

Step 1. We first consider system (4.5) with zero initial data and nonhomogeneous boundary condi-
tions, that is, 

𝜌𝑡 + 𝜌𝑥 + 𝑏𝑢𝑥 = 0 in (0,𝑇 ) × (0, 1),
𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢𝑥 + 𝑏𝜌𝑥 = 0 in (0,𝑇 ) × (0, 1),
𝜌 (𝑡, 0) = 𝜌 (𝑡, 1) + 𝑝 (𝑡) for 𝑡 ∈ (0,𝑇 ),
𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 1) = 0 for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝑢 (0, 𝑥) = 0 for 𝑥 ∈ (0, 1),

(A.10)

with 𝑝 ∈ 𝐿2(0,𝑇 ).
We now prove the existence of solution to the new system (A.10).

Theorem A.0.1. For a given 𝑝 ∈ 𝐿2(0,𝑇 ), the system (A.10) has a unique solution (𝜌,𝑢) belonging
to the space 𝐿2(0,𝑇 ;𝐿2(0, 1)) × 𝐿2(0,𝑇 ;𝐿2(0, 1)) in the sense of transposition. Moreover, the operator:

𝑝 ↦→ (𝜌,𝑢),

is linear and continuous from 𝐿2(0,𝑇 ) into 𝐿2(0,𝑇 ;𝐿2(0, 1)) × 𝐿2(0,𝑇 ;𝐿2(0, 1)).

Proof. Existence: Let us define a map Λ1 : 𝐿
2(0,𝑇 ;𝐿2(0, 1)) × 𝐿2(0,𝑇 ;𝐿2(0, 1)) → 𝐿2(0,𝑇 ),

Λ1(𝑓 , 𝑔) = 𝜎 (𝑡, 1), (A.11)

where (𝜎, 𝑣) is the unique solution to the adjoint system (4.14) with given source term (𝑓 , 𝑔). The map
Λ1 is well-defined because of the hidden regularity as mentioned in Appendix A.1, Corollary A.1.1.

Now, thanks to Proposition 4.2.1, the map

(𝑓 , 𝑔) ↦→ (𝜎, 𝑣)

is linear and continuous from 𝐿2(0,𝑇 ;𝐿2(0, 1)) ×𝐿2(0,𝑇 ;𝐿2(0, 1)) to 𝐿2(0,𝑇 ;𝐿2(0, 1)) ×𝐿2(0,𝑇 ;𝐻1
0 (0, 1)),

which implies that the map Λ1 given by (A.11) is linear and continuous (Corollary A.1.1).

So, we can define the adjoint to Λ1 as follows

Λ∗
1 : 𝐿

2(0,𝑇 ) → 𝐿2(0,𝑇 ;𝐿2(0, 1)) × 𝐿2(0,𝑇 ;𝐿2(0, 1)), (A.12)

which is also linear and continuous.

Let us denote Λ∗
1(𝑝) = (𝜌,𝑢). Then, for (𝜌,𝑢), we have∫ 𝑇

0

∫ 1

0
𝜌 (𝑡, 𝑥) 𝑓 (𝑡, 𝑥)𝑑𝑥𝑑𝑡 +

∫ 𝑇

0

∫ 1

0
𝑢 (𝑡, 𝑥)𝑔(𝑡, 𝑥)𝑑𝑥𝑑𝑡

=
〈
Λ∗
1𝑝, (𝑓 , 𝑔)

〉
= ⟨𝑝,Λ1(𝑓 , 𝑔)⟩ =

∫ 𝑇

0
𝑝 (𝑡)𝜎 (𝑡, 1)𝑑𝑡,

for every (𝑓 , 𝑔) in 𝐿2(0,𝑇 ;𝐿2(0, 1)) × 𝐿2(0,𝑇 ;𝐿2(0, 1)). Hence for any 𝑝 ∈ 𝐿2(0,𝑇 ), (𝜌,𝑢) is the solution
to the system (A.10) in the sense of transposition and

∥(𝜌,𝑢)∥𝐿2 (𝐿2 )×𝐿2 (𝐿2 ) = ∥Λ∗
1(𝑝)∥𝐿2 (𝐿2 )×𝐿2 (𝐿2 ) ≤ ∥Λ∗

1∥ ∥𝑝 ∥𝐿2 (0,𝑇 ) . (A.13)

Uniqueness: If 𝑝 = 0 on (0,𝑇 ), we have∫ 𝑇

0

∫ 1

0
𝜌 (𝑡, 𝑥) 𝑓 (𝑡, 𝑥)𝑑𝑥𝑑𝑡 +

∫ 𝑇

0

∫ 1

0
𝑢 (𝑡, 𝑥)𝑔(𝑡, 𝑥)𝑑𝑥𝑑𝑡 = 0,

for all (𝑓 , 𝑔) ∈ 𝐿2(0,𝑇 ;𝐿2(0, 1)) × 𝐿2(0,𝑇 ;𝐿2(0, 1)), which gives (𝜌,𝑢) = (0, 0) and therefore the solution
to the system (A.10) is unique.
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Step 2. We now consider the system (4.5) with non-zero initial data and homogeneous boundary
conditions and check the existence, uniqueness of solution. The system reads as

𝜌𝑡 + 𝜌𝑥 + 𝑏𝑢𝑥 = 0 in (0,𝑇 ) × (0, 1),
𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢𝑥 + 𝑏𝜌𝑥 = 0 in (0,𝑇 ) × (0, 1),
𝜌 (𝑡, 0) = 𝜌 (𝑡, 1) for 𝑡 ∈ (0,𝑇 ),
𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 1) = 0 for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥) in (0, 1),

(A.14)

with (𝜌0, 𝑢0) ∈ 𝐿2(0, 1) × 𝐿2(0, 1).

Theorem A.0.2. For any (𝜌0, 𝑢0) ∈ 𝐿2(0, 1) × 𝐿2(0, 1), the system (A.14) has a unique solution (𝜌,𝑢)
belonging to the space 𝐿2(0,𝑇 ;𝐿2(0, 1)) × 𝐿2(0,𝑇 ;𝐿2(0, 1)) in the sense of transposition. Moreover, the
operator:

(𝜌0, 𝑢0) ↦→ (𝜌,𝑢),

is linear and continuous from 𝐿2(0, 1) × 𝐿2(0, 1) into 𝐿2(0,𝑇 ;𝐿2(0, 1)) × 𝐿2(0,𝑇 ;𝐿2(0, 1)).

Proof. Existence: Let us define a map Λ2 : 𝐿
2(0,𝑇 ;𝐿2(0, 1)) × 𝐿2(0,𝑇 ;𝐿2(0, 1)) → 𝐿2(0, 1) × 𝐿2(0, 1),

Λ2(𝑓 , 𝑔) = (𝜎 (0, ·), 𝑣 (0, ·)), (A.15)

where (𝜎, 𝑣) is the unique solution to the adjoint system (4.14) with given source term (𝑓 , 𝑔).
Now, thanks to Proposition 4.2.1, the map

(𝑓 , 𝑔) ↦→ (𝜎, 𝑣)

is linear and continuous from 𝐿2(0,𝑇 ;𝐿2(0, 1)) × 𝐿2(0,𝑇 ;𝐿2(0, 1)) to the space C([0,𝑇 ];𝐿2(0, 1)) ×
[C([0,𝑇 ];𝐿2(0, 1)) ∩ 𝐿2(0,𝑇 ;𝐻1

0 (0, 1))], which implies that the map Λ2 given by (A.15) is linear and
continuous.

So, we can define the adjoint to Λ2 as follows

Λ∗
2 : 𝐿

2(0, 1) × 𝐿2(0, 1) → 𝐿2(0,𝑇 ;𝐿2(0, 1)) × 𝐿2(0,𝑇 ;𝐿2(0, 1)), (A.16)

which is also linear and continuous.

Let us denote Λ∗
2(𝜌0, 𝑢0) = (𝜌,𝑢). Then, for (𝜌,𝑢), we have∫ 𝑇

0

∫ 1

0
𝜌 (𝑡, 𝑥) 𝑓 (𝑡, 𝑥)𝑑𝑥𝑑𝑡 +

∫ 𝑇

0

∫ 1

0
𝑢 (𝑡, 𝑥)𝑔(𝑡, 𝑥)𝑑𝑥𝑑𝑡

=
〈
Λ∗
2(𝜌0, 𝑢0), (𝑓 , 𝑔)

〉
= ⟨(𝜌0, 𝑢0),Λ2(𝑓 , 𝑔)⟩ = ⟨(𝜌0, 𝑢0), (𝜎 (0, ·), 𝑣 (0, ·))⟩ ,

for every (𝑓 , 𝑔) in 𝐿2(0,𝑇 ;𝐿2(0, 1)) × 𝐿2(0,𝑇 ;𝐿2(0, 1)). Hence for any (𝜌0, 𝑢0) ∈ 𝐿2(0, 1) × 𝐿2(0, 1), (𝜌,𝑢)
is the solution to the system (A.10) and

∥(𝜌,𝑢)∥𝐿2 (𝐿2 )×𝐿2 (𝐿2 ) = ∥Λ∗
2(𝜌0, 𝑢0)∥𝐿2 (𝐿2 )×𝐿2 (𝐿2 ) ≤ ∥Λ∗

2∥ ∥(𝜌0, 𝑢0)∥𝐿2 (0,1)×𝐿2 (0,1) . (A.17)

Uniqueness: Let the system (A.14) has two solutions (𝜌1, 𝑢1) and (𝜌2, 𝑢2). Introduce

(𝜌,𝑢) = (𝜌1, 𝑢1) − (𝜌2, 𝑢2) .

Then one can show that the only possibility is (𝜌,𝑢) = (0, 0), using the initial and boundary conditions:
𝜌 (0, 𝑥) = 𝑢 (0, 𝑥) = 0 for all 𝑥 ∈ (0, 1) and 𝜌 (𝑡, 0) = 𝜌 (𝑡, 1), 𝑢 (𝑡, 0) = 𝑢 (𝑡, 1) = 0 for all 𝑡 ∈ (0,𝑇 ).
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A. Proof of the Well-Posedness Results

Proof of Theorem 4.2.2. We now recall the system (4.5) with given boundary data 𝑝 ∈ 𝐿2(0,𝑇 ) and
initial data (𝜌0, 𝑢0) ∈ 𝐿2(0, 1) × 𝐿2(0, 1). Then, thanks to Theorem A.0.1 & A.0.2,

(𝜌,𝑢) := (𝜌,𝑢) + (𝜌,𝑢),

is the unique solution to (4.5).

It remains to prove the continuity estimate of the solution (𝜌,𝑢). Let 𝐻 : 𝐿2(0, 1) × 𝐿2(0, 1) ×
𝐿2(0,𝑇 ) → 𝐿2(0,𝑇 ;𝐿2(0, 1) × 𝐿2(0, 1)) be defined by

𝐻 (𝜌0, 𝑢0, 𝑝) = (𝜌,𝑢) . (A.18)

Then 𝐻 is linear. Furthermore, using (A.13) and (A.17), we get

∥𝐻 (𝜌0, 𝑢0, 𝑝)∥𝐿2 (0,𝑇 ;𝐿2 (0,1) )×𝐿2 (0,𝑇 ;𝐿2 (0,1) ) = ∥(𝜌,𝑢) + (𝜌,𝑢)∥𝐿2 (0,𝑇 ;𝐿2 (0,1) )×𝐿2 (0,𝑇 ;𝐿2 (0,1) )
≤



Λ∗
1



 ∥𝑝 ∥𝐿2 (0,𝑇 ) +


Λ∗

2



 ∥(𝜌0, 𝑢0)∥𝐿2 (0,1)×𝐿2 (0,1)
≤ 𝐶

(
∥𝑝 ∥𝐿2 (0,𝑇 ) + ∥𝜌0∥𝐿2 (0,1) + ∥𝑢0∥𝐿2 (0,1)

)
.

Finally, the required regularity result (4.16)–(4.17) can be obtained by applying the usual regularity of
parabolic equation (with homogeneous boundary data) and then using that, the regularity of transport
part follows immediately.

The proof is complete.

A.1 A hidden regularity result

Consider the following system

𝜌𝑡 + 𝜌𝑥 + 𝑏𝑢𝑥 = 0 in (0,𝑇 ) × (0, 1),
𝑢𝑡 − 𝑢𝑥𝑥 + 𝑢𝑥 + 𝑏𝜌𝑥 = 0 in (0,𝑇 ) × (0, 1),
𝜌 (𝑡, 0) = 𝜌 (𝑡, 1) + 𝑝 (𝑡) for 𝑡 ∈ (0,𝑇 ),
𝑢 (𝑡, 0) = 0, 𝑢 (𝑡, 1) = 0 for 𝑡 ∈ (0,𝑇 ),
𝜌 (0, 𝑥) = 𝜌0(𝑥), 𝑢 (0, 𝑥) = 𝑢0(𝑥) in (0, 1),

(A.19)

where (𝜌0, 𝑢0) ∈ 𝐿2(0, 1) × 𝐿2(0, 1) and 𝑝 ∈ 𝐿2(0,𝑇 ) are given data. Then, one has the following result.

Lemma A.1.1. For any (𝜌0, 𝑢0) ∈ 𝐿2(0, 1) × 𝐿2(0, 1) and 𝑝 ∈ 𝐿2(0,𝑇 ), the density component 𝜌 to the
system (A.19) satisfies 𝜌 (·, 1) ∈ 𝐿2(0,𝑇 ).

Proof. The proof is split into two steps. First, recall Theorem 4.2.2 so that one has

(𝜌,𝑢) ∈ C0( [0,𝑇 ];𝐿2(0, 1)) × [C0( [0,𝑇 ];𝐿2(0, 1)) ∩ 𝐿2(0,𝑇 ;𝐻1
0 (0, 1))] .

Step 1. Let us take the initial state 𝜌0 ∈ 𝐻1
♯
(0, 1) (i.e., 𝜌0 ∈ 𝐻1(0, 1) with 𝜌0(0) = 𝜌0(1)), 𝑢0 ∈ 𝐻1

0 (0, 1)
and the boundary data 𝑝 ∈ 𝐻1

{0} (0,𝑇 ). Then one can prove that the solution (𝜌,𝑢) to system (A.19)

lies in the space [𝐻1(0,𝑇 ;𝐿2(0, 1)) ∩𝐿2(0,𝑇 ;𝐻1(0, 1))] × [𝐿2(0,𝑇 ;𝐻2(0, 1) ∩𝐻1
0 (0, 1)) ∩𝐻1(0,𝑇 ;𝐿2(0, 1))],

see for instance [CR13]. Therefore, 𝑢𝑥 ∈ 𝐿2(0,𝑇 ;𝐻1(0, 1)) and so the integration by parts are justified.
Multiplying the first equation of (A.19) by 𝑥𝜌, we get∫ 𝑇

0

∫ 1

0
𝑥𝜌𝜌𝑡𝑑𝑥𝑑𝑡 +

∫ 𝑇

0

∫ 1

0
𝑥𝜌𝜌𝑥𝑑𝑥𝑑𝑡 + 𝑏

∫ 𝑇

0

∫ 1

0
𝑥𝜌𝑢𝑥𝑑𝑥𝑑𝑡 = 0.

Integrating by parts and using the boundary conditions, we obtain

1

2

∫ 1

0
𝑥 (𝜌2(𝑇, 𝑥) − 𝜌20 (𝑥))𝑑𝑥 + 1

2

∫ 𝑇

0
𝜌2(𝑡, 1)𝑑𝑡 − 1

2

∫ 𝑇

0

∫ 1

0
𝜌2𝑑𝑥𝑑𝑡 + 𝑏

∫ 𝑇

0

∫ 1

0
𝑥𝜌𝑢𝑥𝑑𝑥𝑑𝑡 = 0. (A.20)
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Therefore∫ 𝑇

0
𝜌2(𝑡, 1)𝑑𝑡 = −

∫ 1

0
𝑥 (𝜌2(𝑇, 𝑥) − 𝜌20 (𝑥))𝑑𝑥 +

∫ 𝑇

0

∫ 1

0
𝜌2𝑑𝑥𝑑𝑡 − 2𝑏

∫ 𝑇

0

∫ 1

0
𝑥𝜌𝑢𝑥𝑑𝑥𝑑𝑡

≤ (1 + 𝑏)
∫ 𝑇

0

∫ 1

0
𝜌2𝑑𝑥𝑑𝑡 + 𝑏

∫ 𝑇

0

∫ 1

0
𝑢2𝑥𝑑𝑥𝑑𝑡 +

∫ 1

0
𝜌20 (𝑥)𝑑𝑥 .

Using the continuity estimate (4.17), we obtain∫ 𝑇

0
𝜌2(𝑡, 1)𝑑𝑡 ≤ 𝐶

(∫ 1

0
𝜌20 (𝑥)𝑑𝑥 +

∫ 1

0
𝑢20 (𝑥)𝑑𝑥 +

∫ 𝑇

0
𝑝2(𝑡)𝑑𝑡

)
. (A.21)

Step 2. Let (𝜌0, 𝑢0) ∈ 𝐿2(0, 1) × 𝐿2(0, 1) and 𝑝 ∈ 𝐿2(0,𝑇 ). By density, there exists sequences 𝜌𝑛0 ∈
𝐻1
♯
(0, 1), 𝑢𝑛0 ∈ 𝐻1

0 (0, 1) and 𝑝𝑛 ∈ 𝐻1
{0} (0,𝑇 ) such that 𝜌𝑛0 → 𝜌, 𝑢𝑛0 → 𝑢0 in 𝐿2(0, 1) and 𝑝𝑛 → 𝑝 in

𝐿2(0,𝑇 ). Let (𝜌𝑛, 𝑢𝑛) be the solution to (A.19) corresponding to the initial state (𝜌𝑛0 , 𝑢𝑛0) and boundary
data 𝑝𝑛. Using (A.21) from Step 1, we have∫ 𝑇

0
(𝜌𝑛)2(𝑡, 1)𝑑𝑡 ≤ 𝐶

(∫ 1

0
(𝜌𝑛0 )2(𝑥)𝑑𝑥 +

∫ 1

0
(𝑢𝑛0)2(𝑥)𝑑𝑥 +

∫ 𝑇

0
(𝑝𝑛)2(𝑡)𝑑𝑡

)
.

We first observe that∫ 1

0
(𝜌𝑛0 )2(𝑥)𝑑𝑥 +

∫ 1

0
(𝑢𝑛0)2(𝑥)𝑑𝑥 +

∫ 𝑇

0
(𝑝𝑛)2(𝑡)𝑑𝑡 →

∫ 1

0
𝜌20 (𝑥)𝑑𝑥 +

∫ 1

0
𝑢20 (𝑥)𝑑𝑥 +

∫ 𝑇

0
𝑝2(𝑡)𝑑𝑡,

as 𝑛 → +∞. Therefore, the sequence
( ∫ 𝑇

0
(𝜌𝑛)2(𝑡, 1)𝑑𝑡

)
𝑛
is indeed a Cauchy sequence and hence con-

vergent. Then, by the uniqueness of solution to (A.19), we have lim
𝑛→+∞

∫ 𝑇

0
(𝜌𝑛)2(𝑡, 1)𝑑𝑡 =

∫ 𝑇

0
𝜌2(𝑡, 1)𝑑𝑡 ,

which yields ∫ 𝑇

0
𝜌2(𝑡, 1)𝑑𝑡 ≤ 𝐶

(∫ 1

0
𝜌20 (𝑥)𝑑𝑥 +

∫ 1

0
𝑢20 (𝑥)𝑑𝑥 +

∫ 𝑇

0
𝑝2(𝑡)𝑑𝑡

)
.

This concludes the proof of the lemma.

Let us now consider the following system

−𝜎𝑡 − 𝜎𝑥 − 𝑏𝑣𝑥 = 𝑓 in (0,𝑇 ) × (0, 1),
−𝑣𝑡 − 𝑣𝑥𝑥 − 𝑣𝑥 − 𝑏𝜎𝑥 = 𝑔 in (0,𝑇 ) × (0, 1),
𝜎 (𝑡, 0) = 𝜎 (𝑡, 1) for 𝑡 ∈ (0,𝑇 ),
𝑣 (𝑡, 0) = 𝑣 (𝑡, 1) = 0 for 𝑡 ∈ (0,𝑇 ),
𝜎 (𝑇, 𝑥) = 0, 𝑣 (𝑇, 𝑥) = 0 in (0, 1),

(A.22)

with 𝑓 , 𝑔 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 1)). We can similarly conclude the following result.

Corollary A.1.1. For any 𝑓 , 𝑔 ∈ 𝐿2(0,𝑇 ;𝐿2(0, 1)), the solution component 𝜎 to the adjoint system
(A.22) satisfies the following estimate.

∥𝜎 (·, 1)∥𝐿2 (0,𝑇 ) ≤ 𝐶
(
∥ 𝑓 ∥𝐿2 (0,𝑇 ;𝐿2 (0,1) ) + ∥𝑔∥𝐿2 (0,𝑇 ;𝐿2 (0,1) )

)
. (A.23)

A.1.1 Existence of semigroup: proof of Lemma 3.3.1

The proof is divided into several parts.

Part 1. The operator 𝐴 is dissipative. Indeed, for all (𝜉, 𝜂, 𝜁 )† ∈ D(𝐴)

Re ⟨𝐴U,U⟩ (𝐿2 (0,2𝜋 ) )3 = Re

〈©­­­«
−𝑢𝜉𝑥 − 𝜌𝜂𝑥

−𝑅𝜃
𝜌
𝜉𝑥 + 𝜆0𝜂𝑥𝑥 − 𝑢𝜂𝑥 − 𝑅𝜁𝑥
−𝑅𝜃

𝑐0
𝜂𝑥 + 𝜅0𝜁𝑥𝑥 − 𝑢𝜁𝑥

ª®®®¬ ,
©­­«
𝜉

𝜂

𝜁

ª®®¬
〉
(𝐿2 (0,2𝜋 ) )3
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= Re

(
−𝑅𝜃𝑢

∫ 2𝜋

0
𝜉𝜉𝑥𝑑𝑥 − 𝑅𝜃𝜌

∫ 2𝜋

0
𝜉𝜂𝑥𝑑𝑥 − 𝑅𝜃𝜌

∫ 2𝜋

0
𝜉𝑥𝜂𝑑𝑥 + 𝜆0𝜌2

∫ 2𝜋

0
𝜂𝜂𝑥𝑥𝑑𝑥 − 𝜌2𝑢

∫ 2𝜋

0
𝜂𝜂𝑥𝑑𝑥

−𝑅𝜌2
∫ 2𝜋

0
𝜂𝜁𝑥𝑑𝑥 − 𝑅𝜌2

∫ 2𝜋

0
𝜂𝑥𝜁𝑑𝑥 + 𝜅0

𝜌2𝑐0

𝜃

∫ 2𝜋

0
𝜁𝜁𝑥𝑥𝑑𝑥 − 𝑢 𝜌

2𝑐0

𝜃

∫ 2𝜋

0
𝜁𝜁𝑥𝑑𝑥

)
= −𝑅𝜃𝑢

2

∫ 2𝜋

0

𝑑

𝑑𝑥
( |𝜉 |2)𝑑𝑥 − 𝜆0𝜌2

∫ 2𝜋

0
𝜂𝑥𝜂𝑥𝑑𝑥 − 𝜌2𝑢

2

∫ 2𝜋

0

𝑑

𝑑𝑥
( |𝜂 |2)𝑑𝑥 − 𝜅0

𝜌2𝑐0

𝜃

∫ 2𝜋

0
𝜁𝑥𝜁𝑥𝑑𝑥

− 𝑢
2

𝜌2𝑐0

𝜃

∫ 2𝜋

0

𝑑

𝑑𝑥
( |𝜁 |2)𝑑𝑥 − 𝜆0𝜌2

∫ 2𝜋

0
|𝑢𝑥 |2 𝑑𝑥 − 𝜅0

𝜌2𝑐0

𝜃

∫ 2𝜋

0
|𝜁𝑥 |2 𝑑𝑥 ≤ 0.

Part 2. The operator 𝐴 is maximal. This is equivalent to the following. For any 𝜈 > 0 and any©­­«
𝑓

𝑔

ℎ

ª®®¬ ∈ (𝐿2(0, 2𝜋))3, we can find a
©­­«
𝜉

𝜂

𝜁

ª®®¬ ∈ D(𝐴) such that

(𝜈𝐼 −𝐴)
©­­«
𝜉

𝜂

𝜁

ª®®¬ =
©­­«
𝑓

𝑔

ℎ

ª®®¬ ,
that is,

𝜈𝜉 + 𝑢𝜉𝑥 + 𝜌𝜂𝑥 = 𝑓 ,

𝜈𝜂 + 𝑅𝜃
𝜌
𝜉𝑥 − 𝜆0𝜂𝑥𝑥 + 𝑢𝜂𝑥 + 𝑅𝜁𝑥 = 𝑔,

𝜈𝜁 + 𝑅𝜃
𝑐0
𝜂𝑥 − 𝜅0𝜁𝑥𝑥 + 𝑢𝜁𝑥 = ℎ.

Let 𝜖 > 0. Instead of solving the above problem, we will solve the following regularized problem
𝜈𝜉 + 𝑢𝜉𝑥 − 𝜖𝜉𝑥𝑥 + 𝜌𝜂𝑥 = 𝑓 ,

𝜈𝜂 + 𝑅𝜃
𝜌
𝜉𝑥 − 𝜆0𝜂𝑥𝑥 + 𝑢𝜂𝑥 + 𝑅𝜁𝑥 = 𝑔,

𝜈𝜁 + 𝑅𝜃
𝑐0
𝜂𝑥 − 𝜅0𝜁𝑥𝑥 + 𝑢𝜁𝑥 = ℎ.

(A.24)

with the following boundary conditions

𝜉 (0) = 𝜉 (2𝜋), 𝜉𝑥 (0) = 𝜉𝑥 (2𝜋), 𝜂 (0) = 𝜂 (2𝜋), 𝜂𝑥 (0) = 𝜂𝑥 (2𝜋), 𝜁 (0) = 𝜁 (2𝜋), 𝜁𝑥 (0) = 𝜁𝑥 (2𝜋) .

We now proceed through the following steps.

Step 1. Using Lax-Milgram theorem, we first prove that the system (A.24) has a unique solution in
(𝐻1

per(0, 2𝜋))3. Define the operator 𝐵 : (𝐻1
per(0, 2𝜋))3 × (𝐻1

per(0, 2𝜋))3 → C by

𝐵
©­­«
©­­«
𝜉

𝜂

𝜁

ª®®¬ ,
©­­«
𝜉1

𝜂1

𝜁1

ª®®¬
ª®®¬ = 𝜖

∫ 2𝜋

0
𝜉𝑥 (𝜉1)𝑥𝑑𝑥 + 𝜌

∫ 2𝜋

0
𝜂𝑥𝜉1𝑑𝑥 + 𝑢

∫ 2𝜋

0
𝜉𝑥𝜉1𝑑𝑥 + 𝜈

∫ 2𝜋

0
𝜉𝜉1𝑑𝑥 + 𝜆0

∫ 2𝜋

0
𝜂𝑥 (𝜂1)𝑥𝑑𝑥

+ 𝑢
∫ 2𝜋

0
𝜂𝑥𝜂1𝑑𝑥 + 𝑅𝜃

𝜌

∫ 1

0
𝜉𝑥𝜂1𝑑𝑥 + 𝑅

∫ 2𝜋

0
𝜁𝑥𝜂1𝑑𝑥 + 𝜈

∫ 2𝜋

0
𝜂𝜂1𝑑𝑥

+ 𝜅0
∫ 2𝜋

0
𝜁𝑥 (𝜁1)𝑥𝑑𝑥 + 𝑢

∫ 2𝜋

0
𝜁𝑥𝜁1𝑑𝑥 + 𝑅𝜃

𝑐0

∫ 2𝜋

0
𝜂𝑥𝜁1𝑑𝑥 + 𝜈

∫ 2𝜋

0
𝜁𝜁1𝑑𝑥,

for all
©­­«
𝜉

𝜂

𝜁

ª®®¬ ,
©­­«
𝜉1

𝜂1

𝜁1

ª®®¬ ∈ (𝐻1
per(0, 2𝜋))3. Then, one can show that 𝐵 is continuous and coercive. Thus, by

Lax-Milgram theorem, for every 𝜖 > 0, there exists a unique solution (𝜉𝜖 , 𝜂𝜖 , 𝜁 𝜖 )† ∈ (𝐻1
per(0, 2𝜋))3 such
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that

𝐵
©­­«
©­­«
𝜉𝜖

𝜂𝜖

𝜁 𝜖

ª®®¬ ,
©­­«
𝜉

𝜂

𝜁

ª®®¬
ª®®¬ = 𝐹

©­­«
©­­«
𝜉

𝜂

𝜁

ª®®¬
ª®®¬ , ∀

©­­«
𝜉

𝜂

𝜁

ª®®¬ ∈ (𝐻1
per(0, 2𝜋))3,

where 𝐹 : (𝐻1
per(0, 2𝜋))3 → C is the linear functional given by

𝐹
©­­«
©­­«
𝜉

𝜂

𝜁

ª®®¬
ª®®¬ :=

∫ 2𝜋

0
𝑓 𝜉𝑑𝑥 +

∫ 2𝜋

0
𝑔𝜂𝑑𝑥 +

∫ 2𝜋

0
ℎ𝜁𝑑𝑥 .

Step 2. Observe that

Re
©­­«𝐵

©­­«
©­­«
𝜉𝜖

𝜂𝜖

𝜁 𝜖

ª®®¬ ,
©­­«
𝜉𝜖

𝜂𝜖

𝜁 𝜖

ª®®¬
ª®®¬
ª®®¬ ≤

∫ 2𝜋

0

���𝑓 𝜉𝜖 ���𝑑𝑥 +
∫ 2𝜋

0

��𝑔𝜂𝜖 ��𝑑𝑥 +
∫ 2𝜋

0

���ℎ𝜁 𝜖 ���𝑑𝑥
≤ 1

2

∫ 2𝜋

0

(
|𝑓 |2 + |𝑔|2 + |ℎ |2

)
𝑑𝑥 + 1

2

∫ 2𝜋

0

(���𝜉𝜖 ���2 + ��𝜂𝜖 ��2 + ���𝜁 𝜖 ���2) 𝑑𝑥,
which yields

𝜖

∫ 2𝜋

0

��𝜉𝜖𝑥 ��2 + 𝜈2 ∫ 2𝜋

0
|𝜉𝜖 |2 + 𝜆0

∫ 2𝜋

0

��𝜂𝜖𝑥 ��2 + 𝜈2 ∫ 2𝜋

0
|𝜂𝜖 |2

+ 𝜅0
∫ 2𝜋

0

��𝜁 𝜖𝑥 ��2 + 𝜈2 ∫ 2𝜋

0
|𝜁 𝜖 |2 ≤ 1

2

∫ 2𝜋

0
( |𝑓 |2 + |𝑔|2 + |ℎ |2)

This shows that the sequences (𝜂𝜖 ) and (𝜁 𝜖 ) are bounded in 𝐻1(0, 2𝜋) and the sequences (𝜉𝜖 ) and
(
√
𝜖𝜉𝜖𝑥 ) are bounded in 𝐿2(0, 2𝜋). Since the spaces 𝐻1(0, 2𝜋) and 𝐿2(0, 2𝜋) are reflexive, there exist

subsequences, still denoted by (𝜂𝜖 ), (𝜁 𝜖 ), (𝜉𝜖 ), and functions 𝜉 ∈ 𝐿2(0, 2𝜋) and 𝜂 ∈ 𝐻1(0, 2𝜋) such that

𝜂𝜖 ⇀ 𝜂 in 𝐻1(0, 2𝜋), and 𝜉𝜖 ⇀ 𝜉 in 𝐿2(0, 2𝜋) .

Furthermore, we have ∫ 2𝜋

0

��𝜖𝜉𝜖𝑥 ��2 = 𝜖 ∫ 1

0

��√𝜖𝜉𝜖𝑥 ��2 → 0, as 𝜖 → 0.

Now, since 𝐵
©­­«
©­­«
𝜉𝜖

𝜂𝜖

𝜁 𝜖

ª®®¬ ,
©­­«
𝜉

𝜂

𝜁

ª®®¬
ª®®¬ = 𝐹

©­­«
©­­«
𝜉

𝜂

𝜁

ª®®¬
ª®®¬, for all

©­­«
𝜉

𝜂

𝜁

ª®®¬ ∈ (𝐻1
per(0, 2𝜋))3, we may take

©­­«
𝜉1

0

0

ª®®¬ ∈ (𝐻1
per(0, 2𝜋))3, so

that we obtain

𝜖

∫ 2𝜋

0
𝜉𝜖𝑥 (𝜉1)𝑥𝑑𝑥 + 𝜌

∫ 2𝜋

0
𝜂𝜖𝑥𝜉1𝑑𝑥 + 𝑢

∫ 2𝜋

0
𝜉𝜖𝑥𝜉1𝑑𝑥 + 𝜈

∫ 2𝜋

0
𝜉𝜖𝜉1𝑑𝑥 =

∫ 2𝜋

0
𝑓 𝜉1𝑑𝑥 . (A.25)

Similarly, by taking
©­­«
0

𝜂1

0

ª®®¬ ,
©­­«
0

0

𝜁1

ª®®¬ ∈ (𝐻1
per(0, 2𝜋))3, we get

𝜆0

∫ 2𝜋

0
𝜂𝜖𝑥 (𝜂1)𝑥𝑑𝑥 +𝑢

∫ 2𝜋

0
𝜂𝜖𝑥𝜂1𝑑𝑥 +

𝑅𝜃

𝜌

∫ 1

0
𝜉𝜖𝑥𝜂1𝑑𝑥 +𝑅

∫ 2𝜋

0
𝜁 𝜖𝑥𝜂1𝑑𝑥 +𝜈

∫ 2𝜋

0
𝜂𝜖𝜂1𝑑𝑥 =

∫ 2𝜋

0
𝑔𝜂1𝑑𝑥, (A.26)

and

𝜅0

∫ 2𝜋

0
𝜁 𝜖𝑥 (𝜁1)𝑥𝑑𝑥 + 𝑢

∫ 2𝜋

0
𝜁 𝜖𝑥 𝜁1𝑑𝑥 + 𝑅𝜃

𝑐0

∫ 2𝜋

0
𝜂𝜖𝑥𝜁1𝑑𝑥 + 𝜈

∫ 2𝜋

0
𝜁 𝜖𝜁1𝑑𝑥 =

∫ 2𝜋

0
ℎ𝜁1𝑑𝑥 (A.27)
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A. Proof of the Well-Posedness Results

Integrating by parts, we get from equation (A.25) that,

𝜖

∫ 2𝜋

0
𝜉𝜖𝑥 (𝜉1)𝑥𝑑𝑥 + 𝜌

∫ 2𝜋

0
𝜂𝜖𝑥𝜉1𝑑𝑥 − 𝑢

∫ 2𝜋

0
𝜉𝜖 (𝜉1)𝑥𝑑𝑥 + 𝜈

∫ 2𝜋

0
𝜉𝜖𝜉1𝑑𝑥 =

∫ 2𝜋

0
𝑓 𝜉1𝑑𝑥 .

Then, passing to the limit 𝜖 → 0, we obtain

𝜌

∫ 2𝜋

0
𝜂𝑥𝜉1𝑑𝑥 + 𝑢

∫ 2𝜋

0
𝜉𝑥𝜉1𝑑𝑥 + 𝜈

∫ 2𝜋

0
𝜉𝜉1𝑑𝑥 =

∫ 2𝜋

0
𝑓 𝜉1𝑑𝑥,

and the above relation is true ∀𝜉1 ∈ C∞
𝑐 (0, 2𝜋). As a consequence,

𝜌𝜂𝑥 + 𝑢𝜉𝑥 + 𝜈𝜉 = 𝑓 ,

in the sense of distribution and therefore 𝑢𝜉𝑥 = 𝑓 − 𝜌𝜂𝑥 − 𝜈𝜉 ∈ 𝐿2(0, 2𝜋); in other words, 𝜉 ∈ 𝐻1(0, 2𝜋).
We similarly have from identities (A.26) and (A.27)

𝜈𝜂 + 𝑅𝜃
𝜌
𝜉𝑥 − 𝜆0𝜂𝑥𝑥 + 𝑢𝜂𝑥 + 𝑅𝜁𝑥 = 𝑔,

𝜈𝜁 + 𝑅𝜃
𝑐0
𝜂𝑥 − 𝜅0𝜁𝑥𝑥 + 𝑢𝜁𝑥 = ℎ,

in the sense of distribution and therefore 𝜂, 𝜁 ∈ 𝐻2(0, 2𝜋).
Step 3. We now show 𝜂 (0) = 𝜂 (2𝜋) and 𝜂𝑥 (0) = 𝜂𝑥 (2𝜋). Since the inclusion map 𝑖 : 𝐻1(0, 2𝜋) →
C0( ¯0, 2𝜋) is compact and 𝜂𝜖 ⇀ 𝜂 in 𝐻1(0, 2𝜋), we obtain

𝜂𝜖 → 𝜂 in C0 [0, 2𝜋] .

Thus, (𝜂𝜖 (0), 𝜂𝜖 (2𝜋)) → (𝜂 (0), 𝜂 (2𝜋)). Since 𝜂𝜖 (0) = 𝜂𝜖 (2𝜋) for all 𝜖 > 0, we have

𝜂 (0) = 𝜂 (2𝜋) .

From (A.26), we have after passing the limit as 𝜖 → 0

𝜆0

∫ 2𝜋

0
𝜂𝑥 (𝜂1)𝑥𝑑𝑥 + 𝑢

∫ 2𝜋

0
𝜂𝑥𝜂1𝑑𝑥 + 𝑅𝜃

𝜌

∫ 1

0
𝜉𝑥𝜂1𝑑𝑥 + 𝑅

∫ 2𝜋

0
𝜁𝑥𝜂1𝑑𝑥 + 𝜈

∫ 2𝜋

0
𝜂𝜂1𝑑𝑥 =

∫ 2𝜋

0
𝑔𝜂1𝑑𝑥.

Integrating by parts, we get

−𝜆0
∫ 2𝜋

0
𝜂𝑥𝑥𝜂1𝑑𝑥 + 𝜆0(𝜂𝑥 (2𝜋)𝜂1(2𝜋) − 𝜂𝑥 (0)𝜂1(0)) + 𝑢

∫ 2𝜋

0
𝜂𝑥𝜂1𝑑𝑥 + 𝑅𝜃

𝜌

∫ 1

0
𝜉𝑥𝜂1𝑑𝑥

+𝑅
∫ 2𝜋

0
𝜁𝑥𝜂1𝑑𝑥 + 𝜈

∫ 2𝜋

0
𝜂𝜂1𝑑𝑥 =

∫ 2𝜋

0
𝑔𝜂1𝑑𝑥,

and therefore
𝜂𝑥 (2𝜋)𝜂1(2𝜋) − 𝜂𝑥 (0)𝜂1(0) = 0

that is 𝜂𝑥 (0) = 𝜂𝑥 (2𝜋). In a similar way, we can obtain 𝜁 (0) = 𝜁 (2𝜋) and 𝜁𝑥 (0) = 𝜁𝑥 (2𝜋).
We now show 𝜉 (0) = 𝜉 (2𝜋). Recall that we have after taking limit as 𝜖 → 0

𝜌

∫ 2𝜋

0
𝜂𝑥𝜉1𝑑𝑥 − 𝑢

∫ 2𝜋

0
𝜉 (𝜉1)𝑥𝑑𝑥 + 𝜈

∫ 2𝜋

0
𝜉𝜉1𝑑𝑥 =

∫ 2𝜋

0
𝑓 𝜉1𝑑𝑥 .

Integrating by parts, we get

𝜌

∫ 2𝜋

0
𝜂𝑥𝜉1𝑑𝑥 + 𝑢

∫ 2𝜋

0
𝜉𝑥𝜉1𝑑𝑥 − 𝑢 (𝜉 (2𝜋)𝜉1(2𝜋) − 𝜉 (0)𝜉1(0)) + 𝜈

∫ 2𝜋

0
𝜉𝜉1𝑑𝑥 =

∫ 2𝜋

0
𝑓 𝜉1𝑑𝑥, (A.28)

and therefore
𝜉 (0) = 𝜉 (2𝜋).

So, we get
©­­«
𝜉

𝜂

𝜁

ª®®¬ ∈ D(𝐴). Hence, the operator 𝐴 is maximal.
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[DL22] Runmei Du and Xiaona Lü. Approximate controllability for one-dimensional lin-
earized compressible Navier-Stokes equations. J. Jilin Univ. Sci., 60(2):303–306,
2022.

[DS71] Nelson Dunford and Jacob T. Schwartz. Linear operators. Part III: Spectral opera-
tors, volume Vol. VII of Pure and Applied Mathematics. Interscience Publishers [John
Wiley & Sons], New York-London-Sydney, 1971. With the assistance of William G.
Bade and Robert G. Bartle.
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[FE99] A. V. Fursikov and O. Yu. Èmanuilov. Exact controllability of the Navier-Stokes
and Boussinesq equations. Uspekhi Mat. Nauk, 54(3(327)):93–146, 1999.

234



Bibliography

[Fei04] Eduard Feireisl. Dynamics of viscous compressible fluids, volume 26 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2004.

[Fei18] E. Feireisl. Mathematical theory of fluids in motion. Siberian Adv. Math., 28(4):233–
264, 2018.

[FI95] Andrei V. Fursikov and Oleg Yu. Imanuvilov. On controllability of certain systems
simulating a fluid flow. In Flow control (Minneapolis, MN, 1992), volume 68 of IMA
Vol. Math. Appl., pages 149–184. Springer, New York, 1995.

[FI96] A. V. Fursikov and O. Yu. Imanuvilov. Controllability of evolution equations, vol-
ume 34 of Lecture Notes Series. Seoul National University, Research Institute of
Mathematics, Global Analysis Research Center, Seoul, 1996.
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C Anal. Non Linéaire, 40(6):1415–1455, 2023.

[Ima98] O. Yu. Imanuvilov. On exact controllability for the Navier-Stokes equations. ESAIM
Control Optim. Calc. Var., 3:97–131, 1998.

[Ima01] Oleg Yu. Imanuvilov. Remarks on exact controllability for the Navier-Stokes equa-
tions. ESAIM Control Optim. Calc. Var., 6:39–72, 2001.

[Ing36] A. E. Ingham. Some trigonometrical inequalities with applications to the theory of
series. Math. Z., 41(1):367–379, 1936.

[Jos14] J. Jost. Mathematical methods in biology and neurobiology. Universitext. Springer,
London, 2014.

[JTZ97] S. Jaffard, M. Tucsnak, and E. Zuazua. On a theorem of Ingham. volume 3, pages
577–582. 1997. Dedicated to the memory of Richard J. Duffin.

[Kat95] T. Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-
Verlag, Berlin, 1995. Reprint of the 1980 edition.

[KBDK05] Farid Ammar Khodja, Assia Benabdallah, Cédric Dupaix, and Ilya Kostin. Null-
controllability of some systems of parabolic type by one control force. ESAIM Control
Optim. Calc. Var., 11(3):426–448, 2005.

[Kes89] S. Kesavan. Topics in functional analysis and applications. John Wiley & Sons, Inc.,
New York, 1989.

[Kes09] S. Kesavan. Functional analysis, volume 52 of Texts and Readings in Mathematics.
Hindustan Book Agency, New Delhi, 2009.

[KL05] Vilmos Komornik and Paola Loreti. Fourier series in control theory. Springer Mono-
graphs in Mathematics. Springer-Verlag, New York, 2005.

[KL23] Armand Koenig and Pierre Lissy. Null-controllability of underactuated linear
parabolic-transport systems with constant coefficients, https://arxiv.org/abs/

2301.00471, (2023).

236

https://arxiv.org/abs/2301.00471
https://arxiv.org/abs/2301.00471


Bibliography

[KNT22] Karim Kellay, Thomas Normand, and Marius Tucsnak. Sharp reachability results
for the heat equation in one space dimension. Anal. PDE, 15(4):891–920, 2022.

[Kom94] V. Komornik. Exact controllability and stabilization. RAM: Research in Applied
Mathematics. Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. The mul-
tiplier method.

[KPS08] V. Kostrykin, J. Potthoff, and R. Schrader. Contraction semigroups on metric
graphs. In Analysis on graphs and its applications, volume 77 of Proc. Sympos.
Pure Math., pages 423–458. Amer. Math. Soc., Providence, RI, 2008.

[KT15] V. Komornik and G. Tenenbaum. An Ingham-Müntz type theorem and simultaneous
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