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Abstract

In this thesis, we first study the controllability properties of the one dimensional linearized compressible
Navier-Stokes equations for both barotropic and non-barotropic fluids using only one boundary control.
In the barotropic case, the linearized system (around (Qo, Vo) with Qp, Vo > 0) consists of a transport
equation (satisfied by the density of the fluid) coupled with a parabolic equation (satisfied by the
velocity of the fluid) with first-order coupling. We consider three types of boundary conditions:

(i) Periodic, where the control acts on the density (resp. velocity) component and is given by the
difference of the values of the solution at both ends;

(ii) Dirichlet, where the control acts on the density part through Dirichlet condition at the left end;

(iii) A mixed-type, where we study two cases, one when the control acts on the density part through
the difference of the solution at both ends with homogeneous Dirichlet conditions on the velocity,
and the second when the control acts on the velocity part through Dirichlet condition at the left
end with homogeneous Dirichlet condition on density.

In all of the above cases, we have proved optimal null controllability results for the linearized system
with respect to the regularity of initial states for the velocity case and with respect to time in the
density case. More precisely, in the periodic setup, we prove null controllability of the linearized
system at time T > %,—g in (L2(0,27))? (when the control is acting only on density) and in Hll)er(O, 27m) X
L2(0,27) (when the control is acting only on velocity), under a necessary and sufficient condition on
the coefficients appearing in the system. Further, we prove that null controllability of the system fails
when 0 < T < %,—’OT in (L2(0,27))? in the density case and at any T > 0 in Hf)er(O, 2) x L?(0, 27) with
0 < s < 1 in the velocity case. The proofs of these controllability results are included in Chapter 3.
Whereas, in the mixed case, we prove null controllability of the linearized system at time T > 1 in
L?(0,1) x L%(0,1) (when the control is acting only on density) and in H'/2(0,1) x L%(0,1) (when the
control is acting only on velocity), under some sufficient condition on the coefficients. Moreover, null
controllability fails when 0 < T < 1 in L%(0,1) x L%(0,1) in the density case and at any T > 0 in
H%(0,1) x L?(0,1) with 0 < s < % in the velocity case. As a consequence of these results, we prove
null controllability of the linearized system at time T > 1 in L?(0,1) x L?(0, 1) using a Dirichlet control
acting on density, under the same assumption on the coefficients mentioned above.

Moreover, in all of the above cases, we obtain approximate controllability of the above systems at
large time by using the null controllability and backward uniqueness property of the corresponding
systems. We have included all these controllability results in Chapter 4.

On the other hand, for non-barotropic fluids, the linearized system (around (Qo, Vo, o) with Qo, Vp,
Yo > 0) consists of a transport equation (satisfied by the density of the fluid) coupled with two
parabolic equations (satisfied by the velocity and temperature) with the first-order couplings. Here,
we consider only the periodic boundary conditions onto the system and study the null and approximate
controllability properties using only one control acting either on density, velocity or temperature. More
precisely, when the control acts only on the density part, we prove null controllability of the linearized
system at time T > %,—g in (L?(0,27))? under two assumptions:
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(i) Eigenvalues of the associated non-self-adjoint operator have geometric multiplicity 1

(ii) The (irrational) coefficients appearing in the system have a good approximation by rational
numbers (called the Diophantine approximation).

Further, in this case, we also prove that null controllability of this system fails when the time is small,
that is, when 0 < T < %,—g, in the space (L2(0,27))3. Also, when a boundary control acts either on
the velocity or temperature part, we prove null controllability of the linearized system at time T > %,—’g
in ngr((), 27) X (L2(0,27))? under the same two hypotheses mentioned above. Moreover, we prove
that null controllability of these systems fails at any T > 0 in the space Hf)er(O, 27) x (L%(0,27))? with

0<s<l1.

Similar to the barotropic case, we obtain approximate controllability of the above systems at large
time by using the null controllability and backward uniqueness property of the corresponding systems.
All these controllability results are included in Chapter 3.

Finally, in Chapter 5, we have considered a coupled system consisting of two nonlinear parabolic
equations with square, product and non-local nonlinearities. In the system, a Neumann boundary
control is applied to only one state while the other satisfies homogeneous Neumann boundary condition
at the left end. On the other hand, at the right end of the interval, the states are coupled in terms of
“equality condition of their normal derivatives” and a combined Robin-type condition. In this setup,
we prove small-time local null controllability of the system in the space (L?(0,1))? by applying the so
called “source term method”.

Our proofs of null controllability results rely on the method of moments and an application of the
Ingham-type inequalities. The spectral analysis of the associated adjoint operator plays a crucial role in
this analysis and we will use this throughout the thesis. We also prove a new Ingham-type inequality
in Chapter 4, which generalizes the earlier related results available in the literature. We prove all
the controllability results presented in Chapter 3 using this newly obtained Ingham-type inequality,
whereas, in Chapters 4, we use both the method of moments and the Ingham-type inequality.

Furthermore, in Chapter 1, we give a brief overview of our main controllability results, and in
Chapter 2, we present a detailed study of the basic results on controllability including the transport,
heat and some nonlinear heat equations.
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Introduction
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An area of mathematics and engineering known as the control theory of partial differential equa-
tions (PDEs) focuses on the dynamical systems that are governed by PDEs. It is one of the most
interdisciplinary research area where several areas play a major role, in particular, functional analysis,
spectral theory, complex analysis, non-harmonic Fourier analysis, number theory and geometry. The
purpose of control theory is to identify control inputs that can impact the evolution of a system’s state
variables, directing them toward a desired target or trajectory. The control problem gets more difficult
when the system dynamics are characterized by PDEs due to the infinite-dimensional structure of the
underlying state space. The transport equation, the heat equation, the wave equation, the Korteweg-
de Vries (KdV) equation, and the system of thermoelasticity (wave-heat coupled system) are some
examples of such partial differential equations. We refer to [Cor07, Ros97, LZ98] for a detail study on
controllability of these equations. In this thesis, we study controllability of the linearized compressible
Navier-Stokes equations (which is a transport-heat coupled system) and a nonlinear system coupling
two parabolic equations in one dimension.

Controllability of PDEs has many applications in various fields, including aerospace engineering,
chemical processes, structural mechanics, heat transfer, medical imaging, fluid dynamics, and elec-
tromagnetics, among others. The features of the PDE system’s controllability and observability (two
important concepts in control theory) come under scrutiny in this investigation. The ability to steer
the system from any initial state to any desired final state within a finite time using a control input is
referred to as controllability and we say the system is controllable. On the other hand, observability
refers to the ability to infer the whole state of the system based on the measurements that are currently
available. In other words, we say the system is observable if the entire state can be determined by ob-
serving only the (partial) information of the output(s). These characteristics are extremely important
in evaluating whether or not a control strategy can be implemented and how successful it will be.

Controllability of systems described by PDEs involve applying control inputs either at the bound-
aries of the system or distributed throughout the spatial domain. The control input(s) applied at the
boundaries of the system is referred as “boundary control”, whereas the control input(s) acting in the
whole domain or some part of it is called “distributed/ internal control” (see the figure below). For
example, we can control the temperature of a rod by controlling only the endpoint of it, giving the
boundary controllability of the system. On the other hand, applications of distributed controllability
includes controlling the temperature of a room by applying heat sources in one/multiple places in the
room. In practical situations, both boundary and distributed control strategies have their advantages
and limitations, and the choice between them depends on factors such as the nature of the system,
the control objectives, practical considerations, and the available control resources. In many cases,
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a combination of both boundary and distributed control may be used to achieve the desired control
performance effectively.
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Figure 1.1: Distributed control (left) vs boundary control (right).

There are three types of controllability notions appear in a system such as exact, null and approx-
imate controllability. Exact controllability refers to the ability to steer the state of a system from any
given initial state to any given final state in finite time using control input(s). If the system can be
steered from any given initial state to the origin, then we say the system is null controllable. On the
other hand, approximate controllability means we can steer the state of a system from any given initial
state to arbitrarily close to a desired final state using control input(s), rather than reaching the exact
final state. It is easy to see that exact controllability always imply null and approximate controllability
and in the case of finite dimensional linear (time invariant) systems, all these controllability notions
are equivalent; see Section 2.2.1 for more details in this matter. However, for linear systems posed
in infinite dimension, there are equations which are null controllable but not exactly/ approximately
controllable; for example, the heat equation in bounded interval is null and approximately controllable
at any time but not exactly controllable at that time (see Section 2.4 for instance). In contrast to
this, we refer to the article [CRR12] where it has been shown that the one dimensional compressible
Navier-Stokes system linearized around (Qg, 0) (with Qg > 0) is approximately controllable at any time
but not null controllable by using a localized distributed control or a boundary control. Furthermore,
for the finite dimensional linear systems, controllability at some time will imply controllability at any
time, thanks to the famous Kalman rank condition. This phenomena might not necessarily true in
the infinite dimensional linear systems or even finite dimensional nonlinear systems. For example, the
transport equation posed in a bounded interval is null and approximately controllable at large time
but not in small time by using any control (boundary or distributed), see Section 2.3 for details.

In this thesis, we mainly concentrate on controllability of systems involving transport and heat
equation(s) or in some cases only heat equations, by using one boundary control. In the next chap-
ter, we will give some highlights on the controllability properties of ODEs, the transport and heat
equations, together with some important concepts (related to this thesis) such as the Riesz basis,
biorthogonal families, the method of moments and the Ingham’s inequalities. In Chapters 3 and 4,
we will focus on the linearized Navier-Stokes equations for compressible fluids (barotropic and non-
barotropic) and prove null controllability at large time in optimal spaces by using a boundary control.
In chapter 5, we deal with some nonlinear heat equations and prove small time local null controllability
using a Neumann control. Finally, we conclude the thesis with some future directions in Chapter 6
and with proofs of some well-posedness results in Appendix A.

1.1 Compressible Navier-Stokes system

The compressible Navier-Stokes system is a set of partial differential equations that models the motion
of viscous compressible fluid substances such as liquids and gases. The basic rules of mass (continuity
equation) and linear momentum conservation (Newton’s second law of motion) are utilized to derive
the Navier-Stokes equations. They convey both the balance of linear momentum and the conservation
of mass for a fluid element. Sometimes they consist of a state equation coupling pressure, temperature,

2
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and density. The compressible Navier-Stokes system is very important because they have a wide range
of practical uses, for example, they are used in modeling weather, ocean currents, water flow in a pipe
and airflow, in particular, in the design of aircraft and cars. The compressible Navier-Stokes equations
are also of great interest in a purely mathematical sense. These equations can be represented in R”
as follows:

Let I = (0,+00) be the time interval and Q c R" be a spatial domain. For a viscous compress-

ible, isentropic (barotropic) fluid, that is, when the pressure depends only on the density and the
temperature is constant, the Navier-Stokes system in I X Q consists of an equation of continuity

pt(t’ x) + le(P(t, x)u(t, X)) = 0,
and the momentum equation
p(t, %) [us(t,x) + (u(t,x) - VIu(t,x)] + Vp(t,x) — pAu(t,x) — (A + p)V[divu(t,x)] = 0.

Here p := p(t,x) denotes the density of the fluid and u := u(t,x) = (u1(t, x),us(t, x),...,u,(t,x)) is
the velocity vector in R". The constants A, p are called the viscosity coefficients that satisfy the
thermodynamic restrictions g > 0,A+ g > 0 and the pressure p := p(t,x) satisfies the following
constitutive equation in I X Q

p(p) =ap¥, fora>0, y>1

In the case of non-barotropic fluids, that is, when the pressure is a function of both density and
temperature of the fluid, the Navier-Stokes system consists of an equation of continuity, the momentum
equation, and an additional thermal energy equation

cyp(t, x)[0:(t, x) + u(t,x) - VO(t,x)] + 0(t, x) pg (¢, x)divu(t, x)

— kAO(t,x) — M(divu(t, x))% - 24 Z i [(i)x, + (u))x ] = 0,
i,j=1

where 6 is the temperature of the fluid, ¢, is the specific heat constant, and « is the heat conductivity
constant. For an ideal gas, Boyles law gives the pressure p(t,x) = Rp(t,x)0(t,x) in I X Q with R as the
universal gas constant. We refer to the book by Feireisl [Fei04] for more insights on the compressible
flows; see also the books [Lio98] by Lions, [NS04] by Novotny and Straskraba, and the survey paper
[Feil8] by Feireisl.

In the first part of this thesis, we consider the linearized versions of the above systems in one
dimension. Here, we will state the associated results (both existing and the results obtained by us)
and the details will be given in subsequent chapters.

1.1.1 The barotropic case

Let T,L > 0. The Navier-Stokes equations for compressible barotropic fluids in the interval (0, L) reads
as

{pt + (pu)x =0, in (0,T) x (0,L), )

p(up +uuy) +ayp? pe — (A+2mux =0,  in (0,T) x (0, L).
This is a model for a fluid flowing in a thin tube or a narrow channel and it can be viewed as one
dimensional approximations of two or three dimensional models (see the figure below). In this thesis,

we want to study the linearized system associated to (1.1) around some steady states, but before that,
we first define the concept of steady states.

Definition 1.1.1 (Steady states). We say a function (£n) € C2([0,L] % [0,L]) is a steady state of the
system (1.1) if it satisfies the following stationary problem:

(§’7)x = 0! Zn [0’ L]’
Enx +ay® e — A+ 2N =0, in [0,L].
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Figure 1.2: Water flow in a narrow channel

We refer to the article [MZ19] for the existence of a steady state of the nonlinear system (1.1).
With this definition, we note here that any constants of the form (Qq, V) with Qg > 0 and Vj > 0 are
steady states of the system (1.1). We linearize the nonlinear system (1.1) around this constant steady
state (Qg, Vo) as follows:

The linearization of the term (pu)x = pxu+pu, around (Qq, Vo) is Vopx+Qouy. Similarly, linearization
of the terms p(u; + uuy) = pu; + puu, and ayp’~!p, around (Qo, V) are respectively Qou; + QoVou, and
ang_l px. Thus, we arrive at the system

pl‘(ts x) + VOpX(t3 x) + Qoux(ts X) = 03 in (03 T) X (Os L)’

+2u
Qo

To prove the existence of a unique solution (well-posedness) of the system (1.2), we need to impose
the initial and boundary conditions into the system. Let us take the initial condition as

(1.2)

us(t,x) — Uy (8, %) + Vouy (£, x) + ayQty)_pr(t, x)=0, in (0,T) % (0,L).

p(0,x) = po(x), u(0,x)=up(x), forxe (0,L). (1.3)

Note that, the second equation of (1.2) is of parabolic types, so we can consider any one of the following
boundary conditions on u:

u(t,0) =0, u(t,L)=0, for t € (0, T),
U (t,0) =0, u(t,L) =0, for t € (0,T),
u(t,0) =u(t,L), uy(t,0) =u,(t,L), forte (0,T).

On the other hand, if Vj = 0, then the first equation is only a ODE in p and therefore we don’t need
to consider any boundary conditions on p in this case. However, if V5 > 0, we get a transport equation
in p and therefore one can consider the following boundary conditions on p:

p(t,0)=0, for t € (0,T),
p(t,0) =p(t,L), forte(0,T).

Together, we write the boundary conditions on p and u as follows:

e Control on density:

o p(,0) = p(t,L) +p1(t), u(t,0)=u(t,L), ux(t,0) =ux(t,L),
o p(t,0) = pa(t), u(t,0)=0, u(t,L)=0,
o p(t,0) = p(t,L) +p3(t), u(t,0)=0, u(t,L)=0,

for t € (0, T).

e Control on velocity:

o p(t,0) = p(t,L), u(t,0) =u(t,L)+qi(t), ux(t,0) =ux(t, L), (1.7)
o p(t,0) =p(t,L), u(t,0)=0, u(t,L)=qga(t), (1.8)
for t € (0, T).

Here p;,i = 1,2,3 and q; for i = 1,2 are the control inputs (unknowns) belonging to some Hilbert space.

4
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Remark 1.1.1. We note here that proving controllability of the linearized system (1.2) using a Dirich-
let boundary control g3 € L*(0,T) acting on velocity and with homogeneous Dirichlet condition on p is
very challenging and still an open problem.

In this thesis, our first aim is to study the null and approximate controllability properties of the
linearized system (1.2) (around (Qo, Vp) with Qo, Vo > 0) with the initial states (1.3) and any one of
the boundary conditions (1.4)—(1.8). Before going into the details, let us first define the notions of
controllability for the system (1.2).

Definition 1.1.2. Let H be a Hilbert space. We say the system (1.2) with initial state (1.3) and one
of the boundary conditions (1.4)—(1.8) is

e null controllable at time T > 0 in the space H if, for any given (po,uo) € H there exists a control
p1 € L2(0,T) (resp. pa, p3,q1,q2 € L2(0,T)) such that the associated solution (p,u) satisfies

(p(T),u(T)) = (0,0).

e approximately controllable at time T > 0 in the space H if, for any given (po,uo), (pr,uUr)
€ H and given € > 0 there exists a control p1e € L*(0,T) (resp. poc, p3.e»qre> g2.c € L2(0,T)) such
that the associated solution (pe,ue) satisfies

1(pe(T. ), ue(T, ) = (pr- ur)lly < e

Remark 1.1.2. We mention here that approzimate controllability of (1.2) (around (Qo,Vp) with
Qo, Vo > 0) with the initial states (1.3) and any one of the boundary conditions (1.4)—(1.8) follows
from null controllability due to the backward uniqueness property of the corresponding systems; see
Proposition 2.2.1. For this reason, we will concentrate only on the null controllability of these sys-
tems.

Control on density: We first consider the case when only one boundary control is acting on the
density component through the condition (1.4). More precisely, for given T > 0, we consider the
following control problem:

P+ Vopx + Qotx =0, in (0,T) x (0,27),
U — Holxx + Voux + bpy =0, in (0,T) x (0,2r),
p(t,0) = p(t,27) + p1(2), for t € (0,7), (1.9)
u(t,0) =u(t,27), ux(t,0) =uy(t,27), forte (0,7),
p(0,x) = po(x), u(0,x)=ug(x), in (0, 27),
with pp = /15[2)” and b := ang)/_2. Here p; is a control input (unknown) and we take L = 2z for

simplicity. In this setup, we wish to study the null controllability properties of this system (1.9) at
given time T > 0 in the space (L?(0,27))?. Suppose that this is true, that means for any given initial
state (po,up) € (L?(0,27))?, we can find a control p; € L2(0,T) such that the solution (p,u) of (1.9)
satisfies (p(T),u(T)) = (0,0). Then, integrating both equations of (1.9) in the interval (0, T) x (0, 27),
we get a compatibility condition on the initial states

27 T 2 T
/0 po(x)dx = ~Vp /0 pi(D)dt, /0 uo(x)dx = b /0 pi(b)dt.

Since every initial state (pg,up) in (L2(0,27))? will not satisfy this compatibility condition, we will
work on the Hilbert space (L2(0,27))? to avoid this difficulty, where

L?(0,27) = { feL?0,2n) : fdx = 0} .
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In this setup, there is no controllability results known in the literature. The only known results
available in the case when an interior control is acting in the density equation. More precisely, in
[BKLB20], the authors proved (distributed) null controllability of the linearized system in the space
L2(0,27) x L?(0,27) at large time T. Moreover, they also proved that null controllability fails in the
space L2(0,27) x L?(0,27) when the time is small. In the first part of this thesis, we prove similar
null controllability results of the system (1.9) using a boundary control. In addition, we derive the
necessary and sufficient conditions on the coefficients such that the system (1.9) is null controllable at
time T, large enough.

Before writing the main results, we first define the operator (A, D(A)) associated to the system
(1.9) as

_ (_Voax _QOax ) (110)

—boy HoOxx — Vox

with the domain D(A) := ngr((), 21) X ngr(O, 21), where we denote the Sobolev space

Hy e (0,27) 1= {w L p(x) = ) ene™, x € (0.2m), and Y [nf* el < oo},
nez nez

endowed with the norm

1
2
S
lollas,. 0.27) = (Z (1 + |n|2) |Cn|2)

nez
for any s > 0. Then, we write our first main result concerning the null controllability of the system
(1.9) as follows:

Theorem 1.1.1. The following statements hold:
(i) The system (1.9) is null controllable at any time T > %,—g in (L?(0,27))? if and only if

2,/bQo — V2

Ho

¢ N.

(i) If0<T < %,—g, the system (1.9) cannot be null controllable at any time T in the space (L?(0,2x1))2.

We note here that null controllability at the optimal time T = %,—’Or is inconclusive and there is no

controllability results at this optimal time are available in the literature for this system. Also, we
,‘/ _y2

QbS—SVO € N, then the associated

adjoint operator of A (defined by (1.10)) admits an eigenvalue with algebraic multiplicity and geometric

multiplicity both are equal to 2, failing the unique continuation property (see Chapter 3 for details).

24/600-V2
Ho

we can achieve null controllability of the system (1.9) by using one boundary control acting only on
density component.

must mention here that, if the coefficients Qq, Vo, o and b satisfy

However, if ¢ N, then all the eigenvalues of A* have geometric multiplicity 1 and in this case,

Before proceeding to the next results, we first consider the change of variables:
p(t,x) = ap(pt, 6x), u(t,x) — u(ft,6x), for (t,x) € (0,T) x (0,L),

with the choices of @, 5,6 > 0 as

_g\~1/2 QuV2 QoVi
= 4 3) = 0 = &
@ (“YQO e 0T e
Then, the system of equations (1.2) reduces to
pt+px+cux:0a ln (O,T)X(O,(gL), (1 11)
U —Uxx YUy +cpy =0, in (0,T) x (0,6L), ’
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1/2

with ¢ = ?,—8 (ang_?’) . Here, we mention that the whole analysis in this case will be performed in

the space domain (0, 1), which is mainly for the simplicity of computations. The same can be done in
the interval (0,dL). The system is given below:

in (0,T) x (0,1),
in (0,T) x (0,1),

Pt + px +cuy =0,

U — Uyxx + Ux +cpx =0,

p(t,0) = pa(t), for t € (0, T), (1.12)
u(t,0) =0, u(t,1)=0, for t € (0, T),
p(o’ x) = PO(X): u(o’ X) = uO(x): in (O> 1):

where po € L?(0,T) is the control input (unknown). Similar to the above, there is no controllability
result known for this system (1.12). Further, when a distributed control is acting in the density
equation, then also no controllability results are known in the literature. In the next part of this
thesis, we prove null controllability of this system (1.12) at large time T in the space L2(0,1) x L%(0, 1)
by using a boundary control ps € L?(0, T), which is stated below.

Theorem 1.1.2. The following statements hold:

(i) Let us assume that ¢* +8c? +5 < 4%, Then, the system (1.13) is null controllable at any time
T > 1 in the space L?(0,1) x L?(0,1).

(ii) Let ¢ > 0 be given. Then, the system (1.13) cannot be null controllable at small time 0 < T < 1
in the space L?(0,1) x L2(0,1).

We must mention here that finding a complete set of eigenfunctions of the associated adjoint
operator is very difficult due to the Dirichlet boundary conditions. This difficulty arises because of
the fact that the operator % on H{lo}(O, 1) do not have any non-trivial spectrum, where

H{lo}(O, 1) :={p e H(0,1) : ¢(0)=0}.

Thus, we cannot deal with the system (1.12) directly to prove the controllability results. However, to
prove Theorem 1.1.2, we will consider the following control problem:

Pt + px +cuy =0,

U — Uyxx + Ux +cpx =0,

p(t,0) = p(t, 1) + p3(1),

u(t,0) =0, u(t,1) =0,

p(0,%) = po(x), u(0,x) = ug(x),

in (0,T) x (0,1),
in (0,T) x (0,1),
for t € (0,T),
for t € (0, T),

in (0,1).

(1.13)

Here p3 € L%(0, T) is the boundary control acting as the difference between the values at x = 0 and x = 1.
If we prove null controllability of the system (1.13) using a control ps € L?(0,T), then we can define
the control p(t) := p(t,1) + p3(¢t) for t € (0,T), which will be a null control for the system (1.12) once
we prove p(-,1) € L?(0,T). Similarly, we can prove null controllability of (1.12) by assuming the same
for the system (1.13). Thus, null controllability of (1.12) is equivalent to that for the system (1.13).
So, our next goal is to study the null controllability of the system (1.13). In this context, we mention
here that the condition on ¢ mentioned in Theorem 1.1.2 arises while proving the controllability results
related to the system (1.13), as explained below.

Theorem 1.1.3. The following statements hold:

(i) Let us assume that ¢* +8c? +5 < 4%, Then, the system (1.13) is null controllable at any time
T > 1 in the space L?(0,1) x L?(0,1).

(ii) Let ¢ > 0 be given. Then, the system (1.13) cannot be null controllable at small time 0 < T < 1
in the space L?(0,1) x L2(0,1).
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As mentioned before, if the system (1.13) is null controllable at time T, then we get a similar
compatibility condition on py (obtained by integrating the first equation in (1.12)) as

1 T
/Opo(x)dx:/o pa(t)dt,

which is the main reason for obtaining the null controllability space as L?(0,1) x L?(0,1).

Remark 1.1.3. The condition on ¢ is required to prove that all the eigenvalues of the associated adjoint
operator are geometrically simple. However, characterization of all such ¢ for which the system (1.13)
satisfy the null controllability criterion is still unknown.

As a consequence of this result, together with the fact p(-,1) € L?(0,T), we can conclude null
controllability of the system (1.12) at time T > 1 in L2(0,1)xL?(0, 1) under the assumption ¢*+8¢+5 <
472, that is, Theorem 1.1.2. This kind of techniques has been applied in many places, for instance in
[CC09a, CHO16].

Control on velocity: We next consider the case when there is a boundary control acting in the
velocity component through the condition (1.7). The system is given below:

pr + Vopx + Qouyx =0, in (0,T) x (0,2n),

Uy — HoUxx + Voux + bpyx =0, in (0,T) x (0,2n),

p(t,0) = p(t,2r), for t € (0,T), (1.14)
u(t,0) =u(t,27m) + q1(t), ux(t,0) =ux(t,27), forte (0,7),

p(0,x) = po(x), u(0,x) = ug(x), in (0, 27).

Here q; € L?(0,T) is a control input (unknown). In this case also, we want to study the controllability
properties of this system (1.14) at a given time T > 0 in the space L?(0,27) x L?(0, 27). Similar to the
density case, if the system (1.14) is null controllable at time T, then we get a compatibility condition
on the initial states

21 T 2 T
/0 po(x)dx = Qo /0 g1 (0)dt, /0 uo(x)dx = ~Vy /0 g1(0)dt.

For this reason, we will work on the Hilbert space L?(0,27)xL?(0, 2). Before stating our controllability
results, let us first mention some known results for the system (1.14). In [CM15, Theorem 1.6], it is
known that the system (1.14) is null controllable at any time T > %,—;’ in the space H:1(0, 27r) XH; (0,2r)

per
with s > % using a boundary control g; € L?(0,T) acting in the velocity part. The proof of this result
was inspired by the work of Martin, Rosier and Rouchon [MRR13]. On the other hand, when an
interior control is acting only in the velocity equation, it is known in [CMRR14] that the system

is (distributed) null controllable at time T > %,—” in the space H! (0,27) x L?(0,2x). Moreover, the
0 per

space Héer(O, 27) x L?(0,27) is optimal in the sense that if we take initial states from the space
ngr(O, 27) x L?(0,27) with 0 < s < 1, then the system cannot be null controllable at any time T > 0

by using a localized distributed control. Further, lack of null controllability at small time 0 < T < %,—’g

is shown for the system (1.14) in [Mail5] by constructing some Gaussian beam solutions. However,
there are no controllability results for the system (1.14) at large time are available in the literature
when the initial states belong to the space H;Z}(O, 2m) X ngr((), 27) with s < 2. The next result gives
a complete answer to this question in terms of the regularity of the initial states.

er

Theorem 1.1.4. The following statements hold:

1 e system (1.14) is null controllable at any time T > 3£ in H, ,2) x L(0, 27) if and only i
Th 4 1l llabl QVg 1 (0,2) X L2(0, 27) if and only if

2,/bQo — V2

Ho

¢ N.



1.1. Compressible Navier-Stokes system

(ii) If 0 < s < 1, the system (1.14) cannot be null controllable at any time T > 0 in the space
H?.(0,2m) x L*(0, 27).

As mentioned in the density case, we have necessary and sufficient condition on the coefficients for
null controllability in this case also. Moreover, we mention here that null controllability of the system
(1.14) is inconclusive at the optimal time T = %,—g.

In the barotropic case, we finally consider the following system (see system (1.13)):

Pt + px +cuyx =0, in (0,T) x (0,1),

Up — Ugx + Uy +Cpx =0, in (0,T) x (0,1), (1.15)
p(t,0) = p(t, 1), u(t,0)=0, u(t,1)=gqo(t), forte (0,7),

p(0,%) = po(x), u(0,%) = ug(x), in (0,1),

with g2 € L2(0,T) as the boundary control. We will work on the Hilbert space L%(0,1) x L%(0,1) due
to the compatibility condition on pg:

1 1
/0 ,oo(x)dx:c/0 q2(t)dt.

Like the system (1.12), our aim is to study controllability properties under homogeneous Dirichlet
condition on p and with a boundary control acting on velocity through Dirichlet condition. However,
this is a very challenging problem and still no result is available in the literature (even in the distributed
case). For this reason, we will work on the above system (1.15) and study the controllability properties.
More precisely, we have the following result:

Theorem 1.1.5. The following statements hold:

(i) Let us assume that ¢* +8c? +5 < 4%, Then there erists a countable set N such that for chosen
c & N, the system (1.15) is null controllable at any time T > 1 in H3 (0,1) x L?(0,1).

(ii) If 0 < s < %, the system (1.15) cannot be null controllable at any time T > 0 in the space

H*(0,1) x L?(0,1).

Remark 1.1.4. Like the previous case, we cannot obtain any controllability results when the time is
small, that is when 0 < T < %,—’Of, by following the proof in the density case. Also, the condition on
¢ is required to prove eigenvalues of the associated linear operator have geometric multiplicity 1, as
mentioned before in the density case. Moreover, the set N appears in the above result while proving
the Fattorini-Hautus criterion. However, the complete characterization of this (possible) critical set
N is still not known.

1.1.2 The non-barotropic case

Let L > 0. We next consider the Navier-Stokes system for compressible non-barotropic fluids in (0, L):

pr+ (pu)x =0, in (0,T) x (0,L),
p(up + uuy) + R(p0)x — (A +2p) sy = 0, in (0,T) x (0,L), (1.16)
cyp[6; + uby] + RpOuy — k0 — (A +2p)u =0, in (0,T) x (0,L).

Similar to the barotropic case, we want to study controllability properties of the linearized system

around some constant steady state (Qo, Vo, o) with Qo, Vo, Yo > 0. Note that (Qo, Vo, o) are solutions
of the following stationary problem:

(&n)x =0, in [0,L],

Ennx + R(EDx — (A + 211 = 0, in [0,L],
cvénle + RENx{ — klox — (A + 2/1)’7;% =0, in [0, L],
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where (£ 1,0) € C2([0,L] x[0,L] x[0,L]). Note that, linearization of the terms (pu)x, p(u; +uuy), (p0)s,
p (0 + uby), pOu, and u? around (Qo, Vo, %) are respectively Vopx + Qotix, Qo(ur + Voty), Yopx + Qobx,
Qo(6; + Vby), Qotouy, and 0. Thus, the system linearized around (Qo, Vo, o) with Qq, Vo, o > 0 is given
by

prt+ VOpx + Qoux =0, in (05 T) X (0’ L)>
).+2/J Rlﬂo .
Uy — Uxx + — px + Vou, + RO, =0, in (0,T) x (0,L),
R
6 - — 0.+ tve. =0, in (0,T) x (0, L).
Qocy Cy

We take the initial condition as
p(0,x) = po(x), u(0,x) =ug(x), 0(0,x)=0y(x), x € (0,L). (1.18)
In this case, we will consider any one of the following boundary conditions on the system (1.17).

e Control on density

o p(t,0) = p(t,L) + p(t), u(t,0) =u(t,L), uy(t,0) = ux(t,L), 0(t,0) = 0(t,L), 0x(t,0) = 0,(¢t,L), (1.19)
e Control on velocity

o p(t,0) = p(t,L), u(t,0) =u(t,L) +q(t), ux(t,0) =uy(t,L), 0(£,0) = 0(t, L), 0,(t,0) = 0x(t,L), (1.20)
e Control on temperature

o p(t,0) = p(t,L), u(t,0) =u(t, L), ux(t,0) =uy(t,L), 6(t,0) =0(t,L) +r(t), 0x(t,0) =0,(t,L), (1.21)

for t € (0,T), where p,q,r are boundary controls. In this setup, we first define the controllability
notions:

Definition 1.1.3. Let H be a Hilbert space. We say the system (1.17) with initial state (1.18) and
boundary condition (1.19) (resp. (1.20), (1.21)) is

e null controllable at time T > 0 in the space H if, for any given (po,ug,00) € H, there exists
a control p € L*(0,T) (resp. q,r € L?(0,T)) such that the associated solution (p,u,d) of (1.17)
satisfies

(p(T),u(T),0(T)) = (0,0,0).

e approximately controllable at time T > 0 in the space H if, for given (po,uo, 6),(p1, ur, 01)
€ H and any € > 0, there exists a control p. € L*(0,T) (resp. ge,re € L2(0,T)) such that the
associated solution (pe,ue, 0c) of (1.17) satisfies

1(pe(T), ue(T), 0e(T)) = (pr.ur, 01)lly < €.

We study mainly the null controllability of the system (1.17) at a given time T > 0 starting from
the initial condition (1.18) and with one of the boundary conditions (1.19), (1.20) and (1.21). There
is no controllability results known in the literature for the system (1.17) at large time in the boundary
control case. However, in [Mail5], a lack of null controllability result is known at small time (under
Dirichlet boundary conditions) by using three localized interior controls acting in density, velocity
and temperature, or using a boundary control acting only on the velocity part. In this thesis, we
prove null controllability of the system (1.17) at large time in optimal spaces by using one boundary
control mentioned above. Further, we also prove a lack of null controllability result at small time in
the density case (like the barotropic case). Before stating our results, we first denote the (positive)
coefficients appearing in the non-barotropic system (1.17) as

A+2p K
= , Ko == >
Qo Qocy

A
S =1 (Ao, ko) : \/%QQ . (1.23)

/102

(1.22)

and define the set

10
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Note that, we have introduce a new notation Ay to denote the constant % instead of pg to separate
it from the barotropic case. We also define the operator (A, D(A)) associated to the system (1.17) as

—Voox —Q00x 0
R
A= |-500, Modex — Voo —Roy (1.24)
0 _Ii_l/‘lloax K0Oxx — VoOx

with the domain D(A) := H;er(O, 27) X (ngr(O, 27))2. In this setup, we will state our main results which
concerns null controllability of the system (1.17). We take L = 2z for simplicity of the computations.

Theorem 1.1.6. Let us assume that (g, kg) € S be such that there exists a M > 0 with the property

that
Ao a 1
/_ _ s = 1.2
Ko b g bM ( 5)

holds for all rational numbers §. We further assume that all the eigenvalues of the adjoint operator
of A (defined by (1.24)) have geometric multiplicity equal to 1. Then,

(i) the system (1.17)-(1.18)-(1.19) is null controllable at any time T > %,—g in the space (L?(0,2m))3.

(ii) the systems (}.17)—(1.18)—(1'.20) and (1.17)-(1.18)-(1.21) are null controllable at any time T > %,—g
in the space ngr(O, 27) x (L?(0, 27))2.

Proving the property that eigenvalues have geometric multiplicity 1 is not straightforward like the
system (1.9), due to the complicated cubic characteristics polynomial associated to the operator A.
Also, like the system (1.13) or (1.15), we do not have any characterization of the coefficients Ay and
ko for which the system will necessarily be null controllable. We refer to Chapter 3 for more insights
in this matter.

The next results shows that in the density case, the system (1.17) fails to satisfy null controllability
when the time is small. Moreover, we can achieve optimal space for null controllability in the velocity
and temperature control case. These results are similar to those obtained in the barotropic case.

Proposition 1.1.1. The following statements hold:
(i) The system (1.17)-(1.18)-(1.19) is not null controllable at small time 0 < T < %,—g in (L?(0,27))3.

(ii) The systems (1.17)-(1.18)-(1.20) and (1.17)-(1.18)-(1.21) are not null controllable at any time
T > 0 in the space ngr(O, 27) x (L?(0,27))? for any 0 < s < 1.

Similar to the barotropic case, lack of null controllability of the system (1.17)-(1.18)-(1.20) or (1.17)-

(1.18)-(1.21) is open when the time is small, in particular, when 0 < T < %,—’OT Moreover, null
controllability of the system (1.17) at time T = %,—g is inconclusive in all cases, whether there is a

control act in density, velocity or temperature.

In the non-barotropic case, we finally write the following result, which shows that the restriction
(Ao, ko) € S is not sufficient to conclude null controllability of (1.17).

Proposition 1.1.2. There exist constants (Ao, ko) € S and Qu, Vo, Yo, R, ¢, > 0 for which the systems
(1.17)-(1.18)-(1.19), (1.17)-(1.18)-(1.20) and (1.17)-(1.18)-(1.21) are not null controllable at any time
T > 0 in the space (L?(0,27))3.

To prove all the aforementioned controllability results, we will use mainly two techniques; the
method of moments and an application of parabolic-hyperbolic Ingham-type inequalities. In the next
chapter, we will briefly introduce these notions and show some applications in the case of 1d heat
equation. Here, we will write the new Ingham-type inequality that will be very crucial to prove the
some of the above null controllability results.

11
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Proposition 1.1.3 (A combined Ingham-type inequality). Let (A;)nen and (yn)nez be sequences of
complex numbers satisfying the following properties: there is N € N such that

(i) An # Am for all m,n € N with m # n, and yx # y; for all k,1 € Z with k # 1,
(ii) % > ¢ for some ¢ >0 and alln > N,
(iii) there exist r > 1 and § > 0 such that |A, — Ap| = & |n" —m"| for all myn > N with m # n and
(iv) there exist Ag > 0,Bg > 8 and € > 0 such that e(Ag+ Bon") < |A,| < Ag + Bon” for alln > N,
(v) yn =P +rtin+e, for all |n| > N, where f € C,7 >0 and (ep)jn|>N € fo.
(vi) {Ay : neN}N{y, : neZ}=0.

Then, for any time T > 27”, there exists a positive constant C such that

T
[ [ s 5 e
0

nelN nez
holds for all sequences (ap)nen and (bp)nez in fo.

2
dt > C(Z jan|? RT3 b, (1.26)

neN nez

This result is a generalization of the previously obtained Ingham-type inequalities, including
[2703a, 2Z03b, 2704, KT15]. Our proof is based on a decoupling technique as mentioned in [Zual6]
and [CMRRI14]. In fact, our proof works with more general assumptions on the sequences (A,)nen
and (yn)nez for which each of the individual parabolic and hyperbolic Ingham inequalities hold; see
the works [YouOl, LZ02, KL05, MZ04] for a variations of these individual inequalities. We refer to
Chapter 4 for more details in this regard.

We conclude this section with some known results for the compressible Navier-Stokes system.
Ervedoza, Glass, Guerrero and Puel in [EGGP12] proved a local exact controllability result for the 1D
compressible (linear and nonlinear) Navier-Stokes system for barotropic fluids in a bounded domain
(0,L) for regular initial data in H3(0,L) x H3(0,L) with two boundary controls, when time is large
enough. This result has been improved by Ervedoza and Savel in [ES18] by choosing the initial data
from H'(0,L) x H'(0,L); see also a generalized result [EGG16] by Ervedoza, Glass and Guerrero for
dimensions 2 and 3. In this thesis, we have proved null and approximate controllability of the linear
system using only one boundary control and our method of proving the controllability results are
independent of the works mentioned above. On the other hand, for non-barotropic fluids, we mention
the work of [Mol19], where the author proved local null controllability of the nonlinear system, in
dimensions 1,2 and 3, at large time in the space H2(Q) x H(Q) x H2(Q) using three controls acting on
velocity and temperature on the whole boundary and density on the inflow boundary. Moreover, in one
dimension, this result has been improved by choosing the initial state from H'(0, L)xH'(0,L)xH"(0,L).

1.2 A nonlinear two-parabolic system

Recall that, the linearized Navier-Stokes system for a compressible barotropic fluid consists of a trans-
port equation coupled with a parabolic equation. In the case of non-barotropic fluids, the linearized
compressible Navier-Stokes system consists of a transport equation coupled with two parabolic equa-
tions. To study the controllability properties of these systems with Dirichlet or Neumann boundary
conditions, the “vanishing viscosity method” might be useful, where we add a small viscosity term
to view it as a parabolic equation. More precisely, for ¢ > 0 small enough, we consider the following
parabolic equation corresponding to the first equation of (1.2) (or (1.17)):

Pt — €pxx + Vopx + Qoux =0, in (0,T) x (0,L). (1.27)

This method was first studied by Coron and Guerrero in [CG05], where they proved boundary null
controllability of the transport equation (Qp = 0 in (1.27)) by studying a one parameter family of

12



1.2. A nonlinear two-parabolic system

parabolic equations (1.27) and then taking the parameter ¢ tend to 0. Since then, this method has
been widely applied to prove controllability of many systems, see for instance the works [GL16, CnG15,
CnG16, GGO8, GLO7, Glal0, CW24] and the references therein.

With this new equation (1.27), our system (1.2) (resp. (1.17)) now consists of two (resp. three)
coupled parabolic equations. Thus, studying controllability results for these new systems with an
estimate on the control (depending on €) will be very useful to conclude some controllability results
for the systems (1.2) and (1.17). On the other hand, to prove some local controllability results for
the nonlinear systems (1.1) and (1.16) using only one boundary control, this method might be useful.
However, due to the presence of complicated nonlinearity in each systems (1.1) and (1.16), proving local
controllability of these systems is very challenging. For this reason, we consider a simplified system
consisting of two parabolic equations coupled with square, product and non-local nonlinearities, and
study the boundary null-controllability result by means of one Neumann boundary control. More
precisely, for given finite time T > 0, we consider the following system:

Yr — Yxx = f (4. 2, /01 v, fol z), in (0,T) x (0, 1),

zZt—zex = 9(y, 2 fol Y, /01 z), in (0,T) x (0,1),

Yx(£,0) = q(1), zx(t,0) =0, for t € (0,7), (1.28)
Ux(t, 1) =z (8, 1), for t € (0,7T),

y(t, 1) +z(t, 1) + ay,(t,1) =0, for t € (0, 7),

y(0,x) = yo(x), 2(0,x) =20(x), in (0,1).

Here, a > 0 is some real parameter and (yg,zo) is the given initial data which we choose from the
space [L?(0,1)]2. The function g € L?(0,T) is the control input acting at x = 0 through the Neumann
condition. At the point x = 1, the states y and z are coupled in terms of the “equality condition of their
normal derivatives” and a “combined Robin-type condition”. In the literature, this kind of combined
conditions is typically called the §-type condition, see for instance [BK13, p. 26, Chapter 1.4.4] or
[Exn96]. In fact, it has been addressed in [Exn96] that the wavefunction of a quantum mechanical
particle living on a graph often satisfies the §’-type boundary conditions at the junction points.

The nonlinear functions f and g in (1.28) are given by

fly.z, fol v, /01 z) = —yz +ay® + bz> + r1(t)y,

e (1.29)
9(y. z, /0 y,/o z) =yz+cy? +dz2 +ra(t)z,
where a, b, c,d are L*((0,T) x (0,1)) functions and
1
ri(t) =ay / (1//1,1 (x)y(t,x) + Yo1(x)z(t, x)) dx,
0 (1.30)

1
ra(®) = [ (1aly(e. ) + a0t d

with a1, o are real constants and ¢ ;, 99 ; € L*(0,1) for j = 1,2. In this setup, we want to study the
small time local null controllability of the system (1.28) in the space (L2(0,1))2. First, we define this
notion:

Definition 1.2.1. We say the system (1.28) is small-time locally null controllable around the
equilibrium (0,0) in (L?(0,1))? if, for any given T > 0 there is a § > 0 such that for chosen initial state
(Y0, z0) € (L%(0,1))? with ||(yo, 20) |l (12(0,1))2 < 6, there erists a control q € L?(0,T) satisfying

(y(T),2(T)) = (0,0).

We want to mention here that the nonlinear model (1.28) is a reaction-diffusion system which often
describes several biological phenomenon or chemical reactions, commonly known as “Lotka-Volterra”

13
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model with diffusion (without any boundary conditions and control for the moment, let say), that
sometimes characterize the dynamics of a biological system where two species prey and predator
interact between each other; see for instance [Perl5, Josl4, Mur02]. In this regard, we refer the
very detailed work [RBZ22], where several results concerning the controllability of reaction-diffusion
systems in biology and social sciences have been addressed. In our model, we consider that the two
species are interacting in the reference domain (through the nonlinear functions f, g) as well as at one
boundary end (through the coupled conditions at x = 1). Then, our goal is to put an external control
force only on one species from the other boundary end to locally control both the species at a given
time T. More precisely, we prove the following result:

Theorem 1.2.1. Let f and g be given by (1.29) and a > 0. Then, the nonlinear system (1.28) is
small-time locally null-controllable around the equilibrium (0,0) in the space (L?(0,1))2.

The proof of this result involves several steps, which we listed below; the detailed proof is given in
Chapter 5.

Step 1. First, we prove the null controllability result of the associated linear model to (1.28) around
the equilibrium (0, 0) using the method of moments with an estimation of the control cost, precisely
MeM/T where M is independent in T.

Step 2. Next, by applying the source term method introduced in [LTT13], we prove a null con-
trollability result of the linearized model with additional source terms in L?(0,T; (L?(0,1))2) which
are exponentially decreasing as t — T, and in this step, we notably use the precise control cost as
prescribed earlier.

Step 3. Finally, we use the Banach fixed-point theorem to obtain the local null-controllability for our
nonlinear system (5.1).

14
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The goal of this chapter is to present an overview of the basic controllability results and tools that
are closely related to this thesis. We first describe the basic functional tools including the concepts of
biorthogonal sequence, the method of moments and some variations of Ingham’s inequalities. Next,
we will explain how these notions are used to derive controllability of finite and infinite dimensional
linear systems, in particular, for transport and heat equations in one dimension. Finally, we make
some remarks about nonlinear systems.

2.1 Functional Tools

In this section, we describe the tools that will be used throughout the thesis. We mostly state the
results without proof as these are well-known and proofs of these results can be found in any functional
analysis and PDE books, see for instance [Brell, Kes89, Kes09, EvalO]. However, we give proofs of
some of the important results (related to this thesis) and refer to the articles/books in others.

Let F be a field, which is either R or C depending on the situations. A topological vector space

is a vector space V, over the field F, with a Hausdorff topology and with the property that the following
maps are continuous:

(w,0) »u+o, (a,u) > au

for all u,v € V and « € F. A normed linear space is a topological vector space V that is endowed
with a norm ||-||y,. If V is complete with respect to this norm, we say V is a Banach space. Further,
if this norm on V is induced from an inner product, that is [|u|ly = +/(u, u)y, we say V is a Hilbert
space.
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Let X and Y be Banach spaces. A linear operator from X into Y is an ordered pair (A, D(A))
such that D(A) is a subspace of X and the map A : D(A) € X — Y is linear. We say A is bounded
if there exists a positive constant C such that ||Aully < Cllul|x for all u € D(A). The operator A is
unbounded if it is not bounded. Moreover, A is densely defined if D(A) is dense in X and A is
closed if the graph of A, defined as G(A) := {(u,Au) : u € D(A)} is closed in X X Y. We now provide
some examples of unbounded linear operators which are relevant to this thesis.

Example 2.1.1.

(a) Let us consider X = (C°[0,1], ||]l), D(A) =C'[0,1] and A : D(A) € X — X is defined by Au = u’.
Then A is an unbounded operator. In fact, for the sequence u,(t) =t" € D(A), we have ||luy|lx =1
for all n € N but ||Auy|lxy — o as n — co.

(b) Let L > 0. The operator A : D(A) c L*(0,L) — L%(0,L) defined by Au = u’ is unbounded on L?(0, L)
in each of the following domains:

(i) D(A)=H'(0,L), (ii) D(A) =H(0,L), (iii) Z)(A)zH{lo}(O,L), (iv) D(A) =H}.(0,L).

In fact, we have for u,(x) = sin(‘F) € D(A), [|Aunll2¢0p) — 0 but (un)nen is bounded in L%(0,L).

(c) Let L > 0. Then, it is easy to see that the operator A : D(A) c L?(0,L) — L*(0,L) defined by
Au =" is unbounded on L*(0,L) in each of the following domains:

(0,L).

er

(i) D(A) =H*(0,L) nHy(0,L), (ii) D(A) =H]

Let X be a Banach space. The dual of X is denoted by X’ and defined as the space of all bounded
linear functionals on X, that is

X" :={f:X >R : fisabounded linear operator}.

For the Hilbert space, we have a characterization of its dual in terms of the following famous result:

Theorem 2.1.1 (Riesz Representation Theorem). Let H be a Hilbert space and f € H'. Then there
exists a unique v € H such that

fu) = (w o)y

for all u € H. Moreover, we have ||f||y = ||o|lg-

As a consequence of this result, the map v — f, is a linear isometry of H onto H’. Thus, we can
identify a Hilbert space H with its own dual via this Riesz isometry map. However, this characterization
might not be possible to every space under consideration at a time; as explained below:

Remark 2.1.1. Let V be a dense subspace of a Hilbert space H which is continuously embedded in H,
that is, there exists a C > 0 such that ||lullg < C||lully for all u € V. Then one can prove the following
relation:

VcH=H cV.

Here the later inclusion (from H' into V') is also dense. This relation shows that we cannot simul-
taneously identify V with V' and H with H'. In this situation, we say H is the pivot space (identified
with its dual via Riesz isometry) and V' is the dual of V with respect to the pivot space H. We give
some examples below which shows that this situation can arise in the case of Sobolev spaces.

Example 2.1.2. We present here some of the examples of Hilbert spaces and their duals with respect
to some pivot spaces. These examples can be found, for instance, in the books [Brell, Kes89, Kes09].

(i) We take V = H&(O, L) and H = L?(0,L). We identify the space L*(0,L) with its dual and denote
the dual of H&(O, L) by HY(0,L). Moreover, we have the following inclusion:

HL(0,L) c L*(0,L) = (L*(0,L)) ¢ H (0, L).
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(ii) We take V = Héer(O, L) and H = L?(0,L). Then, as before, we identify the space L?(0,L) with its
dual and we have the following inclusion:

H)..(0,L) € L*(0,L) = (L*(0,1))’ € (H,,(0,L1))".

(iii) Let us take H = f2(R) and V C H be defined by

V.= {x = (Xp)neN : Z n’ |xn|2 < 00}.

neN

Then V is a Hilbert space endowed with the inner product {(x,y)y = Z n2xnyn for x = (xp)nen

nelN
and y = (Yn)nen € V. We identify H with its dual and the dual of V is identified as

, 1
V' i=1qu = (up)nen : Z 3 |un|2 <00,
neN |n|

Moreover, we have the following relation:

VcH=H cV'.

We now define the adjoint of a linear operator. Let X,Y be Banach spaces and A: D(A) c X - Y
be a densely defined linear operator. The adjoint of A is an operator (A*, D(A*)) on X’ defined as
follows: Define

D(A) = {f €X' : 3C> 0such that |[f(Aw)| < Cllully, Vu € z)(A)}.

Take f € D(A"). Let us define gr : D(A) — R by gr(u) = f(Au) for all u € D(A). Then gr is a
bounded linear functional on D(A). Thus, there exists a unique extension g¢ of gr on D(A) = X. This
implies g € X’. We define A*f = g¢. Note that for all u € D(A), A*f(u) = gr(u) = gr(u) = f(Au).

For a Hilbert space H, we define the adjoint operator A* as the unique vector f € D(A*) such that
(A" fuyy = (f, Au)y for all u € D(A) and we say A is self-adjoint if (A, D(A)) = (A", D(AY)).

We now define a family of bounded linear operators which will be very crucial for infinite dimen-
sional linear control systems.

Definition 2.1.1 (Semigroup). Let X be a Banach space and {S(t)};>0 be a family of bounded linear
operators on V. We say {S(t)}ss0 is a C°-Semigroup if

(i) S(0) =1, where I is the identity map on V.
(ii) S(t+s) =S(t)S(s) for all t,s > 0. (Semigroup property)
(iii) For everyu € X, S(t)u — u as t — 0,. (Continuity property)
Further, if |S(t)]| < 1 for all t > 0, we say that {S(t)}i>0 @S a contraction semigroup.

Example 2.1.3. We write the following examples of semigroups which will be used throughout this
thesis.

(a) If A is a bounded linear operator on a Banach space X, then the family {S(t)}:>0 defined by
S(t) = et fort >0 is a C'-semigroup on X.

(b) Let X := {f [0,00) = R : f is bounded and uniformly continuous on [0, 00)}. It is easy to verify
that X is a Banach space with respect to the sup norm ||||«. Let us define S(t) : X — X by

(S (s)=f(t+s) forallt,s > 0.

Then {S(t)}s>0 is a C°-semigroup on X.

17
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(c) Let X := £(C) = {x = (Xp)neN © Dpen Ixq|? < oo} and let (An)nen be a sequence of non-negative
real numbers. Let us define S(t) : X — X by

S(t)x := (e_’l"txn) . for x = (xp)new € X, and t > 0.
ne

Then {S(t)};s0 defines a C°-semigroup on X.

(d) Let H be a separable Hilbert space and (¢n)nen be an orthonormal basis of H. Also, let (Ay)nen be
a sequence of non-negative real numbers. Then the family {S(t)};>0, where S(t) : H — H is defined
by

S(t)u = Z e Mt (u, ®n)g ¢n, foru € H,
neN

is a CO-semigroup on H.

Definition 2.1.2 (Infinitesimal Generator). Let X be a Banach space and {S(t)}s>o be a CY-semigroup
on X. Then the operator (A, D(A)) defined by

D(A) = {u €X : lim;, S(t)# ea:ists},

Au = lim; 0, S(t)# for allu e D(A)
1s called an infinitesimal generator of the semigroup {S(t)}+>0-

Example 2.1.4. We will consider only the examples of semigroups considered above (Example 2.1.3)
and write the corresponding infinitesimal generators.

(a) The bounded operator A considered in Example 2.1.3-(a) is the infinitesimal generator of the
semigroup {e'};s0 on X.

(b) In Example 2.1.3-(b), the generator is given by (A, D(A)) where

D(A) = {fGX 2 f EX},
Af =1, fe D).

(¢) The semigroup defined in 2.1.3-(c) has the generator (A, D(A)) where

D(A) = {X = (Xn)new € X 1 (AnXn)nen € X},
Ax = (Apxp)nen, x € D(A).

(d) Finally, in Example 2.1.3-(d), the generator is given by (A, D(A)) where

D(A) = {u eX : Z |)Ln (u, (pn)H|2 < oo},

neN

Au = Z A (U, @n) gy on, u € D(A).
neN

We leave the details here and refer to the book [Vra03], which contains several ezamples of semigroups
and its generators including the above.

We now write some important properties of a C’-semigroup on a Banach space.

Theorem 2.1.2 (Properties of a C’-Semigroup). Let X be a Banach space and let {S(t)};>0 be a
CO-semigroup on X. Then the following statements hold:

(i) There exist M > 1 and w € R such that ||S(t)|| < Me®*, for allt > 0.
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(ii) For allu € X and t >0, [ S(r)udr € D(A) and A (/OtS(T)udT) = S(t)u —u.
(iii) For all u € D(A) and t > 0, S(t)u € D(A), %S(t)u = AS(t)u = S(t)Au, and the mapping
t € [0,00) > S(t)u € X is CL.

Corollary 2.1.1. Let 7 > 0 be given. If A generates a C'-semigroup {S(t)};=0 in a Banach space X,
then for given ug € D(A) and f € C1([0,7];X), the equation

{u’(t) = Au(t) + f(t), te (0,1), (2.1)

u(0) = ug

admits a unique solution u in the space C1([0,7]; X) NC([0,7]; D(A)). Moreover, u has the expression

u(t) = S(t)ug + ‘/OtS(t —s)f(s)ds, for allte [0,r].

We refer to the book [CZ95, Theorem 3.1.3, page 103] for a proof of the above result; see also
the book [BDPDMO7]. In view of this result, it is enough to find the corresponding semigroup to
guarantee the existence of a solution to linear systems. In this context, we write the following result
which gives necessary and sufficient condition on the operator A for generating a CY-semigroup.

Theorem 2.1.3 (Hille-Yosida). A linear operator (A, D(A)) on a Banach space X generates a C°-
semigroup of contractions {S(t)};>0 on X if, and only if,

(i) (A, D(A)) is closed,
(ii) (A, D(A)) is densely defined,
(iii) for every A >0, (AI — A)™! : X — D(A) is a bounded linear operator and ||(/11 —A)’IH < %

Property (iii) of the above Theorem might be difficult to prove for unbounded linear operators in
arbitrary Banach spaces. However, in Hilbert space, we can find equivalent results that are relatively
easy compared to the above result. To state these results, we need the following notions:

Definition 2.1.3 (Maximal Dissipative). Let H be a Hilbert space. A linear operator (A, D(A)) on H
s said to be

(i) dissipative if (Au,u)y < 0 for all u € D(A).
(i) mazimal dissipative if A is dissipative and Range(I — A) = H.

With the help of these two properties, we now write the following results which we will use through-
out this thesis to prove the existence of a unique solution to the linear systems. For a proof of these
results, we refer to the book [Paz83, Section 1.4, Page 13]; see also [Kes89, Section 4.5, Page 188].

Theorem 2.1.4 (Lumer-Philips). An operator (A, D(A)) on a Hilbert space H generates a C°-semigroup
of contractions if, and only if, (A, D(A)) is mazximal dissipative.

Corollary 2.1.2. Let (A, D(A)) be a closed and densely defined linear operator on a Hilbert space
H. Then, (A, D(A)) generates a C°-semigroup of contractions if both (A, D(A)) and (A*, D(A*)) are
dissipative.

From the Lumer-Philips theorem, the existence of a unique solution to the linear system (2.1) in a
Hilbert space is equivalent to proving A is maximal dissipative and to prove an operator is maximal,
the following result plays an important role. This result is a generalization of the famous Riesz
representation theorem (Theorem 2.1.1); see the books [DL88, DLI0] for a proof of this result.

Theorem 2.1.5 (Lax-Milgram Theorem). Let H be a Hilbert space. Let B: HXx H — R be a bilinear
mapping such that
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(i) there exists a positive constant a > 0 such that |B(u,0)| < a ||ullg ||lollg for all u,0 € H,
(ii) there exists a positive constant p > 0 such that B(u,u) > ||u||?i for all u € H.

Then, for every bounded linear functional f : H — R there exists a unique u € H such that B(u,v) =
(f,0)y for allv e H.

The next important part in this thesis involves the spectrum of a linear operator. Let X be a
Banach space and A : D(A) € X — X be a linear operator. For given A € C, we define the operator
Ay : D(A) € X — X by A; := (Al — A). The inverse of Ay, that is the operator (AI — A)~! (if exists)
is called the resolvent operator of A. Further, the resolvent set of A is denoted by p(A) and is
defined as

p(A) = {/1 €C : (AI—-A)7!is a densely defined bounded linear operator on X } .

The complement of the resolvent set is called the spectrum of the operator A, that is, a(A) := C\p(A).
Moreover, the spectrum of A can be partitioned into the following disjoint sets:

(a) The point spectrum of discrete spectrum is denoted by ¢,(A) and is defined as
0p(A) :={A€C : (AI - A) is not invertible} .

The element A € 0,(A) is called an eigenvalue of the operator A and the elements u € ker(A,)
are called eigenvectors/ eigenfunctions of A corresponding to this eigenvalue A. Moreover, the
dimension of ker(A,) is called the geometric multiplicity of the eigenvalue A.

(b) The continuous spectrum is denoted by o.(A) and is defined as

oc(A) = {/1 €C : (M—-A)tis a densely defined unbounded operator on X } .

(c) The residual spectrum is denoted by o,(A) and is defined as
or(A) := {)L € C : (M —A)"! exists but not densely deﬁned}.

Note that, if A € ¢,(A), then the operator (AI — A)~! may be bounded or unbounded.

We also mention here that, if X is a Hilbert space and A € o(A) then Ae o(A").

Let X,Y be Banach spaces. We say a linear operator A : X — Y is compact if A(B) is relatively
compact in Y for every bounded set B in X. In other words, A is compact if and only if, for every
bounded sequence (up)nen in X, the sequence (Auy)nen has a convergent subsequence in Y. Moreover,
the operator A is compact if and only if A* is compact.

We now write two important results related to the spectrum and resolvent of a linear operator,
which we have used throughout this thesis. The proof can be found in [DS71, Lemma 2, Page 2292].

Theorem 2.1.6. Let H be a Hilbert space and A : D(A) C H — H be a linear operator. Then:

(i) If the resolvent operator (AI — A)~! is compact in H for some A € p(A), then the spectrum of A
s discrete and contains only the eigenvalues of A.

(ii) If the resolvent (AI — A)~' of A is compact in H for some A € p(A), then it is compact for every
A ¢ a(A).

We conclude this section with an important result for a compact self-adjoint operator that guar-
antees the existence of a basis consisting only the eigenvectors of that operator. For the proof of this
result, we refer to the book [Brell, Theorem 6.11, Page Page 167].

Theorem 2.1.7. Let H be a separable Hilbert space and let A : D(A) ¢ H — H be a compact self-
adjoint operator. Then there exists an orthonormal basis of H consisting of the eigenvectors of A.
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2.1.1 Riesz basis

The concept of Riesz basis comes from functional analysis and operator theory, in particular, in the
context of Hilbert spaces. It is a special type of basis that possesses properties related to the standard
orthonormal basis but doesn’t necessarily consist of orthogonal vectors. We first define the notion of
a Riesz basis (see [CZ20, Section 3.2, Page 79| for instance).

Definition 2.1.4. Let H be a Hilbert space. We say a family {¢p, : n €N} C H is a Riesz basis of
H if the following conditions hold:

(i) The set {¢, : n €N} is complete in H, that is, span{¢, : ne€ N} =H.

(i) There exist constants C1,Ca > 0 such that the inequality

N N
2
€1 ), lanl” < 1) anen
n=1

n=1
holds for any given finite sequence (an)1<n<n C C.

2

N
<G ) lal? (2.2)
n=1

H

We first write the following result which gives a relation between Riesz and orthonormal basis.
The proof of this result can be found in many books, for instance in [CZ20, Lemma 3.2.2]; see also
the book by Young [YouOl, Chapter 1].

Theorem 2.1.8. Let H be a Hilbert space and {e, : n € N} be an orthonormal basis of H. Then,
a family {¢n, : n € N} C H is a Riesz basis of H if, and only if, there exists an invertible linear
transformation T : H — H such that Te, = ¢, holds for all n € N.

Using the above result, we can prove that a Riesz basis has similar properties to an orthonormal
basis. More precisely, we have the following result, the proof of which can be found, for instance, in
[CZ20, Lemma 3.2.4, Page 82].

Theorem 2.1.9. Let H be a Hilbert space and let {¢, : n € N} C H be a Riesz basis of H. Then
there exists a unique family {¢,, : n € N} in H such that every u € H can be expressed uniquely as

u= Y () n
neN
with
C Y [ ymdul” < Mullfy < €2 ) [ gl

nelN neN

for some constants C1,Co > 0.

We can further characterize the Riesz basis even when we do not have any orthonormal basis. In
fact, the following result shows that any independent family that is close to a Riesz basis (in a sense
given below) is also a Riesz basis. We refer to the book [You0l, Theorem 15, Page 38| and the article
of Gohberg and Krein [GK69] for a proof of this result.

Theorem 2.1.10 (Bari). Let H be a Hilbert space and {¢p, : n € N} be a Riesz basis of H. Let
{¢n, : neN} be a subset of H with the following properties:

(i) The set {y, : n € N} is w-linearly independent in H, that is, if there exists (ay)nen C C such

that Z any, =0, then a, =0 for all n € N.
neN

(ii) The set {y, : n € N} is quadratically close to {¢, : n €N} in H, that is, Z lon — l//n||%1 < 00,
nelN

Then, {Y, : n e N} is also a Riesz basis of H.
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In control theoretic perspective, one requires to find a Riesz basis that consists only the (general-
ized) eigenvectors of certain linear operators. To do so, one can apply the above result and therefore
we need to estimate “high frequencies of eigen-elements” by asymptotic analysis technique. Also,
we need to find a sequence of (generalized) eigenvectors {Yy,}n>n+1 (for some large N € N) that is
quadratically close to a given Riesz basis {¢,}n>n+1- Finally, the most difficult part is to show that
the number of linearly independent “lower frequencies” of eigenvectors is exactly N. To simplify the
last step, we write the following result which includes these lower frequencies of eigenvectors and for
the proof of this result, we refer to the book by Singer [Sin70, Corollary 11.4]; see also the article
[Guo01].

Proposition 2.1.1. Let H be a Hilbert space and {¢p, : n € N} be a Riesz basis of H. Let {¢, : n>
N + 1} (for some N > 0) be a subset of H such that Y,sn41 |l@n —¢n||12q < oo. Then there exists an
M > N such that the set {¢, : 1<n<M}U{y, : n=M+1} forms a Riesz basis of H.

The above result includes only higher frequencies of the elements {,} and lower frequencies of the
known basis {¢,}. If {{, : n € N} is the set of (generalized) eigenvectors of a linear operator A, then
from this result we cannot conclude Riesz basis property of the whole set of eigenvectors {, : n € N},
as the set {¢p, : 1 <n < M} might not necessarily be the (generalized) eigenvector of A. To ease this
difficulty, we will state the following result of B. Z. Guo (see [Guo01, Theorem 6.3]) which shows that
we can obtain a Riesz basis with elements from only the (generalized) eigenvectors of the operator A.

Theorem 2.1.11. Let H be a Hilbert space and A : D(A) € H — H be a densely defined linear
operator such that the resolvent of A is compact in H. Let {¢, : n € N} be a Riesz basis of H. If
there exists a family of generalized eigenvectors {Y, : n > N} c H of A (for some N > 0) such that

2
2nsN+1 lon = Ynlliy < o0, then:

(i) There exist constant M > N and a finite sequence of generalized eigenvectors {t}n : 1<n< M}
of A such that the family {¢, : 1 <n<M}U{W, : n>M+1} forms a Riesz basis of H.

(ii) The spectrum of A is oc(A) = {A, : n € N}, where A, is the corresponding eigenvalues of A
(counted with algebraic multiplicity).

(iii) If there exists an My > 0 such that A, # Ay, for all myn > My, then there exists an Ny > My such
that all the eigenvalues (Ap)n>n, of A are algebraically simple.

Example 2.1.5. We now give some examples of Riesz bases in respective Hilbert spaces and refer to
the books [YouO1] and [CZ20], which contains several interesting examples of Riesz bases.

(a) Ewvery orthonormal basis in a Hilbert space H is a Riesz basis of H.

(b) The families { Zgin (MX) : ne N} and {‘/izezm% s ne N} are orthonormal bases of L?(0,L)
and hence form Riesz bases of L*(0,L).
(¢) Lets > 0. The families {ns sin ("LLX) ne N} and {nse%zm i ne N} are Riesz bases of (H*(0,L))’.

This can be proved easily by applying Theorem 2.1.8.

2.1.2 Biorthogonal sequences

Biorthogonal sequences are an important part in various areas of mathematics and in particular,
they are used to prove controllability of several dynamical systems. In this section, we define the
biorthogonal sequence and state some important results of existence of such sequences. These results
play crucial roles throughout this thesis.

Definition 2.1.5. Let H be a Hilbert space and (x,)nen be a sequence of elements in H. We say a
family (yr)ken C H is biorthogonal to (xy)nen in H if

Xn Y)Yy = 5,’; for all n,k € N.
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We first consider the simplest case which guarantees the existence of a biorthogonal sequence of
. 2.2 . . . .
the family (e ™ " !),en. Moreover, we obtain some bounds on the biorthogonal sequence, which is
very crucial to prove controllability results of the linear systems.

Theorem 2.1.12. Let (A,)nen be a sequence of distinct positive reals. Let us further assume that
there exist N € N large enough and a constant § > 0 such that

— <€, foralle >0,
n>N /1,1

[Ans1 — An| =6, for alln e N.

Then, for given T > 0, there exists a biorthogonal sequence (qi)kex C L2(0,T) to the family (e ***)pen
in the space L?(0,T) with the estimate

il 200y < Ce* for all k € N, (2.3)
for some constant C > 0.

We refer to the work of Ferndndez-Cara, Gonzalez-Burgos and Teresa for a proof of this result
in a more general setting (see Theorem 2.1.14 below); see also the lecture notes by Boyer [Boy23,
Theorem IV.1.10, Page 52] and of Micu and Zuazua [Zua06, Theorem 2.6.2, Page 142]. In fact, the
above result is a consequence of the well-known Miintz Theorem, which says that the family (e’7!),en

1

is complete in L2(0,T) if and only if Z = oo. Moreover, the gap condition is required to obtain
neN ™

the L?-estimate on the biorthogonal sequence (gx)ken. In this context, we mention that the Miintz

Theorem is a generalization of the famous Weierstrass approzimation theorem, see [Rud87, Section
15.25, Page 312] for more details in this regard.

There are many generalizations of this result available in the literature. We present here some of
the results that are relevant to this thesis.

Theorem 2.1.13. Let (Ay)nen be a sequence of complex numbers with the following properties: There
exists N € N large enough and constants €,8,¢,Aqg > 0, r > 1 and By > & such that

(P1) A # An for all k,n € N with k # n,

(P2) |IP;§813| >¢ for alln >N,

(P3) Ak — An| = 8|k" —n"| for all k,n > N with k # n,
(P4) €(Ap+ Bon") < |A,| < Ao+ Bon” for alln > N.

Then there exists a sequence (qx)ken biorthogonal to (e=*n!),ex in L2(0,T). Moreover, for given € > 0
there exists a constant C. > 0 such that

lgkll2 01y < C.ecRe(k) for all k € N. (2.4)

This result has been proved by Hansen in [Han91]. We note here that, the above result is also
valid in the case r = 1. This is written in the following result:

Theorem 2.1.14. Let (A,)nen be a sequence of complex numbers with the properties

Re(Ay) = 8 Anl, [An—Axl = éln—k|, for allmk €N,
1 (2.5)
< 00
Z [An]

nelN

for some 8,é > 0. Then there exists a biorthogonal sequence (qx)ken to (e )nen in L2(0,T). Moreover,
for given € > 0, we have the following estimate

gl 207y < Ce M) for all k € N, (2.6)

where C > 0 is a constant.
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For the proof of this result, we refer to the work [FCGBdT10, Lemma 3.1]. We must mention here
1
that the condition Z
Al
family. However, to obtain the required bound on the biorthogonal sequence, the gap condition
becomes the necessary part.

< o0 and Re(4,) = §|4,| is enough to find the existence of a biorthogonal

In all of the above cases, the constant C appearing in the biorthogonal estimates do not have
precise dependence on T. In the context of controllability of nonlinear systems, this dependence plays
a crucial role (see Chapter 5 for more details). The following result gives an optimal estimates on this
constant and in fact this is the more general result currently available in the literature. For the proof
of this result, we refer to the lecture note by Boyer [Boy23, Theorem V.4.26 & Corollary V.4.27], see
also [ABM21].

Theorem 2.1.15. Let A be a subset of complex numbers satisfying the following properties:
(i) There exists n > 0 such that A C S,, where

Sp={z€C : Re(z) >0, and |Im(z)| < sinh(n) |Re(2)|}.

(ii) There exists k > 0 and f € (0,1) such that
Np(r) < krP, for allr >0 (2.7)

and
INA(r) = Na(s)] < x (1 +|r - slﬂ), for allr,s >0, (2.8)

where Ny : [0,00) — N is the counting function defined by
Na(r) =#{AeA : |A| <r}.

(iii) There exists y > 0 such that

A—pl >y, forall A pe AA+p. (2.9)

Then, for any given T > 0, there exists a family (qy1)rea in L2(0,T) biorthogonal to (e *)sen, that is,

T
/ e Mqurdt =83, for all Ay e A.
0

Moreover, we have the following estimate

B
T B “1-p
9071207y < Me 2 Re(+MRe)THMT 22 = o 11 11 € A, (2.10)

for some constant M > 0 depending only on x,f and y.

2.1.3 The method of moments

One of the important topic of discussion in this thesis is the method of moments, which is very
useful for the study of controllability of linear systems (both finite and infinite dimensional). This
method can be used, in particular, to prove controllability of ordinary differential equations, the heat
equation, wave equation and other partial differential equations whose solutions can be computed
using separation of variables, see for instance [FR71, FR75, Rus78]. In Section 2.4, we have explained
one application of this method in the case of 1d heat equation and in Chapters 4 and 5, this method
is also applied for some coupled linear systems. In the present section, we give a brief description of
this method, which can be found, for instance, in the book [DZ06, Section 3.3, Page 36].

Let H be a Hilbert space and let (x,),en be a sequence in H. For a given sequence (ap)nen € fo,
the problem of moments is to find a ¢ € H such that

(¢, Xn)p = an, for all n € N. (2.11)
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To solve the above problem, it is enough to find a biorthogonal family of (x,),en in H. In fact, if gx € H

satisfy (qk, Xn)y = 8 for all n,k € N, then the element q = Z arqx verifies (q, x,) gy = Z ar Qi Xn) g =
keN keN

Z akﬁl,j = a, for all n € N. Thus we get a solution for the general problem provided q € H, i.e.,

keN
llgll; < e0. More precisely, we have the following statement:

Lemma 2.1.1. Let H be a Hilbert space and let x, € H for all n € N. If (qx)ren 1S a biorthogonal
sequence to (xp)nen in H, then for any given sequence (an)nen € fo such that

> lakl Ngelly < o,

keN

there exists a solution q = Z arqx € H of the moment problem (2.11).
keN

The above result shows that solving a moments problem consists of determining a biorthogonal
sequence with appropriate norms. We now give an example which we will describe in detail in the
later sections in this thesis.

Example 2.1.6. Let us consider the Hilbert space H = L?(0,T). For a sequence of positive real numbers
(An)nen, we define x,(t) = e~*t for t € [0,T]. Then, for given (ap)nen € fa, the problem of moments
is to find a q € L?(0,T) such that

T
./ q(t)e *'dt = a,, VneN. (2.12)
0

If (qi)ken is biorthogonal to (e *n*),cn in L2(0,T), then the solution of the moment problem (2.12) is
given by
g(t) = ) angu(t), te (0.T),

n>1
provided this series is convergent in L*(0,T), that is

D 1anl Ignllzz o) < .

n>1

2.1.4 Ingham’s inequalities

Apart from the method of moments, we will use the well-known Ingham’s inequality and some vari-
ations of it to deduce our main controllability results of this thesis. This type of inequality is a
fundamental result in harmonic analysis, particularly in the study of Fourier series and Fourier trans-
forms. More precisely, it is a key tool in proving results related to the convergence of Fourier series
and the decay properties of Fourier transforms. Further, it is also very useful in proving certain
observability inequalities, giving some controllability results for the linear control systems.

We first write the following result known as the original Ingham’s inequality, the proof of which
was given by Ingham in [Ing36]; see also the lecture note [MZ04, Theorem 2.4.1] by Micu and Zuazua
and the book [KL05, Theorem 4.3] by Komornik and Loretti.

Theorem 2.1.16. Let (A,)nen be a sequence of real numbers satisfying

Y= iI;I&f [Am — Ay > 0. (2.13)

Then, for every bounded interval [a,b] with b —a > ?7”, there exist constants C1,Co > 0 such that

b
Cy Z |a,l|2 < / Z ane”l"t
a

nelN nelN

2
dt < Cy Z |an|? (2.14)
neN

holds for every (ap)nen € fo.
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Remark 2.1.2. We note here that the above inequality (2.14) generalizes the well-known Parseval’s
identity.

Here, the gap condition (2.13) is necessary to prove this inequality. Indeed, if the inequality (2.14)
is true then we have for a =1 if k = n,m and ax = 0 for all kK # m, n that

b
2C1 S / |el).nl’ _ el/lmt
a

2 b
dt < / |cos(Ant) — cos(Amt) + i(sin(Ant) — sin(Ant))|* dt

b
:/ [2 = 2cos(A, — Ap)t]dt

b3 - g?

b
< / A = Am|? £2dt = | Ay — A

and therefore we get
6Cy
|An_'AnA > Egijzg > 0.
Remark 2.1.3. The positive constants C1,Co appearing in the Ingham inequality depends on a,b and
Y, but the explicit expressions of these (optimal) constants are still unknown. However, some estimates

of these constants C1 and Co are known. More precisely, for [a,b] = [0, T], it is known in [Ing36] that

2 472 20T
o= 212 and e — 2T
T v°T min(2r, yT)

Moreover, if we take A, =n for n € N, then we can explicitly compute these constants and is given by
T
C = [—] 7w, and Co=Cy+1,
2

see for instance [HLP16]. We also mention here that, the Ingham inequality (2.14) is inconclusive in

the optimal case, that is when b —a = %,—”
0

Note that, the Ingham inequality (2.14) implies that the family {eM"t ne N} forms a Riesz basis

T2
in the space span {e”nt ne N}“ © , see the Definition 2.1.4 of Riesz basis. Following the same idea
of proving Theorem 2.1.16, we can allow small perturbations on the sequence (4,)nen and still obtain
the similar inequality, see [CMRR14] for instance. This result is very useful in the case of coupled
hyperbolic PDEs or in particular when a perturbation term is present in the equations.

Theorem 2.1.17. Let (Ay)nen be a sequence of real numbers satisfying
y := inf |4, — 44| > 0. (2.15)
m¥#n

Let (en)nen be a sequence of complex numbers converging to 0. Then, for every bounded interval [a, b]
with b —a > ?7”, there exist constants C1,Cy > 0 such that

b
c Z I, 2 S/ Zane(i/ln+en)t

neN @ |neN

2
dt < Cy Z |an|? (2.16)

neN

holds for every sequence (ap)nen € fo.

Corollary 2.1.3. Let (A,)nez be a sequence of real numbers satisfying

Y= mi]’[}gz [Am — An| > 0. (2.17)
m#n

Let (€n)nez be a sequence of complex numbers converging to 0. Then, for every bounded interval [a, b]
with b —a > ?7”, there exist constants C1,Cy > 0 such that

b
Cy |a |2 S‘/ a e(i/ln+en)t
Dl < [ 1D an

nez nez

2

dt <Cy ) la|” (2.18)

nez

holds for every sequence (ay)nez € o.
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Proof. Let (an)nez € f2 be given. We denote

azs, if n is even, /1%, if n is even, en, if n is even,
b, = . . > Hn = . . , and J, = . .
a_n-1, if n is odd, A n-1, if n is odd, € n-1, if n is odd,
2 2

for n € N. Then we obtain

b 2 b 2
L[S am S b a

@ |nez 4 |neN

Applying Theorem 2.1.17, there exist C1,Co > 0 such that
b 2
C Z bnl? < / Z aneAntent| g < ¢, Z |bal? .

neN 4 |nez neN

Since Z |b,|? = Z lan|?, the proof follows. O

neN nez

We now write the following result which is relevant to our work. In fact, this inequality helps us
deal with the hyperbolic (transport) equation. We give a proof of this inequality by assuming the
previous result. In this context, we refer to the article [CMRR14, Proposition 3.1] where this version
is used to prove observability inequality of the linearized compressible Navier-Stokes system.

Theorem 2.1.18. Let (A,)nez be a sequence of complex numbers with the following properties:
(H1) Ax # Ay for all k,n € Z with k # n.

(H2) There exists N € N large enough such that A, = f+ yni + e, for all |n| > N, where f € C and
(en)lnlzN € fo.

Then, for any T > ?7”, there exist constants C1,Co > 0 such that
- 2
C1 Z lan]? < / Z ane’t| dt < Cy Z lan|? (2.19)
nez 0 |nez nez

Proof. Note that
2

holds for any sequence (an)nez € to.
Z ane(iyn+e,,)t dt.

T 2 T
/ dt = / (2Re (Bt
0 0 nez

Therefore, applying Theorem 2.1.17-Corollary 2.1.3 together with the fact that e2R¢(F)* is bounded
and has positive lower bound, the proof follows. O

>

nez

We conclude this section with another version of Ingham-type inequality, often referred as the
Miintz-Szasz theorem of the parabolic Ingham’s inequality. We give a proof of this inequality under
some general assumptions on the sequence (4,)nen. The proof is given by Lopez and Zuazua in [LLZ02,
Proposition 3.2] for the case when the sequence (A,)nen consists of real numbers.

1
|4n]

(gi)ken be biorthogonal to (e *')pen in L2(0,T) with the following estimate: for given € > 0 there
exists a constant C. > 0 such that

Theorem 2.1.19. Let (Ap)nen be a sequence of complexr numbers such that Z < oo and let
eN

||CIk||L2(0,T) < CeeeRe(A") for all n e N.

Then, for any given T > 0, there exists C > 0 depending only on T such that

T 2
L[S e
0

dt 2 C )" ay|? e 2Re)T (2.20)
neN neN

for any sequence (ap)nen € fo.
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Proof. Let T > 0 be given. We have

T T
ap = Z an/ e_l"tqk(t)dt = / Z ane_lntqk(t)dt.
0 0

neN neN

Applying Cauchy-Schwarz inequality, we get

2
T
al” < Mgl [ | ane ) d.
0 |nen
Multiplying both sides by ﬁ and summing over k, we get
2
Z . lal® it
G 1l qu”LQ(OT) keN
Using the biorthogonal estimate for € = T, we can write
1 L Cer0 e ) e
il llgkllZ2 o 7) |2kl 7

for some C > 0 depending only on T. With this estimate and the fact that Z < oo, the proof

4 2]

follows. OJ

Remark 2.1.4. The above result shows that the existence of a biorthogonal family for the sequence
of exponentials (e *n') e with suitable bounds is enough to deduce the parabolic Ingham’s inequality
(2.20). Thus, we can obtain this result by assuming conditions on the sequence (Ay)nen mentioned in
each of the Theorems 2.1.12-2.1.15.

In a similar fashion, we can obtain the inequality (2.20) when the indices runs over Z, under the
same hypothesis of Theorem 2.1.19 but with n € Z, as explained in Corollary 2.1.3, see [CMRR14] for
instance.

Corollary 2.1.4. Let (A,)nez be a sequence of complex numbers such that Z

< oo and let (gi)kez
4 12

be biorthogonal to (e **),cz in L%(0,T) with the following estimate: For given € > 0 there ezists a
constant C. > 0 such that
lgrll20r) < Cee R for alln € Z.

Then, for any given T > 0, there exists C > 0 depending only on T such that

/OTZan

nez
Remark 2.1.5. Apart from this technique (finding biorthogonal sequences), there are many different
methods available in the literature for proving the parabolic Ingham’s inequality (2.20). We refer to
the works [AI95, JTZ97, YouOl, FCGBAT10, Edw06, LZ02, Lop99, KL05, MZ0}] for variations of

proofs of the parabolic Ingham’s inequality (2.20).

2
dt > C ) |ay|* e ReT (2.21)

nez

for any sequence (ay)nez € o.

Remark 2.1.6. Like the hyperbolic Ingham inequality, we do not have the reverse inequality, that is
there is no constant D > 0 such that the inequality

T
[ 15
0

nelN

2

dt <D ) lay|? e 2ReT (2.22)
nelN
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holds for any (ap)nen € fo. Indeed, for fized N € N, we take A, = n®> for n € N and a sequence
(@n)nen € & as

an :=

% ifn=N,
0, ifn# N.

If the inequality (2.22) is true, we obtain

1 T D 2N2T _
— e NG < o 2NT S <D, forall N eN,
N2 0 N2 2N2

which is a contradiction. Consequently, the inequality (2.22) cannot hold.

However, using Cauchy-Schwarz inequality, we see that there exists a constant D > 0 such that

T
[ |5
0

neN

2
dt < DZ |an|?

nelN

holds for all sequence (ap)nen € fo.

2.2 Controllability and Observability

The aim of this section is to present an overview of the controllability and observability notions for both
finite and infinite dimensional linear systems. We recall some of the important results that are relevant
to this thesis and give proofs for the sake of completeness. All of these contents presented in this section
can be found in any control theory book, for instance in [Cor07, Liul0, Zab20, TW09, CZ95]; see also
[MZ04, Zua07, Ros07, Erv14, Boy23, Tré23]. Moreover, we give some comments about nonlinear
systems at the end of this section.

Before proceeding, we first mention that there are essentially two types of methods to study the
controllability of a linear system, namely the direct methods and the duality methods. The direct
method refers to proving controllability by explicitly constructing the control(s), whereas the duality
method is based on proving certain observability inequalities of the associated adjoint systems which
then gives controllability of the linear system. We mention below some of the direct and duality
methods to prove the controllability of linear control systems in both finite and infinite dimensions.

e Direct methods.

(i) The extension method: see for instance [Rus74, Rus78, Lit78, Cor07],
(ii) The method of moments: see for instance [FR71, AI95, KL05, Cor07],
(iii) The flatness approach: see for instance [FLMR95, MRFR98, LMR00, PRO1, MRR18],

e Duality methods.

(i) Ingham’s inequalities and harmonic analysis: see for instance [Rus67, YouOl, KLO05],
(ii) Multipliers method: see for instance [Lio88, Kom94, Zua07],
(iii) Carleman’s inequalities: See for instance [DE22; FI96, Yam09].

In this thesis, we will see some applications of both the direct and duality methods to prove
controllability of the linear systems, in particular, the method of moments, Ingham-type inequalities
and some multiplier approach.
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2.2.1 Finite dimensional linear systems

Let T > 0. We consider the following control system posed in finite dimensional space:

{u’(t) = Au(t) + Bf(t), te€(0,T), (2.23)

u(0) = uo,

where A € M,(R),B € M, ,,(R). The function u : [0,T] — R" represents the state vector, f : [0,T] —
R™ the control vector and uy € R” is the initial state. In practical situations, we always want the
number of control components to be less than the state, that is, m < n.

In this setup, we first write the following result which guarantees the existence of a unique weak
solution of the system (2.23).

Lemma 2.2.1. Let ug € R be given. If f € L%(0,T;R™), then the system (2.23) admits a unique weak
solution u € C°([0,T];R™) and is given by

u(t) = eug + /t e=9ABf(s)ds, fort e [0,T]. (2.24)
0

If £ e C%J0,T];R™), this result is a consequence of the Picard-Lindeloff’s theorem of existence
and uniqueness. The proof will be similar for the case when f € L2(0,T;R™), see for instance [Per(1,
Chapter 1, Section 1.10] and [Zab20, Chapter 1, Theorem 1.1]. To find the expression of the solution,
we will apply the Duhamel’s formula as follows:

We first consider the system

1(t) = Auy(t), te€(0,T),
up (1) = Auy (1) 0,7) (2.95)
u1(0) = Uup.
The solution of (2.25) is given by uy(t) = e**ug for t € [0, T]. We next consider the system
! t) = A t 5 (S aT 5
uy () = Auz(t) (s.7) (2.26)
uz(s) = Bf (s),

where s € [0, T]. Then, the solution of (2.26) is ua(t,s) = e(t=9)ABf(s) for t € [s,T]. Finally, we consider
the system

{ué(t) = Aug(t) + Bf (1), t € (0,7), (2.27)

U3(0) =0.
By Duhamel’s principle, the solution of this system (2.27) is given by
¢
ug (1) :/ us(t,s)ds, te[0,T].
0

Therefore, the solution of the system (2.23) is
t
u(t) = ur (t) +ug(t) = eup + / e=94Bf(s)ds, te€[0,T].
0

Once we have the existence of a unique solution u in the space C°([0,T];R"), we can define the
controllability notions for the system (2.23) (see the figures below).

Definition 2.2.1. We say the system (2.23) (or the pair (A,B)) is

(i) exactly controllable at time T > 0 if, for any given initial state ug € R" and final state ur € R"
there exists a control f € L2(0,T;R™) such that the associated solution of (2.23) satisfies

u(T) = ur in R"™.
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2.2. Controllability and Observability

(ii) null controllable at time T > 0 if, for any given initial state ug € R" there exists f € L*(0, T;R™)
such that the associated solution of (2.23) satisfies

u(T) = 0.

(iii) approximately controllable at time T > 0 if, for any given initial state uy € R", final state
ur € R" and given € > 0, there exists f. € L?(0, T;R™) such that the associated solution of (2.23)
satisfies

lue(T) = urllgs < e.

Free Trajectory Pt Free Trajectory Prad Free Trajectory .

U Up Uo

Controlled Trajectory Uf(f)

Controlled Trajectory uf(f) U

Exact Controllability Null Controllability Approximate Controllability

Figure 2.1: The dotted trajectory represents the solution of (2.23) with f = 0.

From the definition, it is clear that exact controllability of the system (2.23) always imply null
and approximate controllability. Moreover, we explained below that for the finite dimensional linear
system (2.23) all these controllability notions are equivalent.

e (Null = Exact): Let the system (2.23) be null controllable at time T > 0. Let ug, ur € R"
be given. Then, we can find a control f € L?(0,T;R™) such that the solution of

"(t) = Aw(t) + Bf(t), t € (0,T),
w'(1) = Aw(t) + Bf (1) 0,7) (2.28)
w(0) = ug — 0(0)
satisfies w(T) = 0, where v is a solution of the following homogeneous system:
"(t) = Av(t), te(0,7),
v'(t) = Ao(t) 0,7) (2.20)
o(T) = ur.

Thus, the function u = v+w satisfies the equation u’(¢) = Au(t)+Bf (¢) for t € (0,T) with u(0) = ug
and u(T) = ur. This proves that the system (2.23) is exactly controllable at time T.

e (Approximate — Exact): We now assume that the system (2.23) is approximately control-
lable at time T > 0. Let ug € R" be given. Then, the set defined by

R(T,up) := {u(T) : u solves (2.23) with f € L*(0,T;R™)} (2.30)

is a dense subspace of R". Since any subspace of R" which is dense is the R” itself, we obtain
R(T,up) = R™. This proves that the system (2.23) is exactly controllable at time T.

Before going any further, we first give the following examples of finite dimensional linear systems and
study the controllability properties at time T > 0.

Example 2.2.1. Let us consider the case

(5 3) o)
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Then the system (2.23) can be written as

up(t) = ua(t), t € (0,T),
uy(t) = —ui (¢) + f(2), t e (0,T), (2.31)
u1(0) =ug1, u2(0) =ugo,

where u = (uy,ug) and up = (ug,1,up2). We now prove that this system is exactly controllable at any
time T > 0. Let (uo1,u02), (ur1,ur2) € R2 be the initial and final states respectively. Our goal is to
find a control f € L?(0,T;R?) such that the following identities hold:

u1(0) =ugy, u2(0) =ug2, w(T)=ur1, ua(T)=uro. (2.32)
Since up = u}, we can rewrite the system (2.31) as
u (1) +ur(t) = f(t), t€(0,T),u1(0) =upy, u3(0)=upgo. (2.33)
and therefore the conditions (2.32) reduces to
u1(0) =up1, u1(0) =up2, wi(T) =ur1, ui(T)=urp. (2.34)

There are many ways to constructing such function uy, for instance, we consider the function uy of
the form
ui(t) = ap + art + a2t2 + a3t3, t €[0,T]. (2.35)

Then we get the a system of linear equations:
ap = ug,1, d1 = ug2,
apg+ a1 T + a2T2 + a3T3 =ur1,

a1 + 2asT + 3a3T2 = urpo.
The solution to this system of equations is given by

ap = uop,1, 4ar = up2,
as = —3u0,1 — 2Tu0,2 + 3uT,1 — TuT,g (236)
as = 2140,1 + TUO)Q — QUTJ + TUT’Q.

With these values of a; for j=0,1,2,3, we now define the control f as
f@) =ui(t) +ui(t), te(0,7),

where uy is given by (2.35)-(2.36). Clearly, (u1,u2) with uz = u solves the system (2.31) and the
identities (2.32). This proves that the system (2.31) is exactly controllable at any time T > 0.

Example 2.2.2. We now consider the case

b o)

Then the system (2.23) can be written as

ui(t) =ui(t), te(0,7),
uy(t) = ua(t) + f(t), te(0,T), (2.37)
u1(0) =ug1, u2(0) = ugy2.
Here u = (u1,u2) and ug = (ug1,u02). We now prove that this system cannot be exactly controllable at
any time T > 0 whatever we choose the control f. In fact, for upy # 0, the solution component uy is
given by
ui(t) = e'ug1, te€[0,T],
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which is independent of the control function f and also u1(t) # 0 for all t € [0,T]. Therefore, given
the final state of the form (0,a) with a € R, we cannot find any f such that the solution satisfies
(u1(T),ua(T)) = (0,a). However, it is easy to see that the system is exactly controllable at any time
T by using two controls acting in each equations. So, the number of controls matters to achieve
controllability of the linear systems.

Since exact, null and approximate controllability notions are equivalent for the system (2.23), we
will concentrate only on the null controllability. To prove null controllability of the system (2.23) at
time T > 0, we need to find a control f € L2(0,T; R™) such that the identity

T
el dug + / e(T_s)ABf(s)ds =0
0

holds for every initial state ug € R®. However, in general, it might be difficult to construct a control
f that satisfies the above identity. For this reason, we will study the adjoint of the system (2.23) and
derive some equivalent criterion for null controllability in terms of the adjoint state. More precisely,
we consider the adjoint system corresponding to (2.23) as

—¢'(t) = A%p(t), t€(0,T),
o' (1) (1) (0. 7) (2.38)
o(T) = or,
where g1 € R". Note that, we can write explicitly the solution to this system as
p(t) =T D% pr for t € [0,T]. (2.39)

With the help of this adjoint equation, we now state the following result which gives an equivalent
criterion for null controllability of the system (2.23).

Lemma 2.2.2. The system (2.23) is null controllable at time T > 0 if, and only if, for given ug € R"
there exists a f € L2(0,T;R™) such that the following identity

T
/O (F(0), B p(8))am dt + (ttg, 9(0))n = 0 (2.40)

holds for every ¢r € R", where ¢ is the solution of the adjoint system (2.38).

Proof. Let ¢r € R™ and let ¢ be the solution of (2.38). Taking inner product in (2.23) with ¢ and
integrating over (0,T), we get

T T T
/ W' (1), p(t))gpn dt =/ (Au(t), o(t))gn dt+/ (Bf (), p(t))gn dt.
0 0 0

Integrating by parts, we obtain

T
- /0 (D)9 (D) dt + (T), @(T)) g — (110, 9(0) )

T T
_ / (1), A% (1)) g dt + / (1), B0 (1)) dit.
0 0

Since ¢ solves (2.38), we deduce the identity

T
u(T), pr)gn = (u0, ¢(0))gn +/0 (f (1), B (1) )pm dt, (2.41)

with @7 € R". Thus, if the system (2.23) is null controllable at time T > 0, we have u(T) = 0 and
therefore

T
(t, 9(0)) g + /0 (). B (1)) dt =0,

for all o7 € R", giving the identity (2.40). Conversely, if for given uy € R" there exists a f € L?(0, T; R™)
such that the identity (2.40) holds for every ¢r € R", then from (2.41), we deduce that (u(T), ¢1)gn =0
for all pr € R™ and hence u(T) = 0. This completes the proof. O
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We note here that the identity (2.40) gives an optimality condition for the critical points of certain
quadratic (cost) functional. More precisely, we have the following result:

Lemma 2.2.3. For given ug € R", let us define a quadratic functional J : R* - R by

Lt
Jor) =5 [ B 0O de+ 0 p O o1 <" (242

where ¢ is the solution of (2.38). If J admits a minimizer ¢r € R", then the function f(t) = B*¢(t)
fort € (0,T), where ¢ is the solution of (2.38) with ¢(T) = ¢r, is a (null) control of the system (2.23).

Proof. Let ¢r € R" be a minimizer of J and ¢ be the solution of (2.38) corresponding to this terminal

state ¢r. Then, we have

5 J(@r + hor) = J(o1)
1im =
h—0 h

for all o7 € R™. Let ¢ denotes the solution of (2.38) with the final state ¢r. Then, by linearity of the
equation, we can say that ¢ +hg is the solution of (2.38) corresponding to the final state ¢+ hopr. We
now compute

0 (2.43)

T
Jr+hor) =1r) = 5 [ 1B G0+ hp()IE de + w0, 9(0) + hp Oz

T
-5 [ 1B dt G (O

T h2 T .
= [ 0. B O d+ T [ B Ol e+, p 0

Therefore, the relation (2.43) yields the identity

T
/O (B (1), B0(t) ym dt + Ctig, 9(0))gn = 0

for all r € R". Applying Lemma 2.2.2, it follows that the system (2.23) is null controllable at time T
by using the control f(t) = B*¢(t) for t € (0,T). This completes the proof. O

The above result shows that it is enough to find a minimizer of the functional J for proving the
null controllability of the system (2.23). To prove the quadratic functional J admits a minimizer, we
use the following well-known result of the calculus of variations:

Theorem 2.2.1. Let F: R" — R be a continuous function satisfying |llim F(x) = co. Then F admits
xX|—00
a minimizer X € R".

This result can be generalized in reflexive Banach spaces, see for instance the book [Kes09, Proposition
5.6.1]. With the help of this result, we now find equivalent conditions for exact, null and approximate
controllability in terms of the adjoint state.

Theorem 2.2.2. The following statements hold:

(i) The system (2.23) is null controllable at time T > 0 if, and only if, there exists C > 0 such that
the inequality

T
| 1B e de = cliooniz, (2.44)
holds for all o7 € R™, where ¢ is the solution of the adjoint system (2.38).

(ii) The system (2.23) is exactly controllable at time T > 0 if, and only if, there exists C > 0 such
that the inequality

T
/0 1B ()2 dt > Cllgr|2 (2.45)

holds for all o7 € R"™, where ¢ is the solution of the adjoint system (2.38).
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(iii) The system (2.23) is approzimately controllable at time T > 0 if, and only if, the following
property holds:

If ¢ solves (2.38) and B*¢(t) =0 for all t € [0,T], then ¢ =0. (2.46)

Proof. First we recall the expression of the solution ¢(t) = eT=94"pr for all t € [0, T]. It is easy to see
that the map F : R” — R” defined by F(¢r) := ¢(0) = e’ ¢r is a bounded invertible linear operator
on R". Therefore, the inequalities (2.44) and (2.45) are equivalent. On the other hand, if the property

=

(2.46) holds, then ||or|| = (fOT ||B*<p(t)||%&m dt) * defines a norm on R". Since any two norms in a finite
dimensional space are equivalent, we have for some C > 0 that

T
/0 1B ()12 dt = C llprl|2 -

As a consequence, the inequalities (2.44), (2.45) and the property (2.46) are equivalent for finite
dimensional linear systems. Thus, we only prove Part (i) of this result.

Let ug € R™. If the inequality (2.45) holds for all o1 € R", then the quadratic functional J defined
by (2.42) is coercive. In fact

C C
J(er) = 5 (0135 = lluollzn ll@(0)llgn > 3 lorllzn = lluollgs lorllgn .
thanks to the Cauchy-Schwarz inequality |(u0,(p(0))Rn’ < |lugllgn [l9(0)||gn. Thus,

lim  J(eor) = .

llor llgn—o0

Therefore, J admits a minimizer ¢r € R", thanks to Theorem 2.2.1. Applying Lemma 2.2.3, we can
say that the system (2.23) is null controllable at time T.

Conversely, we suppose that the system (2.23) is null controllable at time T > 0. We will prove
the inequality (2.44) via contradiction argument. If the inequality (2.44) is not true, then there exists
a sequence ((p?)keN C R”™ such that “(pk(O)”Rn =1 for all k € N and fOT | B*(pk(t)H;m dt —» 0 as k — oo,
where ¢ is the solution of (2.38) with final state ¢k for k € N. Since ||qok(0)||Rn =1 for all k € N, the

sequence (¢§)keN is bounded in R™ and therefore, up to a subsequence, qo§ — @1 as k — oo, for some
o1 € R™. Let ¢ denote the solution of (2.38) corresponding to this ¢r. Then

2
B*o (t)HRm dt=0.  (247)

T T
[9(0)[lgn = lim ||q0k(())|| —1, and / 1B @ (1) |2 dt = lim/ |
k—o0 R2 0 k—o0 0

On the other hand, since the system (2.23) is null controllable at time T, by Lemma 2.2.2, for any
given uy € R", there exists a f € L2(0, T;R™) such that the identities

/ 0.8 0) de+ (g ), =0

holds for all kK € N. Taking limit as k — oo in this identity, we deduce that

T
/0 (F(£), B ()} am dt + (g, 9(0))gn = 0.

But from (2.47), B*¢(t) = 0 for all t € [0,T] and therefore (ug, ¢(0))gn = 0 for every ug € R". This
implies ¢(0) = 0, which contradicts the fact ||¢(0)|lg. =1 (see eq. (2.47)), and therefore the inequality
(2.44) holds for all ¢r € R™.

This completes the proof. O
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The inequalities (2.44) and (2.45) are called the observability inequalities associated to the adjoint
system (2.38). The above result shows that proving controllability of the system (2.23) is equivalent
to prove certain observability inequalities corresponding to the adjoint system. Moreover, the prop-
erty (2.46) is called the unique continuation property, which gives approximate controllability of the
system (2.23). In the next section, we see that all these notions can be generalized for the infinite
dimensional linear systems. However, there are other several concepts available in the literature to
prove controllability of the finite dimensional linear system (2.23) which may or may not have direct
generalization into the infinite dimensional systems. We conclude this section by writing only the
statement of some of the famous and well-known results; proof of which can be found in many books,
for instance in [Zab20, TW09].

Theorem 2.2.3. The following statements are equivalent:
(i) The system (2.23) is null controllable at time T > 0.
(ii) The Kalman matriz defined by
[A|B] =B AB A%B ... A" 'B]
has rank n.
(iii) The controllability Gramian
Or = /O ! e BB*e' dt
is invertible.
Theorem 2.2.4 (Fattorini-Hautus test). The following statements are equivalent:
(i) The system (2.23) is null controllable at time T > 0.
(ii) For every A € C, the matrix [Al — A B] has rank n.
(iii) For every A € o(A), the matriz [AI — A B] has rank n.

The above results indicates that, if the system (2.23) is controllable at some time T > 0, then it is
controllable at every time T and the matrix Qr is invertible for every T > 0. In the next few sections,
we will see that this phenomenon might not always possible in the case of infinite dimensional linear
systems or even non-linear systems posed in finite dimension.

2.2.2 Infinite dimensional linear systems

Let H and U be Hilbert spaces. We consider the following control system posed in infinite dimensional
space:

(2.48)

u'(t) = Au(t) + Bf(t), t€(0,7T),
u(0) = u,

where T > 0, A : D(A) c H — H is a closed and densely defined linear operator that generates a
CY-semigroup {S(t)};s0 on H and B : U — H is the control operator. The function u : [0,T] — H
represents the state, f : [0,T] — U the control and ug € H is the initial state.

The operator B can be bounded or unbounded. In this thesis, we consider only the case when
B : U — H is an unbounded linear operator and address the controllability properties of the system
(2.48). In the case when B is bounded, similar controllability properties can be studied and in this
context, we refer to the books [Zab20, TW09, CZ95] for more detail.

We note that the adjoint of A, denoted by A* : D(A*) ¢ H — H, also generates a C%-semigroup
{S"(t)}+>0 on H, where S*(t) is the adjoint of the operator S(t) in H. Let us denote D(A*)" as the dual
of D(A*) with respect to the pivot space H, that is

D(A") CH=H c DAY
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We assume that B : U — D(A*)’ is bounded. Then the adjoint B* : D(A*) — U is also a bounded
linear operator. We further assume the following condition

T
/ ||B*S*(t)<p||%]dt <C ||(p||%, for all ¢ € D(A"), (2.49)
0

where C > 0 is a constant depending only on T. This condition is known as the admissibility con-
dition /inequality, and it shows that we can uniquely extend the operator ¥ : D(A*) — C°([0,T]; U)
defined by

F(p) :=B'S(-)p. ¢ € D(AY)

as a continuous linear map from H into L?(0,T; U). In this setup, we first define the notion of a solution
for the system (2.48).

Definition 2.2.2 (Strong solution). We say a continuous function u : [0,T] — H is a strong solution
of (2.48) if the following conditions are satisfied:

(i) u(t) € D(A) for allt € [0,T],
(i) u(0) = ug
(iii) u is differentiable on (0,T) and u’(t) = Au(t) + Bf(t) for allt € (0,T).
Then we have the following existence and uniqueness result for the system (2.48).
Lemma 2.2.4. Let ug € D(A) be given. If f € CY([0,T];U), then the system (2.48) admits a unique

strong solution u € C°([0,T]; H) and is given by

u(t) = S(t)ug + ‘/OtS(t —s)Bf(s)ds, forte [0,T]. (2.50)

The proof follows from the properties of the C%-semigroup {S(¢)};s0, see for instance Theorem
2.1.2. We note that, if f is not continuous, then we cannot get a strong solution of the system (2.48).
In this case, we will define the notion of a weak solution for this system. First, we will write the
adjoint system associated to (2.48) as follows:

{_(p'(t) =A(t), t€(0,7), (2.51)

o(T) = or,
where @1 € H. The solution to this system is given by ¢(¢) = S*(T — t)er for t € [0,T].

Definition 2.2.3 (Weak solution). For any given ug € H and f € L*(0,T;U), we say a function
u € CU([0,T]; H) is a weak solution of (2.48) if the following identity

<u(t),f.0(t)>H—<u(0),fp(0)>H=/0 (f(s), B'p(s))yds, Vte[0,T], (2.52)

holds for all ot € H, where ¢ is the solution of (2.51).

We note here that the term in the right hand side of the above expression is well-defined, thanks
to the admissibility condition (2.49). With this definition, we write the following result which gives
existence of a unique weak solution to the system (2.48).

Theorem 2.2.5. For any given ug € H and f € L*(0,T;U), the system (2.48) admits a unique weak
solution u € C°([0,T]; H). Moreover, we have the following estimate

lullcoqorrn < € (lolls + 1200 ) (2.53)

where C > 0 is a constant depending only on T.
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We refer to the book of Coron [Cor07, Theorem 2.37] for a proof of this result. Once we have the
above Theorem, we can define the controllability notions for the system (2.48).

Definition 2.2.4. We say the system (2.48) is

(i) exactly controllable at time T > 0 in the space H if, for any given initial state ug € H and final
state ur € H, there exists a control f € L*(0,T;U) such that the associated solution of (2.48)
satisfies

u(T) = ur in H.

(i) null controllable at time T > 0 in the space H if, for any given initial state ug € H there exists
f € L%(0,T;U) such that the associated solution of (2.48) satisfies

u(T) = 0.

(iii) approximately controllable at time T > 0 in the space H if, for any given initial state uy € H,
final state ur € H and given € > 0, there exists f. € L?(0,T;U) such that the associated solution
of (2.48) satisfies

lue(T) = urlly < e.

Note that exact controllability always implies null and approximate controllability. However, the
converse is not true, in general, for infinite dimensional linear systems; see Section 2.4 for more details.

Let us assume, for the time, that the system (2.48) has a unique solution u € C°([0,T]; H) given
by

u(t) = S(t)ug + /OtS(t —s)Bf(s)ds

for all t € [0,T] (see Lemma 2.2.4). Then, from the expression of the solution, we have

T
u(T) = S(T)ug +£ S(T - s)Bf (s)ds.

Thus, proving exact controllability of the system (2.48) at time T in H is equivalent to find a control
f € L2(0,T;U) such that the following relation

/T S(T —s)Bf (s)ds = ur — S(T)ug
0

holds for every ugp, ur € H. For null and approximate controllability of the system (2.48), we will get

similar relations on the control f. This motivates us to define a linear map f /()T S(T —s)Bf(s)ds in
appropriate Hilbert spaces and study the properties of this map. Also, note from Lemma 2.2.4 that, the

strong solution of (2.48) with ug = 0 and f € C([0,T];U) can be written as u(T) = fOT S(T —s)Bf(s)ds.
With this formula, we can now define the above map as follows:

Let T > 0 be given. We define a linear map Fr : L?(0,T;U) — H by
Fr(f) =u(T), feL*O0,T;U), (2.54)

where u € CY([0,T]; H) is the unique weak solution of (2.48) with ug = 0 and f € L2(0,T;U). Then, we
can find equivalent conditions for exact, null and approximate controllability for the system (2.48).

Theorem 2.2.6. The following statements hold:
(i) The system (2.48) is exactly controllable at time T > 0 in H if and only if Range(Fr) = H.
(i) The system (2.48) is null controllable at time T > 0 in H if and only if Range(S(T)) ¢ Range(Fr).

(iii) The system (2.48) is approximately controllable at time T > 0 in H if and only if Range(Fr) is
dense in H.
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Proof. We prove each parts separately.

(i) Let us first assume that the system (2.48) be exactly controllable at time T in the space H. This
means, for any given z € H and initial state ug = 0, we can find a f € L?(0,T;U) such that
u(T) =z in H, that is, Fr(f) = z, which proves that Range(Fr) = H.

Conversely, we assume Range(Fr) = H. Let ug, ur € H be given. Let u; denote the weak solution
of (2.48) with initial state ug and f = 0. Since Range(Fr) = H, we can find a f € L?(0,T;U) such
that Fr(f) = ur —ui(T), that is uo(T) = ur —u1(T), where uy is the solution of (2.48) with initial
state 0 and above function f. Then, by linearity of the system (2.48), the function u := uy + ug
is a solution of (2.48) with initial state ug € H and the above function f € L2(0,T;U). Moreover,
this solution satisfies u(T) = u1(T) + u2(T) = ur, which proves that the system (2.48) is exactly
controllable at time T in the space H.

(ii) Let the system (2.48) be null controllable at time T in the space H. Let up € H be given. We will
prove that S(T)up € Range(Fr). Note that, u;(t) := S(t)up is the weak solution of (2.48) with
this up and f = 0. On the other hand, since the system (2.48) is null controllable at time T in
H, there exists a control f € L?(0, T;U) such that the solution uy of (2.48) starting from —uy € H
satisfies ua(T) = 0. Then the function u := u; +ug is the weak solution of (2.48) with initial state
0 and control f € L?(0,T;U). Moreover, u(T) = ui(T) = S(T)up, that is Fr(f) = S(T)ug, which
implies S(T)ug € Range(Fr). Since ug € H was arbitrary, the proof follows.

Conversely, we assume Range(S(T)) c Range(Fr). Let ug € H be given. Since —S(T)ug €
Range(Fr), we get a f € L?(0,T;U) such that Fr(f) = —S(T)ug, that is the solution u; of (2.48)
with initial state 0 and this f satisfies u1(T) = —=S(T)ug. Also, note that us(t) := S(t)ug is the
weak solution of (2.48) with initial state up and f = 0. Then the function u := u; + us is the
weak solution of (2.48) with the above initial state ug € H and control f € L2(0,T;U). Moreover,
u(T) = ui(T) + uz(T) = 0. This proves that the system (2.48) is null controllable at time T in H.

(iii) We finally assume that the system (2.48) is approximately controllable at time T in the space H.
This implies for given z € H, initial state 0 and given e > 0, there exists a control f € L%(0,T;U)
such that the solution u of (2.48) satisfies ||u(T) —z|lg < €, that is ||[Fr(f) —zlly < €, proving
that Range(Fr) is dense in H.

Conversely, if Range(Fr) is dense in H then, for given ug,ur € H and € > 0, we can find a
f € L*(0,T;U) such that ||Fr(f) +ui(T) —urlly < € where u; is the weak solution of (2.48)
with the above ug € H and f = 0. This implies ||ua(T) + u1(T) — ur|lg < €, where uy is the
unique weak solution of (2.48) with initial state 0 and the above function f. Let us now define
u :=uj +uz. Then u is the weak solution of (2.48) with the above initial state uy € H and control
f € L2(0,T; U) satisfying ||u(T) — ur|lg = ||u1(T) + uz(T) — ur||z < €. This proves that the system
(2.48) is approximately controllable at time T in the space H.

This completes the proof. ]

In general, finding the range of a linear operator is quite difficult, so we will further reduce the
above conditions with the help of some useful results from functional analysis. First, let us recall the
following result which is written in more general Banach spaces.

Theorem 2.2.7. Let X,Y and Z be Banach spaces and let F : X — Y and G : Y — Z be linear
operators. Then:

(i) F is surjective if and only if there exists a C > 0 such that ||[F*(z)||x, = C||z|ly holds for allz € Y.
(ii) Range(F) is dense in Y if and only if F*(z) =0 for all z € Y’ implies z = 0.

(iii) If Y is reflexive, then Range(F) C Range(G) if and only if there exists C > 0 such that ||F*(z)||x <
ClIG*(2)|ly: for allz€ Z'.
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We refer to the books of Brezis [Brell, Theorem 2.20, Corollary 2.18] and Coron [Cor07, Lemma
2.46, Lemma 2.48] for a proof of Theorem 2.2.7; see also [Zab20, Tré23, TWX20]. In this thesis, we will
assume this result and then, with the help of Theorem 2.2.6, we deduce some equivalent inequalities
for the controllability of the system (2.48). The proof is straightforward from Theorem 2.2.7 and so
we leave the details.

Theorem 2.2.8. The following statements hold:

(i) The system (2.48) is exactly controllable at time T > 0 in H if and only if there exists a C > 0

such that ”F;(Z)”LQ(O ru) 2 Cllzllg holds for all z € H.

(i) The system (2.48) is null controllable at time T > 0 in H if and only if there exists a C > 0 such
that ||S*(T)(2) ||y < C|F;(z)||L2(0 T.U) holds for all z € H.

(iii) The system (2.48) is approximately controllable at time T > 0 in H if and only if F;(z) = 0 for
all z € H implies z = 0.

In view of this result, we now find the adjoint operator Fy : H — L?(0,T;U). Let o1 € D(A*) and
f € L?(0,T;U) be given. Let u € C°([0,T]; H) be the unique weak solution of (2.48) with this f and
initial state ug = 0. Then, we have

(f Fr(0r) 2o = (Fr()sord = w(T), or)y -

Since u is a weak solution of (2.48), we have the following relation (see eq. (2.52)):

T
(T, pry = /0 (), B () d.

Thus, we obtain
(£Fr0n) 2wy = B O r20r0)

and therefore Fy. : H — L?(0,T;U) is defined as
Fr(or) =B, for all or € D(A").

Since D(A") is dense in H, the operator F; : D(A*) — L%(0,T;U) has a unique extension on H. Thus,
denoting the same function, the adjoint operator F;.: H — L?(0,T;U) is defined as

Fi(¢r) :=B"¢, for all ¢r € H. (2.55)

Then, the statements of Theorem 2.2.8 reduces to the following (see Theorem 2.2.2 for a comparison
with the finite dimensional linear systems):

Theorem 2.2.9. The following statements hold:

(i) The system (2.48) is exactly controllable at time T > 0 in H if, and only if, there exists a C > 0
such that the following observability inequality

T
/0 1B ()11 dt = Cllgrly (2.56)

holds for all o7 € D(A*), where ¢ is the solution of the adjoint system (2.51).

(ii) The system (2.48) is null controllable at time T > 0 in H if, and only if, there exists a C > 0
such that the observability inequality

T
| 1ol ar = clool (257)
holds for all o1 € D(A*), where ¢ is the solution of the adjoint system (2.51).
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(iii) The system (2.48) is approximately controllable at time T > 0 in H if, and only if, the following
unique continuation principle holds:

If ¢ solves (2.51) and B*¢ =0 in L*(0,T;U), then o1 =0 in H. (2.58)

We note here that in finite dimensional setup, we have proved this result directly by constructing
a quadratic functional J : R* — R. In comparison, for infinite dimensional linear systems, the function
J : H — R may not be well-defined due to the less regularity of the solution. However, one can modify
the cost functional by choosing ¢r more regular (say from D(A*)) and prove that controllability is
equivalent to these observability inequalities. In this context, we refer to the end of Section 2.4 for
more details.

We now state a very useful result on approximate controllability of (2.48) in the presence of
backward uniqueness property of the associated homogeneous system (that is, with no control input).
First, let us consider the following homogeneous system

(2.59)

u'(t) = Au(t), t€(0,7),
u(0) = uo,

where ug is the initial state belong to some Hilbert space H. We assume that this system (2.59) has
a unique solution u € C°([0, T]; H).

Definition 2.2.5. We say the system (2.59) satisfy the backward uniqueness property if
u(T) =0 in H implies u = 0.

The backward uniqueness property is very important in control theoretic perspective. Note that,
the backward uniqueness of (2.59) will imply the same for adjoint system (2.51): “If ¢(0) =0 in H,
then necessarily ¢ = 0”. Using this property, we will show that the approximate controllability can be
achieved from null controllability of the infinite dimensional linear system (2.48).

Proposition 2.2.1. Let the homogeneous system (2.59) satisfy the backward uniqueness property. Let
us also assume that the control system (2.48) is null controllable at some time T > 0 in the space H.
Then, the system (2.48) is approximately controllable at that time T in H.

Proof. Since the system (2.48) is null controllable at time T > 0, applying Theorem 2.2.9-Part (ii), we
have the following observability inequality

T
/0 1B (D112 dt = C llgp(0)1%

for all or € D(A*). To prove approximate controllability of the system (2.48) at time T in H, it
is enough to prove the unique continuation principle (2.58). Let B*p = 0 in L?(0,T;U). The above
observability inequality is then yield ¢(0) = 0 in H. Thanks to the backward uniqueness property, we
deduce that ¢ = 0 and hence ¢r =0 in H. This completes the proof. O

Apart from the above result, we now state two results, which shows that the approximate con-
trollability can also achieved from null controllability in the absence of backward uniqueness. For the
proof of first part, we refer to the book [Cor07, Theorem 2.45, Page 57], whereas the second part
follows directly from Theorem 2.2.6.

Theorem 2.2.10. Let H be a Hilbert space. Then:

1. If the system (2.48) is null controllable at every time T > 0 in H, then the system (2.48) is
approximately controllable at every time T > 0 in H.

2. If the system (2.48) is null controllable at some time T > 0 in H and Range(S(T)) is dense in
H, then the system (2.48) is approzimately controllable at that time T in H.
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We finally conclude this section with some important results that are stated in finite dimensional
setup at the end of the previous section (see Theorem 2.2.3 and Theorem 2.2.4). Note that, there is
no natural generalization of the Kalman rank condition in the infinite dimensional case. However, the
Fattorini-Hautus test can be generalized only for the approximate controllability under some general
assumptions on the operator A. Also, recall from Theorem 2.2.3 that for finite dimensional linear
systems, controllability at time T is equivalent to the invertibility of the Gramian matrix Qr. We
can generalize this result for the infinite dimensional linear systems when the operator B : U — H is
bounded, by defining the controllability Gramian Qr : H — H as

T
QOr(z2) ::‘/0 S(t)BB*S*(t)dt, z € H. (2.60)

Note that, Qr is a well-defined bounded linear operator on H which is self-adjoint and non-negative
definite (since B is bounded). We only state these results and for the proof, we refer to the lecture
note [Boy23, Theorem I11.3.7, Page 40] and the book [Zab20, Sections 15.2-15.3]. We mention here
that the Fattorini-Hautus test has been used in several places of this thesis.

Theorem 2.2.11 (Fattorini-Hautus test). Let H be Hilbert space and the resolvent operator (AI—A)~1
1s compact on H for every A € p(A). Let us also assume that the semigroup generated by —A* is analytic.
Then the system (2.48) is approximately controllable at time T > 0 in H if and only if

ker(AI — A*) Nnker(B*) = {0}.
Theorem 2.2.12. The following statements hold:

1
(i) The system (2.48) is exactly controllable at time T in H if and only if Range(Q;) = H.

1
(ii) The system (2.48) is null controllable at time T in H if and only if Range(S(T)) C Range(Q7).

1
(iii) The system (2.48) is approvimately controllable at time T in H if and only if Range(Q}) is dense
mn H.

2.2.3 Nonlinear systems

In this section, we give a brief introduction to the controllability of nonlinear systems in finite and
infinite dimensions. We present one example of an infinite dimensional nonlinear system in Section
2.5 which is relevant to this thesis. First, we write a general nonlinear system in R" as follows:

2(0) o (2.61)

{u’(t) = F(u(), f(1)), t€(0,T),
Here T > 0, u : [0,T] — R” represents the state vector, f : [0,T] — R™ the control vector and ug € R”
is the initial state. We assume that the nonlinear function F : R" x R™ — R" is regular enough. In
this setup, we first define the equilibrium point of this system.

Definition 2.2.6. We say a point (@, f) € R* X R™ is an equilibrium (or steady state) of the system
(2.61) if
F(u, f) =0.

We wish to study controllability properties of (2.61) around some equilibrium point. For this, we
assume that this system (2.61) has a unique solution in the whole interval [0,T]. Then, we define the
controllability notion for this system (see the figure below).

Definition 2.2.7. We say the system (2.61) is small-time locally controllable around the equilib-
rium (4, f) if, for given T > 0, there exists a € > 0 such that for chosen ug, ur € R" with ||lug — tl|lg» < €
and |lur — ul| < €, there exists a measurable function f : [0,T] — R™ such that u(T) = ur in R".
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Figure 2.2: Small-time local controllability

If the above property holds at a given time T > 0, then we say the system (2.61) is locally
controllable at time T around (#, f). In addition, if we don’t have smallness condition on the initial
and final states, we say the nonlinear system (2.61) is globally controllable.

Studying local controllability of the nonlinear system is very difficult compared to the finite dimen-
sional linear systems. There are a few techniques available in the literature for studying the small-time
local controllability of the general nonlinear system (2.61) including the linear test, the return method
and Lie algebra technique (which relies on iterated Lie brackets). We refer to the books [Cor07, Chap-
ter 3] and [Zab20, Chapter 6] for more insights in this matter. In this section, we only state some of
these results and provide some examples of nonlinear systems in finite dimension.

From the definition of small-time local controllability, it is easy to see that, for F(u(t), f(t)) = Au(t)+
Bf(t) with A € M,(R) and B € M,,,,(R), controllability of the pair (A, B) implies local controllability
of the linear system

u'(t) = Au(t) + Bf(t), t€(0,T).
u(0) = ug

around (@, f) = (0,0) € R® x R™ at every T > 0. Moreover, the following result shows that we can
achieve local controllability of the nonlinear system (2.61) from the controllability of the corresponding
linear system.

Theorem 2.2.13. Let f : R" X R™ — R" be continuously differentiable in a neighborhood of the
equilibrium point (u, f). If the linearized system around (u, f)

W (1) = 2@ () + %’Z(mf)fu), te(0T),

u(0) = ug

is controllable, then the nonlinear system (2.61) is locally controllable around (@, f) at every T > 0.

We refer to [Cor07, Theorem 3.8] and [Zab20, Theorem 6.6] for a proof of this result. Note that,
converse of the above Theorem is not true, in general. More precisely, there are locally controllable
nonlinear systems such that the linearized systems are not controllable, see Example 2.2.3 below.

Example 2.2.3. Let us consider u = (uy,us,u3) € R3, f = (fi, o) € R? and

F(u, f) = (fi, for urfo — w2 fr).

Note that {(ﬁ, 0) : u=(uy,ugu3) € R3} c R? x R? is the set of all equilibrium points of this system.
The linearized system around these equilibrium points is given by

u'(t) = Au(t) + Bf(t), t € (0,T),
u(0) = uo,
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where
0 00 1 0
oF oF
A =a—(ﬁ,0)_ 0 0 0 5 B := a—(ﬁ,0)= 0 1
u 00 0 f —uy up

Since Rank of the Kalman matriz is 2, the linear system is not controllable. However, one can
prove using Lie algebra technique that the nonlinear system is small-time locally controllable at any
equilibrium point (u,0), see [Cor07, Example 3.20, Page 135] or [Zab20, Example 6.3, Page 93] for
more details.

We conclude this section with an example of a nonlinear system that is not small-time locally
controllable.

Example 2.2.4. Let us consider u = (u1,us, us) € R3,f(t) €R and

F(u, f) = (f,us, —ua + 2uy f).

Note that (0,0) € R? xR is an equilibrium point of this system. The linearized system around this
equilibrium point is given by

{u'(t) = Au(t) + Bf(t), te (0,7T),

u(0) = uo,
where
0 0 0 1
oF oF
A::a—(0,0): 0o 0 1], B::a—(0,0): 0].
U 0 -1 0 f 0

Since rank of the Kalman matrix is 2, the linear system is not controllable and we show below that the
nonlinear system is also mot small-time locally controllable around (0,0).
We first write the nonlinear system as

up(t) = f(t), up(t) =us(t), us(t) = —ua(t) + 2w (1) f (1),
fort € (0,T). Thus, we obtain
uy () + ua(t) = 2uy (H)uy(t), te (0,7).

Assuming the initial state u(0) = (0,0,0), we find that

T
us(T) = /0 cos(T — t)u?(t)dt.

This shows that uz(T) 2 0 if 0 < T < 5. As a consequence, the nonlinear system cannot be small-time
locally controllable around (0,0).

Like the finite dimensional case, there are no general results available in the literature to prove
small-time local controllability of the infinite dimensional nonlinear systems. In this context, we refer
to the book [Cor07, Chapter 4], where local controllability of several nonlinear equations (in infinite
dimension) has been proved by using variations of fixed-point methods; see also the book [Zab20]. In
Chapter 5, we will show another variation of fixed point, known as “the source term method” to prove
small-time local controllability of a coupled 2-parabolic system. Moreover, in Section 2.5, we give
some overview on the local controllability of a 1-d nonlinear heat equation (with square nonlinearity),
where we have utilized the controllability of the linearized system.
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2.3. The transport equation

2.3 The transport equation

This section is devoted to the controllability properties of the transport equation posed in one di-
mension. This equation plays a crucial role in this thesis because of its presence in the linearized
compressible Navier-Stokes system, as mentioned in the introduction. For this reason, we will present
a detailed study of controllability of this equation by using one boundary control. The results and
proofs addressed here are taken from the book [Cor07, Chapter 2]. In this context, we refer to the
book [?] for a study of general hyperbolic systems.

Let T,L > 0. The transport equation in the interval (0,L) is given by
pr+cpx =0,

where ¢ > 0 and p := p(t, x) is the state. We take the initial condition as

p(0,x) = po(x), x € (0,L).
We consider one of the following boundary conditions on p:

¢ (Dirichlet): p(t,0)=0, forte (0,T),
¢ (Periodic): p(t,0) = p(t,L), forte (0,T).

We first consider the Dirichlet case and provide a detailed study of controllability of this equation
using only one boundary control. The periodic case will be similar to the Dirichlet setup, so we will
give some comments at the end of this section.

2.3.1 Dirichlet setup
Let T,L > 0 be given. We consider the following system:
pr+cpx =0, in (0,T) x (0, L),

p(t,0) = p(t), for t € (0, T), (2.62)
p(0,%) = po(x),  in (0,L).
Here ¢ > 0, p = p(t,x) is the state, pg is the initial state and p is a boundary control. We consider

the state space as L%(0,L), the control space as L?(0,T) and define the unbounded linear operator
A:D(A) c L*(0,L) — L?(0,L) as follows.

D(A) = {f e H'(0,L) : £(0) =0}, (2.63)

Af = —Cﬁc, fGZ)(A) .
We note here that the adjoint of the operator A is given by

D(A*)={geH'(0,L) : g(L) =0}, (2.64)

A*g:=cgy, g€ D(AY). |

In this setup, we first write the following result, which shows that the operator (A4, D(A)) gen-
erates a CY-semigroup {S(t)};s0 of contractions in L?(0,L). As a consequence, the adjoint operator
(A*, D(A*)) also generates a C’-semigroup {S*(¢)};s0 of contractions in L?(0,L).

Lemma 2.3.1. The operator (A, D(A)) generates a C°-semigroup of contractions {S(t)}s=o in L?(0,L).

Proof. We will apply the Lumer-Philips theorem (Corollary 2.1.2) to prove this result. More precisely,
it is enough to prove that A is a densely defined closed linear operator in L?(0,L) and both A, A* are
dissipative in L?(0,L).

e Since C°(0,L) c D(A) is dense in L2(0, L), therefore D(A) is dense in L2(0, L). Thus, A is densely
defined.
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e Let (fi)new be a sequence in D(A) such that f, — f in L2(0,L) and Af, — g in L?(0,L) for some
f,g € L*(0,L). This implies

L L
lim (—cfn)x(pdx=/ gpdx, VYo € C°(0,L).
= Jo 0
An integration by parts yields
L L
lim cf,,(pxdx:/ gedx, Yo € C.°(0,L).

Since f, — f in L?(0,L), we readily have

L L
/ cfoxdx :/ gpdx, Yo € C.°(0,L).
0 0

This proves that f € H'(0,L) and —cf; = g. It remains to prove that f(0) = 0. Since f, € D(A),
therefore f,(0) =0 for all n € N. Let ¢ € C*[0,L] be such that ¢(L) =0 and ¢(0) # 0. Then we
have after an integration by parts

L L L
/O gpdx = /0 (—cf)wpdx = /0 (cf)pxdx - cf (0)p(0).

On the other hand

L L L L
/ (cf)oxdx = lim/ (cfn)pxdx = lim/ (—cfn)xqodx:/ godx.
0 n—eo Jo n—e Jo 0

Comparing these above two identities, we deduce that cf(0)¢(0) = 0, which implies f(0) =0 as
¢(0) # 0. Thus, f € D(A) and therefore A is closed.

o Let f € D(A). Then

L Cc
AF Do == [ s =-£W) <o

and therefore A is dissipative in L%(0,L).

o Let g e D(A*). Then

L
% Cc
Wo.gpon =¢ [ 909 =-5P0) <0

and hence A* is also dissipative in L%(0,L).
The proof completes. ]

Thanks to this result, we can guarantee the existence and uniqueness of a strong solution to the
system (2.62) when the initial state py and control p are more regular.

Lemma 2.3.2. Let us assume that pg € D(A) and p € C*([0,T]) satisfies the compatibility condition
p(0) = 0. Then the system (2.62) admits a unique strong solution

p € C'([0,T];L*(0,L)) N C°([0,T]; H'(0,L)).

Proof. Let pyg € D(A) and p € C?[0,T] with p(0) = 0. We define the function 5(t,x) = p(t,x) — p(t)
for (¢,x) € [0,T] x [0,L]. Then p satisfies

pr=Ap+ T, in (0,T) x (0, L),
5(t,0) =0, for t € (0,T), (2.65)
p(0,x) = po(x), in (0,L),
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with f(t,x) := —p’(t) for (t,x) € (0,T)x (0,L). Since f € C*([0,T] x [0,L]), by semigroup property (see
Corollary 2.1.1), this system (2.65) has a unique strong solution p in the space

C([0,TI;L*(0,L)) N CY([0, T]; D(A)).

Consequently, the system (2.62) has a unique strong solution p in the space C'([0,T];L?(0,L)) N
C%([0,T]; H'(0,L)). This completes the proof. O

To guarantee the existence of a unique solution when pg € L2(0,L) and p € L%(0,T), we need to
define the notion of a weak solution for the system (2.62) (see Definition 2.2.3). For this, we consider
the adjoint system corresponding to (2.62) as follows:

—or —coy =0, in (0,T) x (0,L),
o(t,L) =0, for t € (0, T), (2.66)
o(T,x) = or(x), in (0,L),

where o7 € L?(0,L). Then, using the adjoint semigroup {S*(t)};0, we have the following result:

Lemma 2.3.3. For any given op € D(A*), the adjoint system (2.66) admits a unique strong solution
o€ CY([0,T]; L*(0,L)) N C°([0, T]; D(AY)).

We now define the notion of a weak solution of the system (2.62) when py € L?(0,L) and p € L?(0,T).

Definition 2.3.1 (Weak solution). Let py € L?(0,L) and p € L?(0,T) be given. We say a function
p € C%([0,T]; L%(0,L)) is a weak solution of (2.62) if, for every or € D(A*) the following identity holds
true:

L L t
/ p(t,x)o(t,x)dx — / po(x)o(0,x)dx — c/ p(s)o(s,0)ds =0, Vt € [0,T]. (2.67)
0 0 0

We note here that this formula is well-defined because of the fact that o(-,0) € L?(0,T), thanks to
Lemma 2.3.3. Using this definition, we have the following well-posedness result for the system (2.62).

Theorem 2.3.1. For any given po € L>(0,L) and p € L*(0,T), the system (2.62) admits a unique weak
solution

p € CY([0.T];L*(0,L)).
Moreover, this solution p satisfies
lellcaqorrazorn < € (leolliz o) + ol ) (2.68)
for some C > 0 depending only on T,c.

Proof. We first prove uniqueness of the solution. Let us suppose that p1, p2 € C°([0,T];L?(0,L)) be
two weak solutions of the system (2.62) and denote p := p; — p2. Then p € C°([0,T]; L?(0,L)) satisfies

pr+cpx =0, in (0,T) x (0,L),
p(t,0) =0, for t € (0, T),
p(0,x) =0, in (0,L).

Thus, we have from the definition of weak solution (see (2.67)):
L
/ p(t,x)o(t,x)dx =0, Vte[0,T],
0

for all o € D(A*). Thus we have p(t,-) =0 for all t € [0, T].
On the other hand, to prove the existence of a weak solution, we consider the following cases:
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Case 1.

Case 2.
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Let us first assume that py € D(A) and p € C?[0,T] with p(0) = 0. Then, applying Lemma 2.3.2,
there is a unique strong solution p € C!([0,T];L?(0,L)) N C°([0,T]; D(A)). We now prove the
estimate (2.68). Taking L%-inner product in (2.62) with p and integrating over [0, ], we have

//ptpdxds+c/ / pxpdxds = 0.

Integrating by parts and using the boundary-initial conditions, we deduce that

L t
/ [p2(t, x) — pg(x)] dx + c/ [p2(s, L) —p2(s)] ds=0
0 0

L L t t
/ p2(t,x)dx=/ pg(x)dx—c/ p2(s,L)ds+c/ p2(s)ds
0 0 0 0
L T
< / pa(x)dx +c / p2(t)dt.
0 0

Taking supremum over ¢t € [0,T], we obtain the inequality (2.68) when py € D(A) and p €
C2[0,T] with p(0) =

This gives

We now consider the case when pg € L2(0,L) and p € L%(0,T). Since C°(0,T) is dense in L2(0, T),
there exist sequences (p()nen C D(A) and (p")nen C C?[0,T] with p"(0) = 0 for all n € N such
that

pi — po in L*(0,L), and p" — p in L*(0, T). (2.69)

Then, applying Case 1, for each n € N, we find a unique strong solution p” € C°([0,T];L?(0,L))
of the system
pi+cept =0, in (0,T) x (0,L),

p"(t,0) = p" (1), for t € (0,T), (2.70)
p"(0,x) = pg(x),  in (0, 1).

Moreover, we have the following estimate

||pn||00([0,T];L2(OL)) <C (||p0||L2(OL) + |Ip" ”LQ(OT)) for all n e N. (2.71)

Let o € C1([0,T];L%(0,L)) nC°([0, T]; D(A*)) be the strong solution of the adjoint system (2.66)
with or € D(A*). Taking L2(0,L)-inner product in (2.70) with ¢ and integrating over [0, t], we

get
t pL t pL
//p?adxds+c/ / prodxds =0, Vte[0,T].
0o Jo 0o Jo

Integrating by parts and using the boundary-initial conditions, we deduce that

L L t
/ p"(t,x)o(t, x)dx — / pg(x)o (0, x)dx — c/ p"(s)o(s,0)ds =0, Vt € [0, T]. (2.72)
0 0 0

Let m,n € N. By linearity of the equation (2.62), the solution corresponding to the initial state
pg—pg and control p™ —p™ is p" —p™. From (2.71), we can say that this solution p" —p™ satisfies
the following estimate

1p™ = p™lco(ro,r1:22(0)) <€ (||p8 = pill200) + 0" _Pm”LQ(O,T))’ for all m,n € N.

Thanks to the convergence property (2.69), it follows that the sequence (p")nen is Cauchy in
the space CY([0,T];L2(0,L)). Let p™ — p in C°([0,T];L?(0,L)) for some p € C°([0,T];L?(0,L)).
Then, p"(T) — p(T) in L?(0,L) and therefore passing limit as n — oo in the equation (2.72), we
deduce the identity (2.67). This shows that p is a weak solution of (2.62). To obtain the desired
estimate (2.68), we pass the limit as n — oo in the inequality (2.71).
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This completes the proof. O

Remark 2.3.1. We want to mention here that the solution to the transport equation (2.62) can be
written explicitly using the method of characteristics (see the figure below) and is given by

polx—ct), ift<=,

p(t,x) = x x
pt-2).  ire>2,

C C

for all (t,x) € (0,T) x (0,L). However, from this expression, one cannot conclude that p belong
to CY([0,T]; L%(0,L)), because we do not have any information of the solution on the line x = ct.
Therefore, the concept of weak solution is very useful for this system and once we have existence of a

weak solution p in C°([0,T];L?(0,L)), we can also obtain the following hidden regqularity property of
this system.

0 @=c,00 po(z) L v

Figure 2.3: The characteristics curves are straight lines parallel to ¢t = %

Lemma 2.3.4 (A hidden regularity property). Let pg € L?(0,L) and p € L2(0,T) be given. Then the
solution p € C°([0,T];L?(0,L)) of the system

pr+cpx =0, i (0,T) x (0,L),
p(t,0) = p(t), fort e (0,T), (2.73)
p(o’ x) = PO(X): in (O’ L)

satisfies the hidden regularity property
p(- L) € L*(0,T).
Proof. We consider the following cases:
Case 1. Let us first assume that pg € D(A) and p € C?[0,T] with p(0) = 0. Then there is a unique strong

solution p € C*([0,T];L?(0,L))nC°([0, T]; D(A)), thanks to Lemma 2.3.2. Taking L?(0, L)-inner
product in (2.62) with p and integrating over [0, T], we have

T pL T pL
/ / prpdxdt + c/ / pxpdxdt = 0.
0o Jo 0o Jo

Integrating by parts and using the boundary-initial conditions, we deduce that

L T
[ 1@ -pdwlar+e [ o) - paar=o.
0 0
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Thus, we can write

T L L T
c/ p2(t,L)dt:/ pg(x)dx—/ pQ(T,x)dx+c/ pA(t)dt
0 0 0 0

L T
< / pa(x)dx +c / p2(t)dt.
0 0

This proves the inequality

T 1 L T
/ p2(t,L)dt < —/ pg(x)dx+/ p2(t)dt
0 ¢ Jo 0

when pg € D(A) and p € C?[0,T] with p(0) = 0.

Case 2. We now consider the case when py € L2(0,L) and p € L?(0,T). Then there exist sequences
(pg)nen € D(A) and (p")nen C C?[0,T] with p™(0) = 0 for all n € N such that

Py — po in L%(0,L), and p" — p in L(0,T).

For each n € N, let p" denotes the strong solution of (2.62) with initial state p{} and control p”.
Also, let p denotes the solution of (2.62) with the above pg € L2(0,L) and p € L?(0,T). Then,
p" p e C%[0,T];L?(0,L)) and by uniqueness of solutions, we have that

p" = p in CO([0,T];L%(0,L)).
On the other hand, applying Case 1, the solution p” satisfies the following estimate
12" D20y < € (le8ll2 0.y + 19" 20 (2.74)
for all n € N and some constant C > 0. Then, by linearity of the system, we have
lp" (-, L) = p™ (., L)||L2(0,T) <C (”pg - p6”||L2(O’L) + [|p" _pm”LQ(O,T))’ for all myn e N.  (2.75)

Since p{ — po in L?(0,L) and p" — p in L%(0,T), it follows that the sequence (p"(-,L))pen is
Cauchy in the space L?(0,T). Let us define

p(- L) := lim p"(-, L) in L?(0,T).

Since the constant C appearing in (2.75) does not depend on the choice of the sequences (pfj)nen
and (p")nen, the above function is well-defined. Now, passing limit as n — oo in the inequality
(2.74), we deduce that

lpC. D2y <€ (IPoll2or) + PNz
when po € L?(0,L) and p € L%(0,T).
This completes the proof. ]

In a similar way, we can also obtain the hidden regularity property for the adjoint system (2.66):

Lemma 2.3.5. Let op € L?(0,T) be given. Then the solution o € C°([0,T];L%(0,L)) to the adjoint
system (2.66) satisfies
o(-,0) € L2(0,T).

More precisely, the following estimate

T
/0 o%(t,0)dt < C ||0T||%2(0,L>

holds for some constant C > 0.
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These hidden regularity properties are very useful in the context of controllability of the infinite
dimensional linear systems (that contains a transport equation) using a boundary control; see Chapters
3—4 for instance. In this section also, we will see the use of these hidden regularity properties to achieve
controllability of the system (2.62). Note that, the existence result (Theorem 2.3.1) shows that the
value of the solution at time T is well-defined in L?(0, L) and therefore we can study the controllability
properties for the system (2.62) in the space L?(0,L). We first write the following result which shows
that exact and null controllability are equivalent for this system.

Theorem 2.3.2. Let T > 0 be given. Then the system (2.62) is exactly controllable at time T in
L2(0,L) if and only if it is null controllable at time T in L?(0,L).

Proof. Let us assume that the system (2.62) be null controllable at time T in the space L2(0,L). Let
po, pr € L%(0,L) be given. We consider the following system

pr+cpy =0, in (0,T) x (0,L),
p(t,0) =0, for t € (0,7), (2.76)
ﬁ(()’ X) = PT(L - X), in (0’ L)

Thanks to Lemma 2.3.4, we have p(-,L) € L%(0,T). Denote p(t,x) := p(T —t,L — x) for (t,x) €
(0,T) x (0,L). Then p € C°([0,T];L?(0,L)) and is a solution of the system

p~t + Cﬁx = 03 in (0! T) X (O’L):
p(t,L) =0, for t € (0,T), (2.77)
ﬁ(T,X) = PT(X)’ in (0’ L)

With the help of this solution and due to our assumption, we find the existence of a control p € L%(0, T)
such that the solution p € CY([0,T];L?(0,L)) to the system

Pt +cpy =0, in (0,T) x (0,L),
p(t,0) = p(2), for t € (0,T), (2.78)
p(0,x) = po(x) = p(0,x),  in (0,L)

satisfies p(T,x) = 01in (0,L). Denote p := p+p. Then p satisfies the system (2.62) with p = p(T—-,L)+p €
L?(0,T). Moreover, we have

p(T.x) = p(0,L —x) + p(T.x) = pr(x) in (0,L).

This proves that the system (2.62) is exactly controllable at time T in L%(0,L).
Converse part is obvious. This completes the proof. ]

We therefore study the exact controllability of this system (2.62). The following result shows that
a minimal time is required to achieve exact controllability of the transport equation (2.62). This is
one of the main difference between finite and infinite dimensional linear systems. Recall that in finite
dimensional setup, no restriction on T is required to achieve controllability (Theorem 2.2.3).

. . . 2 . . L
Theorem 2.3.3. The system (2.62) is exactly controllable at time T in L*(0,L) if and only if T > <.

Proof. We will use the explicit expression of the solution

p(t.x) = {po(x —ct), if x> ect, (2.79)

plet — x), if x < ct,

to prove this result. Let us first assume that 0 < T < % We choose the initial state pg(x) = 1 and final
state pr(x) =0 for all x € (0,L). Since 0 < T < %, the solution of (2.62) with this initial state satisfies
p(T,x) = po(x —cT) =1 for all x € (c¢T,L) (see the figure below). This implies there cannot exists any
p € L%(0,T) such that p(T,x) = pr(x) for all x € (0,L). As a consequence, the system (2.62) cannot be
exactly controllable at time T in L2(0,L).
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t
L
T
<, p(T) =1
7>
p(t) N
pt,x) =1
0 po(z) =1 L x

Figure 2.4: The control p do not have any effect in the lower region.

On the other hand, let us assume T > % Let po, pr € L?(0, L) be given. We define a function
peL?0,T) as

0, ifte(O,T—%),
p(t) = I
pr(ce(T-1), ifte (T - ZT) .

Since T > %, the solution of (2.62) with the initial state po and the above control p satisfies
x
p(T’x) =p (T_ Z) = pT(x)’ X € (O’L)5

see the figure below. Hence, the system is exactly controllable at time T in L%(0, L).

t

ol N

0 po() L x

Figure 2.5: The solution at time T do not depend on the choice of the control p in (0,T — % .

This completes the proof. O

Recall that, in Section 2.2.2, we have derived some equivalent conditions for exact, null and ap-
proximate controllability in terms of the operator Fr and its adjoint. In this case, we define the map
Fr : L*(0,T) — L?(0,L) by

Fr(p) = p(T,),
where p is the unique weak solution of (2.62) with pg = 0 and p € L?(0,T). Using Theorem 2.3.1, we
know that p € C°([0,T];L?(0,L)), and therefore Fr is a well-defined linear map. From the definition
of weak solution (eq. (2.67)), the adjoint of this map F. : L?(0,L) — L%(0,T) can be computed as

Fi(or) :=0(-0), forore L*(0,L).
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Note that this map is well-defined, thanks to the hidden regularity property of the adjoint system
(2.66) (see Lemma 2.3.5). Consequently, the operator B* : D(A*) — R is defined as

B*(¢) := ¢(0), for all ¢ € D(A").
With these maps, we can now state the following result, thanks to Theorem 2.2.8 and Theorem 2.2.9.
Theorem 2.3.4. The system (2.62) is exactly controllable at time T in L%(0,L) if and only if there

exists a C > 0 such that the following observability inequality

T
/0 lo(t,0)]?dt > C ||aT||§2(O,L) (2.80)

holds for all or € D(A").

Thus, to prove exact controllability of the system (2.62), it is enough to prove the above observ-
ability inequality (2.80). We use two different methods, one is using explicit expression of the solution
and the other is via multiplier method, to prove this observability inequality.

Theorem 2.3.5. The system (2.62) is exactly controllable at time T in the space L*(0,L) if and only
ifT>L

Proof. Method 1: Explicit Solution. Let 0 < T < % We choose a function o € L?(0,L) as

1 .
e if 0 <x<cT,

or(x) :={ VT
0, if¢cT <x<L.

Then the solution of (2.66) with this or satisfies o(t,0) = 0 for all t+ € (0,T). This contradicts the
inequality (2.80) as |lor|lp2¢or) = 1. Therefore, the system (2.62) cannot be exactly controllable at
time T in L?(0,L).

We now assume that T > % Thanks to Theorem 2.3.4, it is enough to prove the observability
inequality (2.80). Note that, we have from the characteristics

0, ifO<t<T—Ii,
o(t,0) = .
or(c(T-1)), ifT--<t<T.

c

This yields
c

g 2 g 2 1 L 2 1 2
[ roorar= [ o -miPa=7 [ lorePdx =1 lorly.
0 T-L 0 ¢ ’

proving the observability inequality (2.80).

Method 2: Multiplier Method. In this case, we assume that T > % We cannot conclude exact

controllability of (2.62) at the optimal time T = % using this method. However, this can be done
by using the explicit expression of the solution, as mentioned above. Here, we present this method
because of its various importance in several places. To prove the observability inequality (2.80) with
T > %, let us assume that or € D(A*). Then, using Lemma 2.3.3, the solution o of (2.66) belongs to
the space

CH[0. T L%(0,1)) N C*([0, T]; D(AY).

Taking L?(0, L)-inner product in (2.66) with ¢ and integrating over [t,T], we deduce that

T pL T pL
—/ / orodxds — c/ / oxodxds =0, t € (0,T).
t Jo t Jo
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Integrating by parts and using the boundary-initial conditions, we get

L T
—/ [o%(x)-oQ(t,x)]dxH/ o2(s,0)ds =0, te(0,T).
0 t

L L T
/ o2(t, x)dx = / 0%(x)dx - c/ o2(s,0)ds
0 0 t

L T
> / o-%(x)dx - c/ o2(s,0)ds, te (0,T).
0 0

This yields

An integration over the interval (0,T) gives

T pL L T
/ / o2(t, x)dxdt > T/ 0%(x)dx - cT/ o2 (s,0)ds. (2.81)
o Jo 0 0

On the other hand, taking L?(0,L)-inner product in (2.66) with xo and integrating over the time

interval [0, T], we get
T ,L T pL
—/ / xoyodxdt — c/ / xoyodxdt = 0.
o Jo o Jo

Integrating by parts and using the boundary-initial conditions, we deduce that

L T pL
—/ [xa%(x) —x02(0,x)]dx + c/ / o?dxdt = 0,
0 o Jo

This gives
T pL 1 [L L L
/ / o2dxdt = —/ [xa%(x) - x02(0,x)]dx < —/ a%(x)dx. (2.82)
o Jo ¢Jo ¢ Jo
Combining the inequalities (2.81) and (2.82), we obtain

L T L L
T/ 0'%(x)dx - CT/ o2(s,0)ds < —/ (y%(x)dx_
0 0 ¢ Jo

L T
(T— é)./o G%(x)dx < CT/O o2 (s,0)ds.

Since T > %, the observability inequality (2.80) follows for all or € D(A*). This completes the
proof. O

Thus, we finally have

2.3.2 Periodic setup

Let T,L > 0 be given. We now consider the following system:

pr+cpx =0, in (0,T) x (0,L),
p(t,0) = p(t,1) +p(t), forte(0,7), (2.83)
p(0,%) = po(x), in (0,1).

Here ¢ > 0, p = p(t,x) is the state, pg € L?(0,L) is the initial state and p € L%(0,T) is a boundary
control. We define the unbounded linear operator A : D(A) c L?(0,L) — L%(0,L) as follows:

D(A) = {f e H'(0,L) : £(0)=f(L)}, (2.84)

Af == —cfy, feD(A). |
The adjoint of the operator A is given by

D(A") ={ge H'(0,L) : g(0) =g(L)}, (2.85)

A'g=cgy, ge D(A"). |

Then, we have the following well-posedness result; the proof of which is similar to the Dirichlet case
and so we omit the details.
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Lemma 2.3.6. The operator (A, D(A)) (resp. (A*, D(A*))) generates a C°-semigroup of contractions
{S(t)}+>0 in L?(0,L). Moreover, for given any po € L?(0,L) and p € L*(0,T), the system (2.83) has a
unique weak solution p € C°([0,T];L?(0,L)) satisfying the following estimate:

lellcoqortzion < € (19olizor) + 1PNz )

for some constant C > 0 depending only on T,c.
Further, we have the hidden regularity property p(-,0) € L(0,T).

We then compute the adjoint map F;. : L%(0,L) — L%(0,T) as
Fr(or) :=0(-,0), for or € L*(0,L),
where o is the solution of the adjoint system

—0; —coy =0, in (0,T) x (0,L),
o(t,0) =o(t,L), forte (0,7), (2.86)
o(T,x) =or(x), in (O,L).

As a consequence, the operator B* : D(A*) — R is defined as
B*(¢) := ¢(0), for all p € D(A").

We finally prove the following controllability result for the system (2.83). We present a different
method to prove the corresponding observability inequality by writing the solution of the adjoint
system in terms of a basis consisting of the eigenfunctions of the adjoint operator A*.

Theorem 2.3.6. The system (2.83) is exactly controllable at time T in L*(0,L) if and only if T > <.

Proof. Note that, thanks to Theorem 2.2.6, exact controllability of the system (2.83) is equivalent to
proving the observability inequality

T
/0 o(60) 2 dt 2 CllorlZ ), (2.87)

for all or € D(A*), where o is the solution of (2.86). Let us first assume that 0 < T < % We choose
a non-trivial oy € D(A*) such that supp(or) € (¢T,L). Then, by the method of characteristics, the
solution o of the adjoint system (2.86) satisfies o(¢,0) = o(t,L) = 0 for all ¢+ € (0,T) but ¢ # 0 in
(0,T) x (0,L). This contradicts the observability inequality (2.87) and, as a consequence, the system
(2.83) cannot be exactly controllable at time T in L?(0, L).

We now assume that T > % Let or € D(A*) be given. It is easy to see that the eigenvalues of
the operator (A*, D(A*)) are A, = 2”% and the corresponding eigenfunctions are ¢,(x) := e for

all n € Z. We therefore write o as

or(x) = Z ane%iﬂx, for x € (0, L),

nez

and the corresponding solution as

o(t,x) = Z ane T T-DHT= for (t,x) € (0,T) x (0, L),

nez

for some (a,)nez € fo. Since T > %, we have

T T
2icnm
|U(t,0)|2dt:/ age L (I70)
) Nt

nez

2

dt.

2 L
e
0

? r 2icnm
dt:/ Zane L !
0

nez

2icn7zt
E anpe L

nez
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Changing the variable t — {t, we get

T 1
/ lo(t,0)|? dt > /
0 0

thanks to the Parseval’s identity. We similarly have

2 L 2inmx ? 1
lorl}opy = [ D ane | dx=
0 0

nez
Combining the above two estimates (2.88) and (2.89), the observability inequality (2.87) follows. This
completes the proof. O

2
dt=>"lanl*, (2.88)

nez

§ an62mnt

nez

2
dx =) lanl. (2.89)

nez

§ ane2ln7rx

nez

2.4 The heat equation

In this section, we will consider the one dimensional heat equation and study the controllability
properties using only a boundary control. In the next few chapters, all these properties will be
very useful in the context of controllability of the linearized compressible Navier-Stokes system (see
Chapters (3)-4) or in the case of nonlinear systems considered in Chapter 5. The contents of this
section can be found in any control theory books/ lecture notes, for instance in [MZ04, Section 2.5],
[Boy23, Chapter 4], [Cor07, Section 2.5]. In addition, controllability of the heat equation using a
localized distributed control is also studied in the above-mentioned references. In this thesis, we will
concentrate only on the boundary controllability of the heat equation.

Let T,L > 0. The heat equation in the interval (0,L) is given by
U — Vi = 0,

where v > 0 is called the diffusion coefficient and u = u(t, x) is the state. We take the initial condition
as
u(0,x) =ug(x), x€ (0,L).

In this case, we consider one of the following three boundary conditions on u:

¢ (Dirichlet): u(t,0)=0, u(t,L) =0, forte (0,7T),
¢ (Neumann): u,(t,0) =0, u.(t,L)=0, forte (0,T),
o (Periodic): u(t,0) =u(t,L), uy(t,0) =uy(t,L), forte (0,T).

We will present a detailed study of the controllability properties of the heat equation in the Dirichlet
case using only one boundary control. The Neumann and periodic case will be similar to the Dirichlet
setup, so we will omit the details here. In fact, the Neumann case is studied with detail in Chapter
5 for both linear and nonlinear heat equations, see also Section 2.5. Moreover, similar controllability
studies for the heat equation with periodic boundary conditions is included in Chapter 3.

2.4.1 Dirichlet setup

Let T,L > 0 be given. We consider the following system:

Up — Vlyy = 0, in (0,T) x (0,L),
u(t,0) =0, u(t,L)=q(t), forte (0,T), (2.90)
u(0,x) = ug(x), in (0,L).

Here v > 0 is called the diffusion coefficient, u = u(t, x) is the state, ug is the initial state and q is the
boundary control. In this section, we will study the controllability properties for this system at any
time T > 0 in the space H~1(0, L) using the boundary control g € L%(0,T) acting at x = L.
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We first define the unbounded linear operator A : D(A) c L%(0,L) — L?(0,L) as follows.

D) = {f e HO.L) © f(0) = f(1) =0}, )
Af == —vfix, f€D(A). '
Note that the operator A is self-adjoint, that is
{D*(A*) = DA ) (2.92)
A'g = —vgxx, g€ D(A").

We now write following result which shows that the operator (—A, D(A)) generates a C°-semigroup
of contractions on L?(0,L).

Lemma 2.4.1. The operator (—A, D(A)) generates a C°-semigroup of contractions {S(t)};»0 on L%(0,L).

Proof. We will apply the Lumer-Philips theorem (see Corollary 2.1.2) to prove this result. Since
A = A*, it is enough to prove that A is a densely defined closed linear operator in L%(0,L) and that —A
is dissipative in L2(0,L).

e Since C2(0,L) C D(A) is dense in L2(0, L), therefore D(A) is dense in L2(0,L). Thus, A is densely
defined.

e Let (fi)new be a sequence in D(A) such that f, — f in L2(0,L) and Af, — g in L?(0,L) for some
f,g € L*(0,L). This implies
L

L
lim (=Vfu)xx@dx :/ gopdx, Vo € C°(0,L).
0 0

n—oo

Integrating by parts twice yields
L L
lim (—vfn)(pxxdx:/ gopdx, VYo € C°(0,L).
0 0

n—-oo

Since f, — f in L?(0,L), we readily have

L L
/ (=vf)pxxdx =/ godx, Ve € C°(0,L). (2.93)
0 0

On the other hand, since the sequence ((f,)xx)nen is bounded in L2(0,L), it follows that (f,) is
bounded in H'(0,L) (thanks to the Poincaré Inequality). Therefore, up to a subsequence, the
sequence (f,)nen converges weakly in H'(0,L) to some function f € H'(0,L). By uniqueness of
the limit, we see that f = f and consequently f € H'(0,L). Then, from (2.93), we deduce that
f e H?*(0,L) and —vfyy = g.

It remains to prove that f(0) = f(L) = 0. Since f, € D(A), therefore f,(0) = f,(L) = 0 for all
n e N. Let ¢ € C*[0,L] be such that ¢(0) = ¢(L) = (L) = 0 and ¢,(0) # 0. For example, one
can take ¢(x) = x(x — L)? for all x € [0,L]. Then we have after twice integration by parts

L L L
[ gvix= [ upropix= [ uppmds - vf 00,00
On the other hand
L L L L
/ (=vf)pxxdx = lim/ (=vf)@xxdx = lim/ (—vf,,)quodx:/ godx.
0 n—o Jq n—eo Jg 0

Comparing these above two identities, we deduce that vf(0)¢,(0) = 0, which implies f(0) =0 as
¢x(0) # 0. Similarly, one can prove that f(L) =0. Thus, f € D(A) and therefore A is closed.
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e Let f € D(A). Then

L L
Af, Pr2or) = _V‘/o fexfdx = V/o f2dx > 0,

and therefore —A is dissipative in L?(0, L).
The proof completes. ]

Thanks to this result, we can guarantee the existence and uniqueness of a strong solution of the
system (2.90) when the initial state uy and control g are regular enough.

Theorem 2.4.1. Let us assume that ug € D(A) and q € C>([0,T]) satisfies the compatibility condition
q(0) =0. Then the system (2.90) admits a unique strong solution

u e CH([0,T];L?(0,L)) n C°([0, T]; H%(0,L)).

Proof. Let ug € D(A) and q € C%[0,T] with g(0) = 0. We define the function #(t,x) = u(t,x) — 7q(1)
for (t,x) € [0,T] x [0,L]. Then # satisfies

i =Au+f, in (0,T) x (0,L),
u(t,0) =0, u(t,L)=0, forte (0,7T), (2.94)
(0, x) = ug(x), in (0,L),

with f(t,x) := —7q'(t) for t € (0,T) and x € (0,L). Since f € CH([0,T] x [0,L]), by semigroup property
(see Corollary 2.1.1), this system has a unique strong solution # in the space

C([0, TI;L*(0,L)) N CY([0, T]; D(A)).

Consequently, the system (2.62) has a unique strong solution u in the space C'([0,T];L?(0,L)) N
CY([0,T]; H?(0,L)). This completes the proof. O

To guarantee the existence of a unique solution when ug € L?(0,L) and ¢q € L?(0,T), we need to
define the notion of a weak solution to the system (2.90). For this, we consider the adjoint system
corresponding to (2.90) as follows:

—0Up — VUyx = 0, in (0,T) x (0,L),
0(t,0) =0, o(t,L)=0, forte (0,7), (2.95)
o(T, x) = ovr(x), in (0,L).

Here vy € L?(0,L). Then, using the adjoint semigroup {S*(t)};»0, we have the following result:
Lemma 2.4.2. For any given vr € D(A"), the adjoint system (2.95) admits a unique strong solution
o € CH([0,T];L*(0,1)) N C*([0, T]; D(A").

We then consider the following homogeneous system with a source term:

Up — Vixx = [, in (0,T) x (0,L),
u(t,0) =0, u(t,L)=0, forte (0,7), (2.96)
u(0,x) = ug(x), in (0,L).

For this system, we study some well-posedness results which will be very useful in the later chapters
of this thesis. First, we define the notion of a weak solution for this system (2.96) when ug € L?(0, L)
and f € L?(0,T;L?(0,L)).
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2.4. The heat equation

Definition 2.4.1 (Weak solution). Let ug € L?(0,L) and f € L?(0,T;L%(0,L)) be given. We say a
function u € C°([0,T];L%(0,L)) is a weak solution of (2.96) if for every vy € D(A*) the following
identity holds true:

L L t pL
/0 u(t,x)v(t,x)dx—/0 uo(x)v((),x)dx:/0 /0 f(s,x)v(s, x)dxds, YVt € [0, T]. (2.97)

Then, with this definition of a weak solution, one can have the following result:

Theorem 2.4.2. Let ug € L?(0,L) and f € L?(0,T;L?(0,L)) be given. Then the system (2.96) has a
unique weak solution u in the space

C%([0,T]; L*(0,L)) N L*(0,T; H (0, L)).

Moreover, there exists a C > 0 depending only on v,T such that

||u||co([0,T];L2(0,L)) + ||U||L2(0,T;H5(0,L)) <C (||u0||L2(U,L) + ||f||L2(o,T;L2(o,L))) . (2-98)

Furthermore, if ug € H&(O, L), this solution u satisfies the following estimate:

lleo o,y 00 + Iellz e ony < € (ol 00 + 12002001 (2.99)
for some C > 0 depending only on v,T.
Proof. We will prove each part separately.

e Let us first prove uniqueness of the solutions. If u; and uy are two solutions of (2.96), then the
function u := u; — uo satisfies the system

Up — Vlyy = 0, in (0,T) x (0,L),
u(t,0) =0, u(t,L)=0, for t € (0,T),
u(0,x) =0, in (0,L).

By the definition of weak solution (eq. (2.97)), we have
L
/ u(t,x)o(t,x)dx =0, for all o € D(AY),
0

which implies u(t) = 0 in L?(0,L) for all ¢ € (0,T).

We now prove the existence of a solution to the system (2.96). Let us first consider the case
when ug € D(A) and f € C1([0,T] % [0,L]). Then the system (2.96) has a unique strong solution
u € CY([0,T];L?(0,L)) N C°([0, T]; D(A)), thanks to the semigroup property (see Lemma 2.4.2).
We now prove the estimate (2.98) in this case.

Taking L?(0, L)-inner product in (2.96) with u, we get

1d (L L L
—— u?(t, x)dx — v/ UyxUdx = / fudx, Vte]0,T].

Integrating by parts and using the Young’s inequality, we obtain

1d [F

L L
—— u2(t,x)dx+v/ uz(t,x)dx=‘/ fudx (2.100)

1t 1t
<= u“(t,x)dx + = f“(t,x)dx, Vte[0,T].
2 Jo 2 Jo

Ignoring the term v /OL u2(t,x)dx, we have

14 rt

1 L 1 L
5 dr ) u (t, X)dx 5 A u (t, x)dx + 5 ‘/0 f (t, X)dx, S [0, ]
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Applying Gronwall’s inequality (see [Eval(, Appendix B]), we deduce that

L L t pL
%/0 u2(t,x)dx§et(/0 ug(x)dx+%‘/0 ./0 f2(t,x)dx), Vt € [0,T].

Taking supremum over t € [0, T], we obtain

2 T 2 2
o qorrz0yy < 2¢7 (100200 *+ LI 72 00y )-
On the other hand, we have from (2.100) that

1d b, L, 1, 9 1 e,
55 0 u (t,x)dx+v 0 ux(tax)dxg5||u”CO([0,T];L2(O’L))+§ o f (t,x)dx, VtE[O,T].

Integrating over the interval [0, T], we obtain

L T pL
%./o [u2(T,x)—u(Q](x)]dx+v/0 /0 u?(t, x)dxdt

T 9 1 T L 5
S§”””CO([O,T];LZ’(O,L))"'5/0 /0 f(t,x)dxdt.

Ignoring the term %/()L u?(T, x)dx and using the previous C°([0, T]; L%(0, L))-estimate, we deduce
that

2 T 2 2
el o1 0y < ™ (1002 0.0+ 112 0 2001 ) -
Here C > 0 is a constant depending only on v.

Let us now consider the case when ug € L?(0,L) and f € L2(0,T;L?(0,L)). Let (ug)nen C D(A)
be a sequence such that uj — ug in L?(0,L) and let (f™)pew € CH([0,T] x [0,L]) be such that
f™ — fin L2(0,T;L?(0,L)). For each n € N, let u" denotes the strong solution of (2.96) with
initial state uj and source term f". Since uf € D(A) and f" € CY([0,T] x [0,L]) for all n € N,
we have from the previous case that

"l cororrez oy + 14" ll2 i o) < Ce' (||“6’||L2<0,L> +IIf "||L2<0,T;L2<0,L>>)’ for all n € N.
(2.101)
Let o € D(A*) and let v € C1([0,T]; L2(0,1)) NC ([0, T]; D(A*)) be the strong solution of (2.95)
(see Lemma 2.4.2). Since u" is the unique solution of (2.96), we have from (2.97) that

ALu"(t,x)v(t,x)dx—/OLuS(x)U(O,x)dx= ‘/Ot‘/oLf"(s,x)v(s,x)dxdt, (2.102)

for all n € N and t € [0,T]. Let m,n € N. Note that u” — u™ is the strong solution of (2.96)
corresponding to the initial state uj — u{’ and source term f" — f™. Thus, we see from (2.101)
that this solution satisfies the estimate

llu® = u™llco o122 0,002 015 (0.1)) < € (||”6’ — |2 oy + " = S m||L2(0,T;L2(o,L>>)

for all m,n € N. This implies the sequence (u") ey is Cauchy in the space C°([0,T];L?(0,L)) N
L2(O,T;H3(0, L)). Let u® — u in C°([0,T];L?(0,L)) N LQ(O,T;Hé(O, L)) for some function u €
CY([0,T];L?(0,L)) N LQ(O,T;H(} (0,L)). Then, passing limit as n — oo in the identity (2.102), we
see that u is a weak solution of the system (2.96) with the above initial state ug € L?(0,L) and
source term f € L2(0,T;L?(0,L)). To prove the desired estimate (2.98), we pass limit as n — oo
in the inequality (2.101). This completes the proof of first part.

e To prove the estimate (2.99), we first assume that ug € D(A) and f € C1([0,T] x [0,L]). Then,

the system (2.96) has a unique strong solution u € C*([0,T]; L?(0,L)) nC°([0, T]; D(A)). Taking
L?(0, L)-inner product in (2.96) with u,, we get

L L L
/ u?dx— v/ UplhoyrdX 2/ fudx, tel[0,T].
0 0 0
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An integration by parts gives

L L L
/ u?dx + v/ UppUpdx = fudx, tel0,T].
0 0 0

The boundary term vanishes because u;(t,0) = u;(t,L) = 0 for t € [0,T]. Thus we can write

vd 2d+ “ax= [ fudr < L(2+2)d t e [0,T]
37 b'e 0utx—ofutx_20f uy | dx, T].

This yields
1t vd [F 2
- _= <= .
2/0 dx+2d dx / f2dx, te[0,T]

Ignoring the first term, we have

d [t 2 t 2
v— uydx < fedx, te][0,T].

Integrating over [0, t], we get that

L L t L
/ u,%(t,x)dx—/ u,%(o,x)dxs/ / f2dxds, te[0,T].
0 0 0 0

Taking supremum over the interval [0, T], we deduce that

2
2o oy oy < T (1012 0 * 1 iz 0rc20000) )

thanks to the Poincaré inequality. To prove the required L?(H?)-estimate, we take inner product
in (2.96) with u,, and integrate over [0,T]. We get

T pL T pL T pL
/ / UsUyredxdt — v/ / uzxdxdt = / / fuxxdx.
0 0 0 0 0 0

Integrating by parts, we can get

T pL T pL
/ / u Ldxdt = — / / utxuxdxdt—/ / fuxxdx.
0 0 0 0

An integration by parts again yields

/ / uy dxdt——'/OL[ (Tx)—u (0,x)]dx — / / fuxxdx
S/OLuz(O,x)dx+/0T./o (Ef2+eu32€x) dxdt,

where we have used the Young’s inequality ab < ea® + Z—z for some € > 0. Thus, we obtain

T pL L 1 T rL
(v- e)/ / uﬁxdxdt < / uz(O, x)dx + —/ / dexdt.
o Jo 0 4e Jo Jo

Choosing € > 0 small enough so that v — € > 0, we deduce that

2 2
llZ2 0200y < € (N0 0y *+ 120 mr2 000 )

thanks to the previous C°([0, T];H&(O, L))-estimate of u. Let us now consider the case when
ug € Hy(0,L) and f € L*(0,T;L*(0,L)). Let (u)nen € D(A) and (f")new < CH([0,T] x [0,L])
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be sequences such that uf — ug in Hé (0,L) and f" — f in L2(0,T;L%(0,L)). Then, we have the
following estimate:

14"l co o102 0.0)) * 14" L2012 0)) < C (||”3||H5<0,L) +IIf n”L?(O,T;LQ(O,L)))’ for all n € N.

This implies (u")pen is a Cauchy sequence in the space C°([0, T];H&(O, L)) N L?(0,T; H*(0,L))
and by uniqueness of the solutions, the sequence (u"),eny converges to the solution u with
u € C°[o, T];H&(O,L)) N L%(0,T; H%(0,L)) corresponding to the above ug € H&(O, L) and f €
L?(0,T;L?(0,L)). Then the desired estimate (2.99) follows by passing limit as n — oo in the
above inequality.

This completes the proof. O

We now consider the adjoint system with a source term:

—0p — VUxx = G, in (0,T) x (0,L),
0(t,0) =0, o(t,L)=0, forte (0,T), (2.103)
o(T, x) = or(x), in (0, L),

where vr € L%(0,L) and g € L%(0,T;L?(0,L)). Then, we have the following result; proof of which is
similar to the above Theorem and so we omit the details.

Lemma 2.4.3. Let vy € L?(0,L) and g € L?(0,T;L?(0,L)) be given. Then there exists a unique weak
solution v of (2.103) in the space

CY([0,T];L%(0,L)) N L*(0, T; H3 (0, L)).

Moreover, this solution v satisfies the estimate

lollcoqorizzon)) + lollzrmi o)) <€ (||0T||L2(0,L) + “g”L?(O,T;L?(O,L))) (2.104)
for some C > 0 depending only on v, T.
Further, if vr € Hé(O, L), this solution v satisfies the following estimate:
lollcopo.ry:m (0.0)) + I0llzz0mm2(00)) < C (||0T||H01(0,L) + ||g||L2(0,T;L2(0,L))) (2.105)
for some C > 0 depending only on v,T.

We are now ready to define the notion of a weak solution for the main control system (2.90) when
up € H1(0,L) and g € L?(0,T). In the literature, this type of solution (defined below) is often referred
as the “solution in the sense of transposition”.

Definition 2.4.2. Let the initial state ug € H™*(0,L) and control g € L?>(0,T) be given. We say a
function u € C°([0,T]; H1(0,L)) is a weak solution (or a solution in the sense of transposition) of
(2.90) if, for every vr € D(A*) the following identity holds true:

<u(t),0(t)>H71’H& — (up,v(0)) -1 41 + v/tq(s)vx(s, L)ds =0, for allt e [0,T], (2.106)
0

where v is the strong solution of the adjoint system (2.95).

We note here that the above identity is well-defined because v(0,-) € D(A*) and v, (-, L) € L?(0,T),
thanks to Lemma 2.4.2. Using this definition of a weak solution, we can now guarantee the existence
of a unique weak solution to the system (2.90). The statement is written below:
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Theorem 2.4.3. For any given ug € H *(0,L) and q € L?>(0,T), the system (2.90) admits a unique
weak solution
ue CO([0.TI;H(0,1)).

Moreover, the solution u satisfies
llull co(po.ry.a-101)) < C (”uOHH*l(O,L) + ||Q||L2(0,T)), (2.107)
for some C > 0 depending only on v, T.

Proof. We first prove uniqueness of the solutions. Let us suppose that ui,us € CO([0,T]; H 1(0,L)) be
two weak solutions of the system (2.90) and denote u := u; —uz. Then u € C([0,T]; H(0,L)) satisfies
the system

Ur — Usyx = 0, in (0,T) x (0,L),
u(t,0) =0, u(t,L)=0, forte (0,T),
u(0,x) =0, in (0,L).

From the definition of weak solution (see (2.106)), we readily have
(B, o(D) g1 g = 0. Ve € [0.T],

for all oy € D(A*). This implies u(t) =0 in L?(0,L) for all t € [0, T].

We now prove the existence of a weak solution to the system (2.90). We will consider up € D(A)
and ¢q € C?[0,T] with q(0) = 0 and prove the result. Then, using a similar density argument as we
did in the proof of Theorem 2.4.2, the same will be true when ug € H~'(0,L) and q € L?(0,T). Since
up € D(A) and q € C?[0, T] satisfies g(0) = 0, applying Theorem 2.4.1, there is a unique strong solution
u € CH[0,T];L%(0,L)) nCY([0,T); H?(0,L)) of the system (2.90). We now prove the estimate (2.107).
Let 7 € [0,T] be fixed and & € H&(O, L) be given. We consider the following system

—0; — VOxyx = 0, in (0,T) x (0,L),
0(t,0) =0, o(t,L)=0, for t € (0, T), (2.108)
o(t,x) = &(x), in (0,1).

Then v € C°(][0, T];H&(O, L)) N L%(0,7; H?(0,L)), thanks to Lemma 2.4.3. Moreover, we have the fol-
lowing estimate:

lollcorocpat o.ny) + 10llz20.mm20)) < CENE 0.) - (2.109)

Taking duality product in (2.90) with this v and integrating over the interval (0, 7), we get

[ w006 ds = [ sn(1.06)) 1y ds =0
0 0

Integrating by parts, we readily have
(u(r), §>H*1,H(} - <u0,v(0))H71’Hé + v/ q(s)ox(s,L)ds = 0. (2.110)
0

Since v € L%(0,7; H*(0,L)), the map v € L?(0,7; H?(0,L)) > 0vx(-,L) € L?(0,T) is bounded. Therefore

w(e). D1 ev [ gl ot Dl ds

< Nluollg-10,0) 0O g2 0.0y + v llgllzz o7y lox G Dlz2o,m)

< -
o <[00 O

< ||u0||H-1(0,L) ||U||CO([0,T];H5(0,L)) +v ||CI||L2(0,T) ||U||(L2(0,T;H2(0,L))

< ClIElg 0.y (0l 0 + Nl 2 o))
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thanks to the estimate (2.109). Thus we obtain

el 0n = swp @, O my| < € (ol oy + Mllzom)) -

18158 0.1

Since 7 € [0,T] is arbitrary, we deduce that

el o1+ 0.y < € (Iolliz-s 0. + Igll2 o)) -

Applying the usual density argument, we can obtain the CY([0,T]; H~'(0,L))-estimate on u. This
completes the proof. ]

The above result guarantees the existence of a unique solution u € C°([0,T]; H~'(0,L)) to the
system (2.90) when ug € H-*(0,L) and g € L?(0,T). In addition to this, we can also obtain a regularity
result for the system (2.90), which says that this solution u also belongs to the space L?(0, T; L?(0,L)).
To prove this result, we require another definition of a weak solution to the system (2.90), which is
written below.

Definition 2.4.3. Let ug € H"'(0,L) and q € L?(0,T) be given. We say a function u € L*(0,T;L%(0,L))
is a weak solution (or a solution in the sense of transposition) of the system (2.90) if, for every
g € L%(0,T;L?(0,L)) the following identity holds true:

T T pL
—(up,v(0))g-1 1 + v/ q(t)ox(t,L)dt +/ / ugdxdt = 0, (2.111)
0 0o Jo

where v is the weak solution of the adjoint system (2.103) with vr = 0.

It can be proved that this notion of defining a solution is equivalent to that considered in Definition
2.4.2, see for instance [Cor(07, Section 2.5, Page 76]. With this definition, we now prove the regularity
result (L2-estimate) of the solution u to the system (2.90).

Proposition 2.4.1. For given ug € H'(0,L) and q € L*(0,T), the solution u € C°([0,T]; H-*(0,L))
of the system (2.90) belong to the space L*>(0,T;L?(0,L)) and we have the following estimate:

llulle207;02(0.)) < C (||u0||H—1(o,L) + ”q”L2(O,T))’ (2.112)
where C > 0 1s a constant depending only on v,T.

Proof. We will prove the required estimate by assuming ug € D(A) and g € C?[0,T] with ¢(0) = 0.
Then, applying a density argument, we can get the estimate when ug € H~'(0,L) and q € L%(0,T).
For uy € D(A) and ¢ € C?[0,T] with g(0) = 0, the system (2.90) has a unique strong solution
u € CH([0,T];L?(0,L)) n C°([0,T]; H?(0,L)), thanks to Theorem 2.4.1. Let v be the solution of the
adjoint system (2.103) with terminal data vy = 0 and source term g € L2(0,T;L?(0,L)). Then, applying
Lemma 2.4.3, this solution v satisfies v € C°([0, T];H&(O, L)) N L?(0,T; H%(0,L)) with the following
estimate

||U||CO([0,T];H3(0,L)) + ||0||L2(0,T;H2(0,L)) <C ||9||L2(0,T;L2(0,L))

for some constant C > 0. Taking duality product in (2.90) with v and integrating over (0,T), we have

T T
/ (us (), U(t))H—l)Hé ds — v/ <uxx(t),v(t)>H—1’Hé ds =0.
0 0

Integrating by parts and using the boundary-initial conditions, we deduce that

T T pL
- <u(0),0(0)>H—1,H& + V/O q(t)ox(t, L)dt +/0 ‘/0 ugdxdt = 0,
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since v satisfies (2.103). Thus, we have

T pL
/ / ugdxdt
0 0

T
ey /0 (D) lox (8, L)) dt

< NuO) -1 0,0y 10O gz + v llqllz2 07 llox G Dlz2om)

< |<u(0),v(0)>H—1,H3

< Clighyz o220y (10l 00y + Nallz o)) -

T pL
/ / ugdxdt
0o Jo

proving the required estimate when ug € D(A) and ¢q € C?[0, T] with ¢(0) = 0.

Therefore

lulli2rizory) = sup < C (llwollsr—+ o) + llall 2 o))

“g”L2(L2):1

We now consider the case when ug € H-'(0,L) and ¢ € L?(0,T). Then there exist sequences
(uf)nen C D(A) and (¢")nen C C2[0,T] with ¢"(0) = 0 for all n € N such that uy — up in L?(0,L) and
q" — q in L2(0,T). For each n € N, let u™ denote the strong solution of (2.90) with the above uj and
q". Then, applying Theorem 2.4.1, this solution u® belongs to C'([0,T];L?(0,L)) nC°([0,T]; H(0,L))
for all n € N. Since (uf)nen € D(A) and (¢")nen C C2[0,T] with ¢*(0) = 0 for all n € N, we have the
following estimate

”unHL2(O,T;L2(O,L)) <C (”ug”H_l(O’L) + ”qn||L2(O,T)) 5 for all n € N. (2113)

Let g € L2(0,T; L?(0,L)) be given and let v € C°([0, T];H&(O, L))NL%(0,T; H?(0,L)) be the unique strong
solution of (2.103) (see Lemma 2.4.3). Taking L?(0, L)-inner product in (2.90) with v and integrating

over [0,T], we get
T pL T pL
/ / uyodxdt — v/ / ubodxdt =0, for all n e N.
o Jo o Jo

Integrating by parts twice, we obtain

L T T pL
—/ ug (x)v (0, x)dx + v/ q" (t)vx(t, L)dt +/ / u"gdxdt =0, for all n e N. (2.114)
0 0 0o Jo

Let m,n € N. Note that u” — u™ is the strong solution of (2.96) corresponding to the initial state
uj — u" and control ¢" — ¢™. Thus, we see from (2.113) that this solution satisfies the estimate

||u" - umlle(o,T;g(o,L)) <C (Hug - u6n||L2(O,L) + ”qn - qm“LQ(O,T))

for all m,n € N. This implies the sequence (u"),cy is Cauchy in the space L2(0,T; L%(0,L)). Let u" — u
in L2(0,T; L?(0, L)) for some function u € L?(0,T;L?(0,L)). Then, passing limit as n — oo in the identity
(2.114), we see from Definition 2.4.3 that u is a weak solution of the system (2.96) with the above
initial state ug € L?(0,L) and control g € L?(0,T). To prove the desired estimate (2.112), we pass limit
as n — oo in the inequality (2.113). This completes the proof.

O

Since we have the well-posedness result for the heat equation (2.90) in H=(0,L), we can study the
controllability properties of (2.90) in the space H~1(0,L). We first prove that the heat equation (2.90)
cannot be exactly controllable at any time T > 0 in the space H~!(0, L) by using a boundary control
q € L?(0,T). For this, we consider the following homogeneous system

Ur — Vlyy = 0, in (0,T) x (0,L),
u(t,0) =0, u(t,L)=0, forte (0,7), (2.115)
u(0,x) = ug(x), in (0,L),
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with uy € H1(0, L) and recall the unbounded operator A : D(A) c L?(0,L) — L?(0,L) where

D(A) = {f e HX(0,L) : f(0) = f(L) =0}, (2.116)
Af = —vfex, f € D(A). |

The eigenvalues of this operator A are A, := ”i’f and the corresponding eigenfunctions are ¢,(x) :=
sin (”Lﬂ) for all n € N. Since these eigenfunctions {¢, : n € N} forms an orthogonal basis of L?(0,L)

and hence a dense family in H~(0,L), we can write ug € H™1(0,L) as

up(x) = Z ap sin (er_x) x € (0,L),

nelN
for some (ap)nen such that (‘%")neN € . The solution of (2.115) is then given by the separation of
variable formula ) s
u(t,x) = Z ane_nLér fsin (nLLx), for (t,x) € (0,T) X (0,L).
nelN

Note that u(T) = 0 in H~'(0,L) implies the coefficients a, = 0 for all n € N, which immediately gives
u = 0. This shows that the system (2.115) satisfies the backward uniqueness property (see Definition
2.2.5). On the other hand, from this expression of the solution, we deduce that

2.2 2,2

n-m- _n“zx nwx
ut(T,x) = - E anL—2€ L2 TSiH (T), for x € (O,L)
neN

and therefore uyy(T) = u,(T) € L?(0, L), which implies u(T) € H?>(0,L). On the other hand, we have

At 2.2 T

i€ L2 sin(nLﬂ), for x € (0, L).

utxx(T’ x) == Z an
neN

This gives tyxxx(T) = tsex(T) € L2(0,T) and therefore u(T) € H*(0,L). A repeated argument shows
that u(T) € H*(0,L) for all k € N. As a consequence, we have u(T) € C®(0,L]. Using this argument in
the main control system (2.90), we see that the solution is smooth far away from the right end x = L,
that is u(T) € C*(0,L). Therefore, the heat equation (2.90) cannot be exactly controllable at time T
in the space H~1(0,L) (and in particular, in L?(0,L)) by using a boundary control g € L?(0,T). Thus,
we only concentrate on the null controllability of this system at time T in H~1(0, L), since approximate
controllability will follow due to the backward uniqueness property of the equation (2.115) (thanks to
Proposition 2.2.1).

Recall that, in Sections 2.2.2-2.3, we have derived some equivalent conditions for null controllability
in terms of the operator Fr and its adjoint. In this case, we define the map Fr : L2(0,T) — H'(0,L)
by
Fr(q) ==u(T,),

where u is the unique weak solution of (2.90) with ug = 0 and q € L?(0,T). Using Theorem 2.4.3, we
know that u € CO([0,T]; H~1(0,L)) and therefore Fr is a well-defined linear map. From the definition
of weak solution (eq. (2.106)), the adjoint of this map Fy. : Hé(O, L) — L%(0,T) is given by

Fr(vr) :==0x(+, L), forore H&(O, L).

Thanks to Lemma 2.4.3, this map is well-defined and with the help of this map, we can now state the
following result; the proof of which follows from Theorem 2.2.8.

Theorem 2.4.4. The system (2.90) is null controllable at time T in H~'(0,L) if and only if there
exists a C > 0 such that the following inequality

T
/0 lox(t,L)|? dt > C ||o(0)||§%(0,m (2.117)
holds for all vt € Hé(O, L).

66
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Thus, to prove null controllability of the system (2.90), it is enough to prove the observability
inequality (2.117). We state the result below.

Theorem 2.4.5. The system (2.90) is null controllable at any time T > 0 in the space H™1(0,L).

Proof. Let T > 0 be given and let vy € H&(O, L). Since the eigenfunctions {sin () : ne N} of A
forms a complete (dense) family in H&(O, L), we can write

or(x) = Z an sin (nLLx), x € (0,L),

neN

for some (ap)nen such that (na,)pen € f2. Then the solution to the adjoint system (2.95) is given by

o(tx)= ) ane”” T (”Lﬂ) (t,%) € (0,T) x (0,L).

neN

Thus, we have

T T 2 T
/ |vx(t,L)|2dt=/ dt=/
0 0 0

n27t2
Note that, thanks to Theorem 2.1.13 (or Theorem 2.1.14), the family (e_LZt) has a biorthogonal
neN

2
dt.

2

n 71'2
Z an(—l)nnL—ne_LTt

neN

Z an(=1)"—

neN

sequence (qi)ken in L2(0,T) with the estimate lgelli2or) < CeRe(Xx) for all k € N and € > 0. Thus,
we can apply the parabolic Ingham’s inequality (2.20) in Theorem 2.1.19 to deduce that

2 2 72
/ jox(t, L) dt > ) |an|2 wnt —argtn (2.118)
0

neN

On the other hand, we have

L L
CIOTF /0|vx(o,x)|2dx:/0

Since the set {cos T) :neNuU {0}} is an orthogonal basis in L?(0,L), we deduce that

nﬂ' 2n7rT

(O 0z < € D lanl® = (2.119)

neN

Combining the estimates (2.118) and (2.119), we obtain the required observability inequality (2.117).
This completes the proof. O

This method for proving null controllability of (2.90) is a crucial part in this thesis, in particular in
Chapters 3 and 4. Apart from this method, we now give a different approach, the so called moments
method (introduced in Section 2.1.3), to prove null controllability of the heat equation (2.90). This
technique will be very useful in the later chapters of this thesis (see Chapters 4-5). Before proceeding,
we first write the following result which gives an equivalent condition for null controllability of the
system (2.90).

Lemma 2.4.4 (Equivalent criterion for null controllability). The heat equation (2.90) is null control-
lable at time T > 0 in H-1(0,L) if, and only if, for every ug € H1(0,L) there exists g € L?(0,T) such
that the following identity

T
‘/0 q(t)ox(t, L)dt = (u0,0(0)>H71’H3 (2.120)

holds for every vr € H&(O, L).
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Proof. Let us first consider the case when ug € D(A) and g € C2?[0,T] with g(0) = 0. Then the
strong solution u to (2.90) satisfy u € C*([0,T];L?(0,L)) N C°([0,T]; D(A)). Let oy € Hy(0,L). Then
the solution v of the adjoint system (2.95) belong to the space C°([0, T];Hé(O, L)) N L2(0,T; H*(0,L)),
thanks to Lemma 2.4.3. Taking inner product in (2.90) with this o, we get

T T
/ (ur, 0) -1 g1 dt — V/ (Uxx, 0) -1 g1 dt = 0.
0 oo 0 oo

Integrating by parts and using the boundary-initial conditions, we obtain

T
<u(T),UT>H—1,H01 - <UO,U(O)>H—1,H3 + V‘/o q(t)ox (8, L)dt =0,

for all oy € H& (0,L). Using a density argument, this identity is also true when uy € H~(0,L) and
q € L?(0,T). We now assume that the system (2.90) is null controllable at time T in H~1(0,L). Then,
for every ug € H(0,L) there exists a q € L?(0,T) such that the associated solution satisfies u(T) = 0.
Consequently, we have the required identity (2.120). On the other hand, if for every ug € H (0, L)
there exists a g € L?(0, T) such that the identity (2.120) holds, then we deduce from the above relation
that

((T),or) g1 =0, for all oy € H(0,L).

As a consequence, we obtain u(T) = 0 and therefore the system (2.90) is null controllable at time T in
H~Y(0,L). This completes the proof. O

We can further reduce the above equivalent identity into a set of moments problem by using the
eigen-elements of the operator A. This moment problem will be similar to the one considered in
Section 2.1.3 (see Example 2.1.6).

Lemma 2.4.5 (Reduction to the moments problem). The system (2.90) is null controllable at time
T >0 in H Y(0,L) if, and only if, there exists g € L>(0,T) such that the following identities holds:

T 0272
/ q(T—t)e” 2 'dt = w,, forallneN, (2.121)
0
where
ny - ET
o= EDLe P (wo,sin (=) L men (2.122)
niw L H-1H]}

Proof. Recall that, the set of eigenfunctions {¢, : n € N} of A, where ¢,(x) = sin (2=) for n € N,
forms a dense family in H;(0,L). With this ¢,, the solution of the adjoint system (2.95) is

n271'2
o"(t,x) = e~z T Hgip (nLLx), t € (0,T), x € (0,L),

for all n € N. Plugging this value of v" in (2.120), we readily have
n2n2

T n2 72 .
/ Q(t)e_LT(T_t)(—l)"Edt = <u0, e 2 !sin (ﬂ)>
0 L H-1H]

for all n > 1. Changing the variable ¢t +— T —t in the above integral, the proof follows. O

From the above Lemma, it is enough to solve the moments problem (2.121) for proving null control-
lability of the system (2.90), and with the help of a suitable biorthogonal family of the exponentials,
we now solve this moments problem. The statement is given below:

Theorem 2.4.6. Let T > 0 be given. Then the system (2.90) is null controllable at time T in the
space H-1(0,L).
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Proof. We first apply Theorem 2.1.12 to obtain a biorthogonal sequence (qi)ren to the exponential

T

family (e~ e Dnen in L2(0,T) with the estimate
k22
lgkllz2 07y < Me® 12, forall k > 1, (2.123)

for some constant M > 0 and all € > 0. We define q(T —¢) := Z wrqr(t), for t € (0,T), where wy is
keN
defined by (2.122). Then, it is easy to see that g satisfies (2.121). It remains to prove that g € L?(0,T).

In fact,

lgllz o) < D el lgilliz o)
keN
2

K2n
Le 1

< MZ T lluoll -1 (0,1
keN T

k22
e 12
H}(0.L)

! ( kT[ . )
SIin | ——
L
k272 (T—e)

< Mlluollgr-100) )€ 7
keN

Choosing € > 0 small enough such that T — e > 0, we deduce that

llgll 20,y < M lluollg-1(0,1) >
for some M > (0. Then, applying Lemma 2.4.5 the proof follows. O

Remark 2.4.1 (Control cost). We can estimate the constant M appearing in the above inequality.
The role of this constant (called the “cost of the control”) appears when we deal with the nonlinear
systems and prove local controllability using the controllability properties of the associated linearized
system (see the mext section and Chapter 5 for more details). To estimate this constant, we use the
general biorthogonal result (Theorem 2.1.15) to obtain the bound of the biorthogonal sequence (qi)ken
as
M Ak+M
||qk||L2(0,T) < Me T, for all k € N,

where recall that Ay = ki§2 for k e N. Thus, we have

”Clk”L?((),T)

-MT

e

lgllzor) < 3 = Mol o [sin(v2e )
(0.1) S\ (0.L)

H}(0.L)

A T+MAJ 2+ 4
< M luollg-1(0,1) Z e AT MV
keN

M, M2 1
< Mlluollgr (o) ), €7 e a7
keN

M, M2 1
< Me ™3 Jlugllg-1 (o) ), €27,

where we have used the Young’s inequality M\ = %\/AkT < Jéﬁ + &TT On the other hand, we have

that
_iaT 2 C
INT < ¢ 2.124
DD e (2.124)

for some C > 0 independent of T. Thus, we have
o)
lgll 20,y < CeT lluollg-1(0.L) (2.125)
for some C > 0 independent of T.
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We conclude this section with the comment that, like the finite dimensional linear systems, one can
prove the equivalence between controllability and observability by introducing a quadratic functional
in appropriate function spaces, see for instance [MZ04, Zua07]; see also the proof of Theorem 2.2.2.
More precisely, to prove null controllability of the heat equation (2.90) at any time T > 0 in the space
L?(0,L), it is enough to prove the following observability inequality:

T
|ttt > o)l (2.126)

for all o7 € D(A"), thanks to Theorem 2.2.8 (see Theorem 2.4.4 for comparison). For this, we define
the following subspace of L?(0,L)

T
H = {(pT € L*(0,L) : the solution ¢ of (2.95) satisfies / lo (£, L)|? dt < oo}
0

and define a quadratic functional J : H — R by

1 T L
Jor) = 5 /0 lou (1) 2 dt + /0 w0 ()p(0,x)dx, pr € H. (2.127)

Note that, thanks to Lemma 2.4.2, we find that D(A*) c H. Also, J is not coercive with respect to
the usual L>-norm. Thus, we define a new norm on H as follows:

1
T 2
lorllg == (/0 wa(t,L)Ith) : (2.128)
To prove this a norm, we only need to verify the following property:

llorllge = 0 implies @7 = 0.

Indeed, ||¢r]l4; = 0 implies ¢, (t,L) = 0 for a.e. t € (0,T). The observability inequality (2.126) is then
gives ¢(0,x) = 0 for a.e. x € (0,L). Since the heat equation has backward uniqueness property, we
readily have ¢r(x) =0 for a.e. x € (0,L).

With this new norm, the functional J is continuous and coercive on H. Therefore, J has a minimizer
(say ¢r) in H. Let ¢ denotes the solution of (2.95) with respect to this terminal data ¢r. Then, we
have

T L
/ Ox(t, L) px (8, L)dt + / up(x)@(0,x)dx =0 (2.129)
0 0

for all pr € H. On the other hand, we have for q(t) = —¢,(¢,L),

T L T
/ u(T, x)pr(x)dx — / up(x) (0, x)dx — / Ox(t,L)px(t,L)dt =0 (2.130)
0 0 0

for all 7 € H, thanks to eq. (2.106). Comparing the above two equations, we obtain

T
/ u(T,x)pr(x)dx =0
0

for all ¢ € H. Since the space H is dense in L?(0, L), we deduce that u(T,x) = 0 in (0,L). This proves
that the system (2.90) is null controllable at time T in the space L(0, L).

Remark 2.4.2. We note here that the observation term vy (-, L) does not necessarily belong to L*(0,T)
if we take vy € L?(0,L). Also, note that the space H&(O, L) c H, thanks to the regularity result (Lemma
2.4.3). Further, one can prove that H*(0,L) ¢ ‘H for any s > %

70
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2.5 A nonlinear heat equation

In this section, our main focus is to give a brief introduction to the “source term method”, introduced
by Liu, Takahashi and Tucsnak in [LTT13], to prove small-time local null controllability of a nonlinear
heat equation. This technique has been explained in detail in Chapter 5 for a nonlinear coupled
parabolic system, so we leave the technical details here.

For given finite time T > 0, we consider the following system

Yr = Yrx = f(y)s in (0,T) x (0,L),
yx(1,0) = q(t), yx(t,L)=0, forte (0,7), (2.131)
y(0,x) = yo(x), in (0,L).

Here yo € L%(0,L) is the initial state, ¢ € L?(0,T) is the (Neumann) boundary control and f is
a nonlinear function with f(0) = 0. Before writing any results, let us first define the notion of
controllability for this system.

Definition 2.5.1. We say the system (2.131) is small-time locally null controllable around the
equilibrium 0 in the space L?(0,L) if, for any given T > 0, there exists a & > 0 such that for given
yo € L?(0,L) with lyollp2(o,) < 6, there exists a control q € L?(0,T) such that the associated solution y
of (2.131) satisfies

y(T) =0.

If the above holds for any yo € L?(0,L), we say the system is globally null controllable in L?(0,L).

There are a significant amount of local and global controllability results known for the nonlinear
heat equation using a distributed or boundary control; see for instance the works [Bar00, DFCGBZ02,
E95, HSLBP23, FPZ95, FC97, F196, LB20a] and the references therein. In this section, we consider
the simplest case when f(y) = y? in (2.131) and provide a brief idea of proving small-time local null
controllability of (2.131), as mentioned in [LTT13]. We refer to Chapter 5 for more details.

Step 1. We first linearize the system (2.131) around the equilibrium point 0

Yr — Yxx = 0, in (0,T) x (0,L),
yx(t,0) = q(t), yx(t,L)=0, forte (0,T), (2.132)
y(0,x) = yo(x), in (0,L),

and prove null controllability of this system at any time T > 0 in the space L?(0,L) by using a
Neumann control g with the cost estimate

c
llgll 201y < CeT llyollr2 (o) s

for some constant C > 0 independent of T. To prove this result one can use, for instance, the
method of moments, which we have described in Section 2.4 for the heat equation with Dirichlet
boundary conditions; the same can be done for Neumann case also. We note here that, due
to the Neumann boundary conditions, the solution y of the linearized system (2.132) belongs
to CY([0, T];L?(0,L)) N L?(0,T; H'(0,L)); the proof of which will be similar to Proposition 5.2.3.
This is the main reason for considering the Neumann conditions instead of Dirichlet.

Step 2. We then consider the linearized system with a source term & € L(0,T; L?(0,L))

Yt — Yrx = &, in (0,T) x (0,L),
yx(t,0) = q(t), yx(t,L)=0, forte (0,T), (2.133)
y(0,x) = yo(x), in (0,L)
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and prove null controllability of this system at any time T in some weighted L? space. More
precisely, we prove the following inequality

y

wo

q

wo

+

5

c
< CeCTHT (||y0||L2(0,L) + 2(0.T:12(0 )))
L2(0,T;L2(0,L

C9([0,T1;L2(0,L))NL2(0,T;H* (O,L)) L2(0,T) s
for appropriate weight functions wo, ws € C°[0,T] with wo(T) = w(T) = 0, where C > 0 is a

constant independent of T. Note that, the above inequality gives y(T) = vljo((TT)) wo(T) = 0 (as
y(T)

w77 is bounded in L?(0,L)), proving null controllability of the system (2.133). We refer to
Proposition 5.4.1 for detailed explanations.

Step 3. Finally, for suitable § > 0, we define the mapping F : Ss — L2(0,T;L?(0,L)) as F(¢) = y? for
& € S5, where Sj is a 5-neighborhood around 0 of the wg-weighted L?(0,T; L%(0,L)) space. Then,
applying Banach fixed point theorem, we prove that there exists a § > 0 such that for yg € L?(0, L)
with [[yoll 2¢or) < 8, the map F: Ss — Ss has a unique fixed point f € Ss. This will imply that
the solution y of (2.131) satisfies y(T) = 0, proving small-time local null controllability of the
nonlinear system (2.131) in L2(0,L). We refer to Section 5.4.2 for more details.

Remark 2.5.1. Apart from the source term method mentioned above, there is an alternative approach/
variations to deal with the local controllability of the nonlinear heat equation (2.131). First, we fix a
given element 4 € L?(0,T; L?(0,L)) and consider the following problem

Yt — Yxx = f (), in (0,T) x (0,L),
yx(t,0) = q(t), yx(t,L)=0, forte (0,T), (2.134)
y(0,x) = yo(x), in (0,L).

Here, the term f(y) is appearing in the equation as a source term. If we are able to prove null
controllability of this system (2.134), then we can conclude small-time local null controllability of
the nonlinear system (2.131) by using a fized-point argument. Moreover, to prove null controllability
of (2.134), one may introduce a cost functional (with the source term f(7)) and try minimizing it to
deduce the Euler-Lagrange equation, which gives an equivalent condition for null controllability (similar
to (2.120) but with a source term f(y)). This technique has been addressed in many works, see for
instance the articles [EGGP12, EGG16, ES18] and the lecture note [Ervlj].
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CHAPTER 3

Linearized compressible Navier-Stokes
system (barotropic and non-barotropic)

This chapter is taken from the article [Kum?24]:
“J. Kumbhakar. Null controllability of one-dimensional barotropic and non-barotropic linearized
compressible Navier-Stokes system using one boundary control, 2023. doi: 10.48550/arXiv.2301.04080.”
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3. LINEARIZED COMPRESSIBLE NAVIER-STOKES SYSTEM (BAROTROPIC AND NON—BAROTROPIC)

In this chapter, we study boundary null controllability properties of the linearized compressible
Navier-Stokes equations in the interval (0, 2x) for both barotropic and non-barotropic fluids using
only one boundary control. We consider all the possible cases of the act of control for both systems
(density, velocity and temperature). These controls are acting on the boundary and are given as the
difference of the values at x = 0 and x = 2z. In this setup, using a boundary control acting only in
density, we first prove null controllability of both the barotropic and non-barotropic systems at large
time in the spaces (L%(0,27))? and (L2(0,27))? respectively (where the dot represents functions
with mean value zero). When the control is acting only in the velocity component, we prove
null controllability at large time in the spaces Héer(O, 27) x L%(0,27) and H;er((), 21) x (L2(0, 27))?
respectively. Further, in both cases, we prove that these null controllability results are sharp with
respect to the regularity of the initial states in velocity/ temperature case, and time in the density
case. Finally, for both barotropic and non-barotropic fluids, we prove that, under some assumptions,
the system cannot be approximately controllable at any time, whether there is a control acting in
density, velocity or temperature.

3.1 Introduction and main results

3.1.1 Linearized compressible Navier-Stokes system in 1d

Let I = (0,+00) be the time interval and Q C R be a spatial domain. For a compressible, isentropic
(barotropic) fluid, that is, when the pressure depends only on the density and the temperature is
constant, the Navier-Stokes system in I X Q consists of the equation of continuity and the momentum
equation

Pt(t, X) + (Pu)x(ta X) = 0,
p(t, %) [y (8, %) + u(t, x)ux (£, %)] + p2(E 1) = (A + 2 (£, %) = 0,

where p denotes the density of the fluid, u is the velocity. The constants A, p are called the viscosity
coefficients that satisfy g > 0 and A+ > 0. The pressure p? satisfies the following constitutive equation
inIxQ

pb(t,x) = ap¥ (t,x), (,x) €eIxQ,

for some constants a > 0 and y > 1. In the case of non-barotropic fluids, that is, when the pressure
is a function of both density and temperature of the fluid, the Navier-Stokes system consists of the
equation of continuity, the momentum equation, and an additional thermal energy equation

cyp(t, x)[0:(t, x) + u(t, x)05(t, x)] + 0(t, x)pgb(t, X)uy(t,x) — KOxx (£, x) — (A + 2y)u§(t, x) =0,

where 6 is the temperature of the fluid, ¢, is the specific heat constant, and « is the heat conductivity
constant. For an ideal gas, Boyles law gives the pressure p™(t,x) = Rp(t,x)0(t,x) in I x Q with R as
the universal gas constant. See [Fei04, Chapter 1] for more about compressible flows.

3.1.2 The barotropic case

Let T > 0 be a finite time. We first consider the Navier-Stokes system for compressible, isentropic
(barotropic) fluids linearized around some constant steady state (Qo, Vo) with Qg > 0 and Vp > 0

pe(t,x) + Vops (8, x) + Qoux(t,x) =0, in (0,T) x (0,2n),
2 _ 3.1
ut(tﬁx) - ; uuxx(t:x) + VOux(t, x) + aYQ)O/ 2px(t:x) = 0; ln (07 T) x (0> 2”) ( )
0
The initial conditions are
p(0,x) = po(x), u(0,x)=1up(x), x € (0,2r). (3.2)

We will consider two different problems, based on the act of control, by imposing any one of the
following boundary conditions on the system (3.1).
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3.1. Introduction and main results

e Control in density:

p(t,0) = p(t,27) + p(t), u(t,0) =u(t,271), ux(t,0) =uy(t,27), te€ (0,7T). (3.3)

e Control in velocity:

p(t,0) = p(t,27), u(t,0) =u(t,27) +q(t), ux(t,0) =uy(t,27), te (0,T), (3.4)

where p and g are controls acting on the boundary and are given as the difference of the values at
x=0and x = 2rx.

Definition 3.1.1. Let H be a Hilbert space. We say the system (3.1)-(3.2)-(3.3) (resp. (3.1)-(3.2)-
(3.4)) is

e null controllable at time T in the space H if, for any (po,uo) € H , there exists a control
p € L%(0,T) (resp. g € L2(0,T)) such that the associated solution satisfies

(p(T),u(T)) = (0,0).

e approximately controllable at time T in the space H if, for any (po,uo), (pr,ur) € H and any
€ > 0, there exists a control p € L?>(0,T) (resp. q € L*(0,T)) such that the associated solution
satisfies

(o (D), u(T)) = (pr,ur)lly < e

Our main goal in this article is to study null controllability of the system (3.1) at a given time T > 0
with the initial condition (3.2) and one of the boundary conditions (3.3) and (3.4).

Before stating our main results, we first define the positive constants

A+2pu
Qo

We also introduce the Sobolev space for any s > 0

H];s)er(o’ 2m) = {(P o= Z cneinx, Z |n|2s |Cn|2 < 00},

nez nez

, b=ayQl % (3.5)

fo =

with the norm

1
2
ol 020 = (Z(l +Inl?)* |cn|2) .

nez

For s > 0, we denote Hy.,.(0,27) to be the dual of the Sobolev space Hp, (0,2r) with respect to the

per

pivot space L?(0, 27). We also define the space

21
L2(0,27) := {(p € L%(0,2n) : / o(x)dx = 0}
0
and o
Hls)er(O, 2m) = {q) € H},(0,27) : / p(x)dx = 0}.
0

We also denote ngsr((), 27) as the dual of ngr((), 27) with respect to the pivot space L?(0,2x). Note

that, if the system (3.1)-(3.2)-(3.3) is null controllable at time T by using a boundary control p, then
integrating both equations in (3.1), we get a compatibility condition on the initial states

21 21 T
ayQS_Q'/O po(x)dx = VO/0 ug(x)dx = —ang_2V0'/0 p(t)dt.

If the system (3.1)-(3.2)-(3.4) is null controllable at time T by using a boundary control g, then also
we will get a similar compatibility condition on the initial states. Since every initial state (pg,ug) in
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3. LINEARIZED COMPRESSIBLE NAVIER-STOKES SYSTEM (BAROTROPIC AND NON—BAROTROPIC)

(L?(0,27))? will not satisfy this compatibility condition, we will work on the Hilbert space (L?(0, 27))?
to avoid this difficulty.

When a boundary control q is acting in the velocity component, it is known in [CM15] that the

system (3.1)-(3.2)-(3.4) is null controllable at time T > 2—” provided that the initial state is regular

enough, in particular, lies in the space H;g;(o, 21) X per(O 2m) for s > %. In the first part of our
article, we generalize this result (with respect to the regularity of initial states) In fact, we prove
null controllability of (3.1)-(3.2)-(3.4) at time T > 2:: in the optimal space per(O 2m) X L2(O 27) (see
Theorem 3.1.2). In addition, we also prove null controllability of the system (3.1) at time T > 2—g in
(L?(0,27))? when there is a boundary control p acting in the density component and that the null
controllability fails when the time is small, in particular, when 0 < T < %,—” (see Theorem 3.1.1).
These results requires certain restrictions on the coefficients appearing in the system (3.1); otherwise

the system is not even approximately controllable (see Proposition 3.1.1). To be more precise, if the

coefficients Qo, Vo, po, b (defined by (3.5)) satisfy —‘(500 € N, then the associated adjoint operator A*
(defined by (3.19)) admits an eigenvalue with algebraic multiplicity and geometric multiplicity both
are equal to 2, failing the unique continuation property (see the proof of Proposition 3.1.1 for details).

. 2bQo-V2 . . T . .
However, if 25—3% ¢ N, then all the eigenvalues of A* have geometric multiplicity 1 and in this case,
we can achieve null controllability of the system (3.1) by using one boundary control acting either in
density or in velocity.

The first main results concerning the null controllability of the system (3.1) are stated below.

Theorem 3.1.1 (Control in density). The following statements hold:

(i) Let us assume that —'bQO ¢ N. Then, the system (3.1)-(3.2)-(3.3) is null controllable at any
time T > %,—g in the Space (L2(0, 21))2.

(ii) If0 < T < 2Z the system (3.1)-(3.2)-(3.3) cannot be null controllable at T in the space (L*(0,2r))?.

Theorem 3.1.2 (Control in velocity). The following statements hold:

(i) Let us assume that 2—“’50 ¢ N. Then, the system (3.1)-(3.2)-(3.4) is null controllable at any
0,27) x L2(0, 27).

77.'

time T > o

in the space pcr(

(i) If 0 < s <1, the system (3.1)-(3.2)-(3.4) cannot be null controllable at any time T > 0 in the
space HS,,.(0,21) x L*(0,27).

per

Remark 3.1.1. Following the proof of Theorem 3.1.1 - Part (ii), lack of null controllability of the
2

system (3.1)-(3.2)-(3.4) cannot be obtained when the time is small, in particular, when 0 < T < 3.
Howewver, the lack of controllability at small time may be possible to obtain by constructing a Gaussian
beam, as mentioned in [Mail5, Theorem 1.5] for the interior control case. Further, null controllability
of the system (3.1) at time T = %,—’OT s inconclusive in both cases, whether there is a control acting in
density or velocity.

bQo

The following result shows that the restriction on the coefficients ( ¢ N) is necessary and

sufficient to achieve null controllability of the system (3.1).

2
Proposition 3.1.1. If "2 ¢ N the system (3.1)-(3.2)-(3.3) (resp. (3.1)-(3.2)-(3.4)) is not
approzimately controllable at any time T > 0 in the space (L?(0,27))?.

We note here that, due to the backward uniqueness property of the system (3.1), null controllability at
time T will give us the approximate controllability at that time T for both the systems (3.1)-(3.2)-(3.3)
and (3.1)-(3.2)-(3.4), see Section 3.4.2 for more details.
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3.1. Introduction and main results

3.1.3 The non-barotropic case

We next consider the Navier-Stokes system for compressible non-barotropic fluids linearized around
some constant steady state (Qo, Vo, ¥0) with Qo, Vo, o > 0

pi(t,x) + Vops (8, x) + Qoux (t,x) =0, in (0,T) x (0,2m),
2 R
(£, ) - %uxx(t, x) + %px(t, X) + Vo (1,2) +RO(6) =0, in (0.1 x (0.2m), (560
K Ry .
0,(t,x) — Q—Qxx(t, x) + U (b, x) + Vb (t,x) =0, in (0,T) x (0, 2x).
0Cv Cv
The initial conditions are
p(0,x) = po(x), u(0,x)=up(x), 0(0,x)=060y(x), x € (0,2r). (3.7)

In this case, we will consider three different problems, based on the act of control, by imposing any
one of the following boundary conditions on the system (3.6).

e Control in density:

p(t,0) = p(t,2m)+p(t), u(t,0) = u(t, 27), ux(t,0) = ux(t, 27), 6(t,0) = (¢, 27), 0x(t,0) = Ox(t,27). (3.8)
e Control in velocity:

p(t,0) = p(t,2m), u(t,0) = u(t,27)+q(t), ux(t,0) = uy(t,2m), 6(t,0) = 0(t,27), 0x(t,0) = Ox(t,27). (3.9)
e Control in temperature:

p(8,0) = p(t,2m), u(t,0) = u(t,27), uy(t,0) = ux(t,2m), 0(t,0) = 0(t,21) + r(t), 0,(t,0) = 0,(¢t,27).
(3.10)
for t € (0,T), where p,q and r are controls acting on the boundary and are given as the difference of
the values at x =0 and x = 27x.

In this case also, we want to prove null controllability of the system (3.6) at a given time T > 0
depending on the act of the control. Similar to the barotropic case, we will work on the Hilbert space
(L?(0,27))3 to avoid the compatibility conditions on the initial states.

Definition 3.1.2. Let H be a Hilbert space. We say the system (3.6)-(3.7)-(3.8) (resp. (3.6)-(3.7)-
(3.9), (3.6)-(3.7)-(3.10)) s

e null controllable at time T in the space H if, for any (po,uo,00) € H , there exists a control
p € L?(0,T) (resp. q,r € L2(0,T)) such that the associated solution satisfies

(p(T),u(T),0(T)) = (0,0,0).

e approximately controllable at time T in the space H if, for any given (po, ug, 6o),(pr, ur, 01) €
H and any € > 0, there exists a control p € L?>(0,T) (resp. q,r € L?(0,T)) such that the associated
solution satisfies

1(p(T), u(T),0(T)) = (pr>ur, Or)lly < €.

We next study mainly the null controllability of the system (3.6) at a given time T > 0 starting
from the initial condition (3.7) and with one of the boundary conditions (3.8)-(3.9) and (3.10). Since
the additional thermal energy equation satisfied by 8 do not have any coupling with the density p, we
can expect similar controllability results like the barotropic case. However, in this case, we have two
parabolic equations with coefficients 22 and £ and therefore by looking at [FCGBdT10, LdT13,

Qo Qocv
AKBGBAT14], one question arises naturally:

“Under what conditions on these coefficients, the system (3.6) is null controllable?”

In fact, we will prove that there exist coefficients for which the system (3.6) may not even be approx-
imately controllable at any time T > 0 in (L%(0,27))?. However, under some stronger assumptions
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3. LINEARIZED COMPRESSIBLE NAVIER-STOKES SYSTEM (BAROTROPIC AND NON—BAROTROPIC)

on the diffusion coefficients, we can prove null controllability of (3.6) at any given time T > 2Z in

Vo
appropriate spaces (see Theorem 3.1.3).

Before going any further, we first denote the (positive) diffusion coefficients for the non-barotropic
System

A+2
e/ L (3.11)
Qo

A
S = (/10,1(0) : \/g¢Q . (3.12)

We denote the same constant % by lambday instead of mugy to distinguish it from the barotropic
case. Also, the reason behind introducing such a set S is explained at the end of this section. First

we will state our next main results which concerns null and approximate controllability of the system
(3.6).

Ao :

and define the set

Theorem 3.1.3. Let us assume that (Ao, kg) € S be such that there exists a M > 0 with the property

that
Ao a 1
— > — 1
‘/Ko 7 >bM (3.13)

holds for all rational numbers §. We further assume that all the eigenvalues of A* (defined by (3.75))
have geometric multiplicity equal to 1. Then,

(i) the system (3.6)-(3.7)-(3.8) is null controllable at any time T > %,—g in the space (L?(0,27))3.

(i) the systems (3.6)-(3.7)-(3.9) and (3.6)-(3.7)-(3.10) are null controllable at any time T > 2—’5 in
the space Héer(O, 27) x (L?(0, 27))2.

Proposition 3.1.2. The following statements hold:

(i) The system (3.6)-(3.7)-(3.8) is not null controllable at small time 0 < T < %,—g in the space
(L2(0,27))3.

(i) The systems (3.6)-(3.7)-(3.9) and (3.6)-(3.7)-(3.10) are not null controllable at any time T > 0
in the space ngr((), 21) x (L?(0,2m))? for any 0 <s < 1.

Remark 3.1.2. Similar to the barotropic case (Remark 3.1.1), lack of null controllability of the system
(3.6)-(3.7)-(3.9) or (3.6)-(3.7)-(3.10) is open when the time is small, in particular, when 0 < T < %,—’OT
Moreover, null controllability of the system (3.6) at time T = 2Z is inconclusive in all cases, whether

Vo
there is a control act in density, velocity or temperature.

Like the barotropic case, null controllability at some time T implies approximate controllability
at that time T of the system (3.6), thanks to the backward uniqueness property of (3.6) (Section
3.4.2), and the following result shows that the restriction (g, ko) € S is not sufficient to conclude null
controllability of the system (3.6).

Proposition 3.1.3. There exist constants (Ao, k) € S and Qo, Vo, Yo, R, ¢, > 0 for which the systems
(3.6)-(3.7)-(3.8), (3.6)-(3.7)-(3.9) and (3.6)-(3.7)-(3.10) are not approximately controllable at any time
T > 0 in the space (L%(0,27))3.

Remark 3.1.3. Similar to the barotropic case, there exist constants for which the operator A* (defined
by (3.75)) has eigenvalues with geometric multiplicity greater than 1 (see Remark 3.5.2). Howewver,
characterization of these constants is quite difficult due to the complicated cubic characteristic polyno-
mial (3.87).
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3.1.4 An Ingham-type inequality

One of the main ingredients to prove the null controllability results for both barotropic and non-
barotropic systems (Theorem 3.1.1 - Theorem 3.1.2 - Theorem 3.1.3) is the following Ingham-type
inequality; the proof of this inequality is given in the next chapter (see Section 4.5).

Lemma 3.1.1. Let {VZ}nGZ and {VE}nez be two sequences in C with the following properties: there
exists N € N, such that

(H1) for alln,l € Z, v # vlh unless n=1;
(H2) vI = B+ tni+e, for all |n| > N;

where > 0, € C and {ep}|n>N € f2.
Also, there exist constants Ag > 0, By > 8 with 8 > 0 and some € > 0,r > 1 for which {V£}nez
satisfies

(P1) for alln,l € Z, vh # vf unless n =1;

(P2) % > ¢ for some ¢ > 0 and for all |n| > N;
(P3) |vf,’ —vﬂ >d8|n" =1"| for all n #1 with |n|,|l] = N and
(P4) €(Ao+ By |n|") < |[vh| < Ag+ By [n|” for all |n| > N.

We also assume that the families are disjoint, i.e.,

{Vﬁ,nEZ}ﬂ{Vﬁ,nEZ}=(I).

Then, for any time T > 27”, there exists a positive constant C depending only on T such that

/T Zane"gt+2bnevgt
0

nez nez
for all sequences {a,}nez and {bp}nez in .

2
dt > C (Z |an|2e2Re0OT 4 D 1bal?|, (3.14)

nez nez

Remark 3.1.4. In the proof of Lemma 3.1.1, we have used the following parabolic and hyperbolic
Ingham inequalities for the families (e"'ft)nez and (e"rlzt)nez respectively:

2

T
/ Z anev'ft dt > Cq Z la,|? e2Re(V5)T, for any T > 0, (3.15)
0 nez nez
T 2 9
Co Y Ibnl® < / > bpe'n!| dt < Cs > 1bal*, for any T > il (3.16)
nez 0 nez nez T

for some C; > 0,i = 1,2,3. If the sequence (V!),ez satisfy hypotheses (H1)-(H2), then the hyperbolic
Ingham inequality (3.16) can be deduced from the proof of Ingham [Ing36]; see for instance [CMRR1/,
Proposition 3.1]. On the other hand, the proof of parabolic Ingham inequality (3.15) requires the exis-
tence of a biorthogonal family (qx)kez € L2(0,T) of (e‘”gt)nez with the estimate ||qkll 201y < CeeeRe(V'l;)
for some Ce > 0 depending on some small parameter €, see for instance [LZ02, Proposition 3.2] and
[CMRR14, Proposition 3.2-3.3]; see also [Han91, Theorem 1.1] for the existence of a biorthogonal
family in this setup. Note that, the hypotheses (P1)—(P4) can be relaxed to the following:

{Re(—vﬁ) > bl |Vh-vh|=68In-m|, YnmeZ
(3.17)

1
2inez e < 0,
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3. LINEARIZED COMPRESSIBLE NAVIER-STOKES SYSTEM (BAROTROPIC AND NON—BAROTROPIC)

for some ¢,6 > 0. In this setup, we refer to [FCGBAT10, Proposition 3.4] for a proof of the inequality
(3.15); see also [LZ02, Proposition 3.2] for a version of (3.15) when the sequence (Vh)nez € R. More-
over, when the eigenvalues (VE)nez fails to satisfy the gap condition (hypothesis (P3)) but admits a
good approzimation (by rational numbers), there exists a biorthogonal sequence to the family (e"'ft)nez
in L2(0,T) with the required estimate (see for instance [LdT13, Lemma 2]), giving the inequality (3.15)
in this case also. As a consequence, the combined parabolic-hyperbolic Ingham-type inequality (3.14)
can also be deduced under these new assumptions on the sequence (V2)nez.

Notations: For any vector v, we denote its transpose by v’ (instead of v7). Throughout the article,
C > 0 denotes a generic constant that may depend on the time T.

Proving null controllability of the systems (3.1) and (3.6) using a boundary control is equivalent
to proving an observability inequality for the corresponding adjoint systems. Spectrum of the as-
sociated linearized operators (for the adjoint systems) and the above Ingham-type inequality (3.14)
plays a crucial role to prove such observability inequalities. For the system (3.1) (barotropic fluids),
spectrum of the associated adjoint operator consists of two branches of complex eigenvalues, namely,
the hyperbolic and parabolic branches. The hyperbolic branch has eigenvalues with the real part
converging to —11%, whereas real part of the parabolic branch diverges to —co. We have obtained
explicit expressions of the eigenvalues and eigenfunctions in terms of a Riesz basis (See Lemma 3.2.3
for details). For the non-barotropic fluids (that is, system (3.6)), we get three branches of complex
eigenvalues; one is of the hyperbolic type, and two are parabolic types. Similar to the barotropic
case, the real part of the hyperbolic branch converges to —ﬁ—lﬁo and real parts of both the parabolic
branches diverge to —co. In this case, we have obtained explicit expressions of eigenfunctions and
asymptotic behavior of the eigenvalues (Lemma 3.3.3). We also proved that the eigenfunctions form
a Riesz basis in (L2(0,27))? for the barotropic system (Proposition 3.2.3) and in (L?(0,27))? for the
non-barotropic system (Proposition 3.3.4). Then, by writing the solutions to the corresponding ad-
joint systems in terms of the eigenfunctions, the null controllability results have been proved using

the combined parabolic-hyperbolic Ingham type inequality (3.14).

A vast amount of literature is available on the controllability of Navier-Stokes equations for in-
compressible fluids. For instance, one can see the works of Coron [Cor96], Coron and Fursikov
[CF96], Fursikov and Imanuvilov [FE96, FE99], Imanuvilov [Ima98, Ima0l], Ferndndez-Cara et al.
[FCGIP04a, FCGIPO06], Guerrero [Gue06], Coron and Guerrero [CG09], Chapouly [Cha09], Coron
and Lissy [CL14], Badra, Ervedoza and Guerrero [BEG16], Coron, Marbach and Sueur [CMS20]. In
comparison, for compressible fluids, less works are available on the Navier-Stokes system’s controlla-
bility. In this context, we first mention the work of Ervedoza et al. [EGGP12], where the authors
established local exact controllability of one dimensional (nonlinear) compressible Navier-Stokes sys-
tem at a large time T in the space H3(0,L) x H3(0,L) using two boundary controls. This result has
been improved in [ES18] where the null controllability is achieved in the space H'(0,L) x H*(0,L).
However, studying the controllability of the (nonlinear) compressible Navier-Stokes system using only
one boundary control is challenging and it is an interesting open problem. In this article, we focus
only on the linearized system and study controllability properties.

It is known in [CRR12] that, for barotropic fluids, the one-dimensional compressible Navier-Stokes
system linearized around (Qp,0) (with Qg > 0) cannot be null controllable at any time T > 0 by
using a boundary control or a localized distributed control. For the linearized system around (Qy, Vo)
(with Qo, Vp > 0), the authors in [CMRR14] proved null controllability of the Navier-Stokes equations
(with homogeneous periodic boundary conditions) for viscous, compressible isothermal barotropic
fluids at time T (large) in the space ngr((), 27) X L?(0,27), when there is an interior control acting
only in the velocity equation. They also proved that the space Héer(O, 27) x L?(0,27) is optimal
in the sense that if one choose the initial states from Hf)er(O, 27) x L?(0,27) with 0 < s < 1, the
linearized system cannot be null controllable at any time T > 0. In the case of linearization around
(Qo, Vo) with Qp, Vp > 0, the compressible Navier-Stokes system (3.1) is equivalent (in some sense) to
the transformed system in [MRR13]. Using a moving distributed control, the authors in [MRR13]
proved the null controllability of a one-dimensional structurally damped wave equation in the space
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H**2 x H® for s > % There is a generalization to this result in higher dimensions by Chaves-Silva,
Rosier, and Zuazua [CSRZ14b]. Inspired by the work of Martin, Rosier and Rouchon [MRR13],
Chowdhury and Mitra in [CM15] proved the null controllability of the same compressible Navier-Stokes
system linearized around (Qy, Vp) at time T (large) by using a boundary control acting on the velocity
component through periodic conditions, provided the initial states are regular enough, more precisely,
in the space H;gg(o, 271r) X ngr(O, 27m) with s > 4.5. However, the question of null controllability at a
large time T in the space Hgg;(o, 271)><ngr(0, 27) with s < 4.5 was unaddressed in [CM15], and up to the
author’s knowledge, there has been no improvement of this result. In this chapter, we have answered
this question (see Theorem 3.1.2). In fact, we have proved null controllability of the linearized system
(3.1)-(3.2)-(3.4) at large time T in the space Héer((), 27) x L?(0,27) by using one boundary control
acting in the velocity component. We have also proved that our result is optimal in the sense that
the system (3.1)-(3.2)-(3.4) cannot be null controllable at any T > 0 by a boundary control (acting
in velocity) when the initial states belong to the space ngr((), 27) x L?(0,27) with 0 < s < 1. On
the other hand, when a control is acting only in the density component through periodic boundary
conditions, we have established null controllability of the linearized system (3.1)-(3.2)-(3.3) at large
time T in the space (L?(0,27))? and that null controllability fails at small time T. In this context,
it is worth mentioning that the authors in [CM15] could only proved null controllability in the space
H*5(0,27) x ngr(O, 2m) with s > 4.5 is because of the biorthogonal estimate (corresponding to the

per
hyperbolic family (e'nt Ynez) of order |k|* (see Proposition 3.2 in [CM15]), which forces the initial state
to be more regular. However, in our case, we have used the Ingham-type inequality (3.14) which
do not require any biorthogonal estimate of the family (evfft)nez, giving the optimal space for null
controllability of (3.1). Furthermore, null controllability of the system (3.1) under the assumption
24/bQo -V

Ho
assumption, the system (3.1) fails to satisfy the unique continuation property; as a result the system

(3.1) cannot be approximately controllable in (L?(0,27))? at any time T > 0.

€ N was not addressed properly in [CM15, Remark 3.4] and we have proved that, under this

For the non-barotropic fluids, it is known in [Mail5] that the compressible Navier-Stokes system
linearized around (Qo,0,¥p) (with Qp, 9 > 0) is not null controllable at any time T > 0 by using
a boundary control or a localized distributed control. For the linearization around (Qq, Vp, ) with
Q0, Vo, ¥p > 0, it is only known that the system is not null controllable at small time by a localized
interior control or a boundary control acting on the velocity component (see [Mail5, Theorem 1.5]
for instance). To the author’s knowledge, no controllability result is known for the linearized system
around (Qo, Vo, ¥o), that is, the system (3.6), when the time is large, which is studied for the first
time in this article. On the other hand, for nonlinear system, we mention the work of [Moll9],
where the author proved local null controllability of the nonlinear system, in dimensions 1,2 and
3, at large time in the space H2(Q) x H?(Q) x H?(Q) using three controls acting on velocity and
temperature on the whole boundary and density on the inflow boundary. Moreover, in one dimension,
this result has been improved by choosing the initial state from H'(0,L)x H*(0,L) x H*(0, L). However,
controllability of this nonlinear system using one boundary control is very difficult to study and is
an open problem. In this article, we study null and approximate controllability of only the linearized
version, mainly the system (3.6). Since the system (3.6) consists of a transport equation coupled
with two parabolic equations, it is worth mentioning some results known for the coupled parabolic
equations. In [FCGBdT10], the authors considered a 2-parabolic system with diffusion coefficients
d1,d2 > 0 and with zeroth order coupling. They proved that the coupled parabolic system is (boundary)

approximately controllable at time T > 0 if and only if d; = d> or . /Z—; ¢ Q. Moreover, they also proved

that, when d; = do, the system is (boundary) null controllable at any time T > 0. If j—; ¢ Q, the
authors in [LdT13] provided an example of a system which is approximately controllable but not
null controllable at any time T > 0. This phenomena occurs because eigenvalues of the associated
operator condensate; as a consequence, fails to satisfy the gap condition, which is very crucial to
obtain L?-estimate of the biorthogonal family. However, they [LdT13] also proved that, if d; = 1 and
Vdy ¢ Q is such that we can approximate it as |\/d_ - %| > b% for some C,N > 0 and all rational
numbers 7, then the system is null controllable at any time T > 0. Such approximation is referred as
“Diophantine approximations”. Thus our assumption in Theorem 3.1.3 seems appropriate. We refer
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to [AKBGBdAT14] for more insights in this matter, in terms of condensation index of the eigenvalues
and minimal time for null controllability of one dimensional coupled parabolic equations. In the
context of controllability results for general coupled parabolic equations, we refer to the works of
[Gue07, BBM20, BBGBO14, AKBGBdT11a, KBDK05, AKBGBdT11b] (and the references therein).

The main difficulty in the linearized compressible Navier-Stokes system is the presence of trans-
port and parabolic coupling. The thermoelasticity system is also an example involving both transport
and parabolic effects. Lebeau and Zuazua[LZ98] have studied distributed controllability for thermoe-
lasticity systems. Following [LZ98], Beauchard et al. in [BKLB20] proved null controllability for
some coupled transport-parabolic systems when an interior control is acting on the system. They
proved null controllability at large time T in the space L?(0,27) x L2(0,27) by one interior control
acting in the density equation and in the space H?(0,2x) x H2(0,27) when only one interior control
is acting in the velocity equation; see also [KL23] for an improvement of the controllability space to
H'(0,27) x L%(0,27) in the velocity (internal) control case.

In [BCDK?22], Bhandari, Chowdhury, Dutta and the author considered the linearized compressible
Navier-Stokes system (3.1) with Dirichlet and mixed (Periodic-Dirichlet type) boundary conditions.
We proved that the system (3.1) (with Dirichlet boundary conditions) is null controllable at large time
T in the space L?(0,1) x L?(0,1) by using a boundary control acting only on the density part. On the
other hand, when a boundary control is acting only on the velocity component, we proved that the
system (3.1) (with Dirichlet-Periodic boundary conditions) is null controllable at large time T in the
space H 3 (0,1)xL%(0,1). We have applied the Ingham-type inequality (3.14) and the moments method
to prove these controllability results. In contrast to [BCDK22], the main contribution of this article
is that we prove the null controllability of the one-dimensional linearized compressible Navier-Stokes
system for both barotropic and non-barotropic fluids by using only one boundary control. We consider
all the possible cases of the act of control for both systems (3.1) and (3.6). Further, we obtain better
regularity of the initial states for the controllability of barotropic system (3.1) compared to [CM15].
In the case of non-barotropic fluids, since the transport equation does not affect the temperature
equation, it is pretty natural to obtain similar spaces of null controllability of the system (3.6). The
combined parabolic-hyperbolic Ingham type inequality (Lemma 3.1.1) helps us obtain each case’s best
possible results (with respect to the state space). Our results cannot be obtained as a consequence
of interior control results by the extension method. In addition, when the boundary control acts in
the density component, we prove that both systems (3.1) and (3.6) are not null controllable at small
time. The proof is inspired from [BKLB20] and is independent of that in [Mail5].

The result stated in Theorem 3.1.1 is similar to the results in [BKLB20], showing that we can
achieve the space (L2(0,27))? in the case of only one boundary control (acting in density) also. Likewise
the case of interior control [CMRR14, BKLB20, KI.23], we also obtain similar results for our boundary
control case (acting in velocity) (Theorem 3.1.2).

The rest of this chapter is organized as follows:

— In Section 3.2, we prove all the controllability results for the barotropic system (3.1) at a large
time T using a boundary control that acts either in density or velocity, that is, Theorem 3.1.1
and Theorem 3.1.2. The proof of lack of approximate controllability at any time T under the
restriction on the coefficients (Proposition 3.1.1) is also included in this section.

— In Section 3.3, we consider the non-barotropic system (3.6) and give all the related controllability
results based on the act of the control, namely the proofs of Theorem 3.1.3 and Proposition
3.1.2. We have also included the proof of lack of approximate controllability result at any time
T (Proposition 3.1.3).

— In section 3.4, we give few comments and open questions regarding controllability results under
Dirichlet or Neumann boundary conditions and the backward uniqueness property.
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3.2 Controllability of the linearized compressible Navier-Stokes
system (barotropic case)

3.2.1 Functional setting
Recall from (3.5) the positive constants

A+2u
Qo

-2
Lo = , b= ang .

We define the inner product in the space (L2(0,27))? as follows

2T 27
<(fl) ) (ﬁ)> =b fi(x) fa(x)dx + Qo / g1(x)g2(x)dx,
g1 g2 L2xL2 0 0

for f,¢; € L2(0,2x),i = 1,2. From now on-wards, the notation (-, -);2,;2 means the above inner product
in L? x L?. We write the system (3.1) in abstract differential equation

U'(t) = AU(t), U(0)=Up, te (0,T), (3.18)

where U := (p,u)?, Uy := (po, up)" and the operator A is given by

_VO Ox _QO Ox
—boy HoOxx — Vpox

with the domain

D(A) := H},(0,21) x H},,(0,27).

er

The adjoint of the operator A is given by

oo [V00 Qodx (3.19)
bo, HoOxx + Voox ’
with the same domain D(A*) = D(A). The adjoint system is then given by
—o0(t,x) — Vyox(t,x) — Qouy(t,x) =0, in (0,T) x (0,2mx),
—0;(t,x) — povxx (2, x) — Voux (t,x) — box (8, x) =0, in (0,T) x (0,2m), (3.20)
o(t,0) =o(t,2m), 0(t,0) =0(t,271), 0,(t,0) =0,(t,27), t€(0,T), ‘
o(T,x) = or(x), o(T,x) =vr(x), x € (0,2r).
We now write the adjoint system with source terms f and g.
011, %) = Voo (£, %) — Quox(£,%) = f, in (0,T) x (0, 27),
=0, (t, %) — poUxx (t, ) — Voux (t,x) — boyx(t,x) = g, in (0,T) x (0, 2), (3.21)
o(t,0) = o(t,27), 0(t,0)=0(t,27m), vy(t,0) =0,(t,27), t€(0,T), '
o(T,x) =or(x), o(T,x)=o07(x), x € (0,2r).

3.2.2 Well-posedness of the systems

This section devotes to the well-posedness of the system (3.1) under the boundary conditions (3.3),
(3.4) and the initial conditions (3.2), and the adjoint system (3.21).

When there is no control acting on the system, we have the existence of solutions to the system (3.1)
using semigroups.
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Lemma 3.2.1 ([CMRR14, Lemma 2.1]). The operator A (resp. A*) generates a C°-semigroup of
contractions on (L%(0,21))2. Moreover, for every Uy € (L?(0,27))? the system (3.18) admits a unique
weak solution U in C°([0,T]; (L?(0,27))?) and

WUl (120,27))2 < C 10oll(12(0,27))2
for all t > 0.
The following lemma shows the existence of a unique weak solution to the adjoint system (3.21).

Lemma 3.2.2. The following statements hold:

1. For any given source term (f,g) € L%(0,T;(L%(0,27))?) and given (or,vr) € (L%(0,271))2, the
adjoint system (3.21) has a unique weak solution (o,v) in the space

C°([0,T];L*(0,27)) x [C°([0,T];L*(0,27)) N L*(0, T; H}, (0, 2))].
Furthermore, we have the hidden reqularity property o(-,2m) € L?>(0,T).
2. For any given (f,g) € L2(0,T;ngr(0, 21) x L%(0,27)) and (or,07) € nglr((), 27) x L%(0,27), the

system (3.20) admits a unique solution (o,v) € CY([0, T];nglr(O, 21) x L%(0, 27)).

In particular, when (or,vr) = (0,0), the solution (o,v) belong to the space

C([0,T]; H} ., (0,21)) x [CO([0, T]; Hye, (0, 27)) N L*(0, T; Hp (0, 27))].
Proof of the first part is given in Appendix A.0.2; see also Appendix A.1 for the hidden regularity
result. For the second part, we refer to [CMRR14, Proposition 2.5], see also [Gir08, Chapter 4].

Once we have the existence results of the homogeneous system (without any boundary control) as-
sociated to the system (3.1), we can now guarantee the existence of a unique solution to the system
(3.1) (in the sense of transposition) when there is a boundary control p (resp. g¢) acting in density
(resp. velocity) in the space L%(0,T). Before writing the statements, let us first define the notion of a
solution in the sense of transposition.

Definition 3.2.1. We give the following definitions based on the act of the control.

1. For any given initial state (po,up) € (L?(0,2m))? and boundary control p € L>(0,T), a function
(p,u) € L?(0,T; (L?(0,27))?) is a solution to the system (3.1)-(3.2)-(3.3) if, for any given (f,g) €
L%(0,T; (L%(0,27))?) the following identity holds true:

T
/0 (ot ), ult, N, (£t 1, g () oo

T
= <(p0(.),u0(.))T’ ((0,-),v(0, .))v>L2xL2 + b/o [Voa(t, 21) + Qou(t, 27) | p(t)dt,
where (0,0) is the unique weak solution to the adjoint system (3.21) with (or,vr) = (0,0).
2. For any given initial state (po,ug) € (L?(0,27))? and boundary control g € L*(0,T), a function

(p,u) € LZ(O,T;HIjelr((), 27) X L2(0,27)) is a solution to the system (3.1)-(3.2)-(3.4) if, for any
given (f,g) € L*(0, T;Héer(O, 27) x L%(0,27)) the following identity holds true:

T
[ ot 00900 Yy,

T
= <(,00(‘)au0('))', (a(0,-), v(0, .))T>L2xL2 + QO/O [ba(t, 27) + Vou(t, 27) + povx (¢, 27) | q(1)dt,
where (o,v) is the unique weak solution to the adjoint system (3.21) with (or,vr) = (0,0).
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Proposition 3.2.1. For any given initial state (pg,up) € (L?(0,27))? and boundary control p €
L2(0,T), the system (3.1)-(3.2)-(3.3) admits a unique solution (p,u) in the space

C°([0,T1; L%(0,2m)) x [CO([0.T]; L*(0,27)) N L*(0,T; H},., (0, 27))].

Proposition 3.2.2. For any given initial state (po,up) € (L%(0,27))? and boundary control q €
L2(0,T), the system (3.1)-(3.2)-(3.4) admits a unique solution (p,u) in the space

CY([0,T]; Hyer (0, 2)) X [CY([0, T]; Hyey (0, 27)) N L*(0, T; L*(0, 271))].

The proof of the first result (density case) will be similar to that given in the Appendix A.0.2.
For the velocity case, the proof can be done in a standard fashion using the semigroup theory of the
homogeneous system and the properties of the transport and parabolic equations, see for instance

[CR13, Gir08].

3.2.3 Spectral analysis of A*

We denote the spectrum of A* by o(A*). The following lemma gives behavior of the spectrum of the
operator A*.

Lemma 3.2.3. The following statements hold.

)}

(ii) sup{Re(v) : v e a(A*), v# 0} <O.

(i) ker(A*) = span{(i),

(iii) The spectrum of A* consists of the eigenvalue vo = 0 and pairs of complex eigenvalues {vF, vh} ez

glven as
1
Vi = -3 (ugn — Hant = 4bQon? — 2Vgin), (3.22)
W= 1 4 2
n="3 pon® + ,uon — 4bQgn? - 2Vyin|, (3.23)

for all n e Z*.

(iv) The eigenvalues satisfy the following properties

. . Re(v?

lim e Re(VE) = —wp,  limjp) e % —Ho

lim|n|_)oo Im(nv,’:) = Vo, lim|n|_>(x, Im;v,‘;) = V()
with wg = b}%

(v) The eigenfunctions of A* corresponding to v and vh are respectively

h P Qo
CDZ g Qo einx’ q)g § — [ vV einx, (324)
’7n Vg -V ’7n 1

orn e where V' = = anda v orne
fi Z*, where v = 2vE and vi = Ly f A

mn

Proof. We prove each part separately.

Part-(i). Let ® = (£,17)" € D(A*) be such that A*® = 0. This gives Vo&x+Qonx = 0 and pofx+Vonx +b&x = 0
and therefore we have pgVonxx + (VO2 —bQo)nx = 0. The boundary conditions (0) = n(27) and
Nx(0) = ny(27) implies n = constant and consequently ¢ = constant.
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Let ® = (£,1)" € D(A*) be the eigenfunction of A* corresponding to the eigenvalue v # 0. Then,
’7 ’7 L2xL2 ’7 ’7 L2xL2

that is,

20 21 21

bVo £(x)&x (x)dx + bQo EQ0)nx (x)dx + poQo / 1(x) nxx (x)dx
0 0 0

21

2r . 2 2
+ 0ol /O P 400 [ &Gy = vb /0 GO dx + Q0 /0 In(x)? d.

An integration by parts yields

10Qo ||’7x“%2(0,27r)
b ||§||§2(0’2n) + Qo ||’7||z2(0,27r)

Re(v) =

which proves part (ii), since n cannot be constant for nu # 0, thanks to the first part.

We denote
Pn(x) =™, nel.

0
Then the set {(t’)n) , ( ) i neE Z} forms an orthogonal basis of (L?(0,27))2. Let us define
®n

on O
En = ( " ), and q)n = (§n> r]n)T’
0 o¢n

for all n € Z. Then, we have the following relation
A*E,®, = E,R,®,, neZ (3.25)

where the matrix R, for n € Z is given by

n «-—

(3.26)

Voin Qoin
9 , neZ.
bin —pgn® + Wyin

Thus, if (an, vn) is an eigenpair of R,, then (E,a,,v,) will be an eigenpair of A*. Therefore, it
remains to find the eigenvalues and eigenvectors of the matrix R, for n € Z. The characteristics
equation of R, is

v2 = (—pon? + 2Vyin)v — poVoin® — V02n2 +bQon? =0, (3.27)

for all n € Z. Therefore, the eigenvalues of the matrix R, are

1 1
v’,} =35 (—,uon2 +2Vpin + 1/,ugn4 - 4bQ0n2) , Vb= B (—,uon2 + 2Vyin — 1/,ugn4 - 4bQ0n2) ,

for all n € Z. Note that, 0 cannot be an eigenvalue of the matrix R, for all n € Z* and V; cannot
be an eigenvalue of R, for all n € Z, because b, Qo, o, Vo > 0. Let us denote v] := ﬁvﬁ and

vy = %vﬁ To find the eigenvectors of the matrix R,,, we first consider the equation

h

n for n € Z,

Rna,}l’ =v a,};,

where 0(,}1’ = (af, ag)T, that is,

(Voin — via® + Qoinall = 0, bina® + (—pon® + Voin — v)al = 0, (3.28)
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Part-(iv).

for all n € Z. One solution is given by

h_ ay [ Qo
I = ar] v =y,
2 2 0

Ruab =vEak, fornez

, neZ. (3.29)

We next consider the equation

where af, := (BT, ﬁ’;)%, that is,
(Voin — vi) i + Qoinfy = 0, binf} + (—pon® + Voin — vi) i = 0, (3.30)

for all n € Z. One solution is given by

n Qo
af,’:(ﬁl) ::(Vl"—VO), nez. (3.31)
B3 1

Thus, the eigenvectors of R, corresponding to the eigenvalues vﬁ and V£ are respectively

am n nQo
a,}l’z = Qo , af,’: hi =["Y] nez
ol vy = Vo B 1

Hence, the eigenvalues of the operator A* are vy := 0 and

1 1
= 3 (—,uon2 + 2Vpin + ,/,ugn‘l - 4bQ0n2) , Vb= 3 (—,uon2 + 2Vyin — ,/,ugn‘l - 4bQ0n2) ,

for n € Z* and the corresponding eigenfunctions are respectively

h é:P
. " .
o = ';l = E,al = ol'e™, of = o] = Enal = abe™,
Mn M

for all n € Z* and x € (0,2x). This proves parts (iii) and (v).

Follows immediately from the expression of the eigenvalues v and v4, given by (3.22)-(3.23).
Indeed, we can write

2b 2 4b
v = % +Vpin, and 2 = -2 (/104'\/#(2)— go)+Voin
[ 2 _ 4bQo 2 n
Ho+[Hy — =2

for n e Z*.

O

From the expression of the eigenvalues given by (3.22)-(3.23), we can further deduce several im-
portant properties, which are given by the following Lemma:

Lemma 3.2.4 (Properties of the eigenvalues). Let n,l € Z*. Then,

(i) v = vlh if and only if n=1.

JhO—V2
(ii) if ny := 2175—3‘/0 €N, then vf,’l = v’_’n1 and v # vf for remaining n,1 € Z* with n # 1.

(iii) if no : 2V N, then vj.’ = vf for j =+ng and v # Vf for all n,1 € Z* \ {#xng}.

Ho

\/ Vo2
(iv) if 2 ﬂiQO, 2 bSOO % ¢ N, then all the eigenvalues of A* are simple.
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Proof. We prove each part separately.

Part-(i). Let us denote ng := 2 "PI;QO. Then, Im(v?) = Vyn for all |n| > ng and therefore v # v;l for all

Inl, 1| > ng with n # I. For 1 < |n| < ng, we have v = —=2n% +i(Vyn +% 4bQon? — p2n*). Since

Im(v") # Im(v" ) for all 1 < |n| < ng, we readily have v # v;’ for all 1 < |n|,|l| < ng.
For 1 < |n| < ng, we have V2 = —2n? +i(Von — §,/4bQon? — p2n*). Then, Im(v2) = -Im(+*,))
for all 1 < |n| < ng, which implies v = v’, holds only if Von — 5./4bQon? — p2n* = 0, that is,

\/ 2
when n = 2!;(5—;,1/0' Moreover, Re(v) # Re(vf ) for remaining values of n,l € Z*(n # ), implying
v # v

Part-(ii). Note that Im(v}) = Von for all |n| > ng and therefore v/ # vf for all |n|,|l| = nop with n # L

Part-(iii). Let n,l € Z* with |n|,|l| > ng. Since Im(v") = Im(v2) = Vyn, therefore Im(v?) = Im(vf) is
true if and only if n = [ and Re(v?) # Re(v5). This proves that v # vf for all |n|,|l|] > ng.
For 1 < |n|,|l| < ng, Re(v") = Re(vh) = —%OnQ and therefore Re(v) = Re(vf) holds if and
only if n = #I. On the other hand, Im(v") # Im(vf) for n = +I, which implies v} # Vf for all

1< |n|,|I] < ng. Let 1 < |n| < ng and |I| > ng. Then, v! = -5n?+ i(VOn+% 4bQon? — p2n*) and

vf = -2 - %,/pgl‘l — 4bQol2 + Vpil. Thus v = vf implies %,/y%l‘l —4bQol? = -8 (I? - n?) <0,
which is not possible. Therefore, the only possible case is |n| = |I| = ng and in this case, we have

v = vf , which proves part (iii)

Part-(iv). Follows from parts (i), (ii) and (iii).

This completes the proof. ]
. b . . .
From this Lemma, we note that when ng = 2 yOQO € N, the matrix R; admits an eigenvalue
2 Qo o
V= —% +iVpj of multiplicity 2 with the eigenvectors «; := i v for j = +ng. Let a; = (07{, 07%) be
V2 — Yo

the generalized eigenvector corresponding to v; for j = +ng, then we have the following set of relations:

(3.32)

(iVoj — vj)a] +iQojiy = Qo,
ibja] + (—poj* +iVoj — vj)ag = v — Vo,

for j = +ng. Thus, if 2 ‘/ZQO
the eigenvalue vj.l = Vf =v; for j = £ng. We denote the generalized eigenfunction corresponding to v;

by ® ;1= aje* for j = xng. Also, recall that the set of eigenfunctions corresponding to the eigenvalue

) 1 1
vo=01is {Pg := 1

can prove that the set of (generalized) eigenfunctions of A* form a Riesz basis of (L2(0,2x))2.

€ N, the operator A* admits generalized eigenfunction corresponding to

, &)0 =

}. Then, with the above mentioned properties of the eigenvalues, we

Proposition 3.2.3. If % e N, the set of (generalized) eigenfunctions
E(A) := {cpﬁ, O neZ\ {xn}; @) ; : j=0,in0}

2yb0Qo

Ho

form a Riesz basis in (L*(0,2x))2. In particular, when ¢ N, the set of eigenfunctions

{d)ﬁ, o on EZ*}
of A* form a Riesz basis in (L?(0,2x))2.

88



3.2. Controllability of the linearized compressible Navier-Stokes system (barotropic case)

) - 0\ .
Proof. Denote ¥y(x) := (%0) e, ¥y(x) = (1) e'"™® for n € Z. Then, the set of generalized eigenfunc-

tions {Cbﬁ ® : nez\ {xny); D, &)j 1 j=0, ino} of A* is quadratically close to the orthogonal
basis {‘I’n, Y, ne Z} in (L?(0,27))%. Indeed, we have for a large N € N

|

|n|>N

o —p,

n

2 - 9 1
(20202 2% - \P"”(LQ(O’Z””Q) =C InIZ>N e

thanks to the fact that |v§ - V0| < % and |v’11 - V0| > C|n| for large n. Since the set {‘I’n, ¥, :ne Z} is
an orthogonal basis of (L2(0,27x))?, this Proposition is now an immediate consequence of the result of
Bao-Zhu Guo [Guo01, Theorem 6.3]. O

3.2.4 Observation estimates

As mentioned in the introduction, we need to prove certain observability inequalities to achieve null
controllability of the system (3.1) and to do so, we need lower bound estimates of the corresponding
observation terms (when the control is acting in density or velocity). Looking at the Definition 3.2.1
of the solution to (3.1) (in the sense of transposition), let us first define the observation operators
associated to the system (3.1) as follows:

e The observation operator 8 : D(A*) — C to the system (3.1)-(3.2)-(3.3) is defined by

B,® = Wé(2n) + Qon(2r), for @:=(&n) € D(AY). (3.33)

e The observation operator B;, : D(A*) — C to the system (3.1)-(3.2)-(3.4) is defined by

B, @ := bé(2m) + Von(27) + pony(27), for @ := (& 1) € D(A"). (3.34)

Recall that &(A*) denotes the set of all (generalized) eigenfunctions of A*. The following result proves
that these observation terms are non-zero for all ® € E(A*) \ {®g,®j, j = 0,+np}, and have positive
lower bounds for all n € Z*.

Lemma 3.2.5. For all ®, € E(A*) \ {Dy, (iJj, J =0,£n0}, the observation operators satisfy B,®, # 0
and B0, # 0. Moreover, we have the following estimates

* 1 h
R

>C, |8

>C, (3.35)

*xh
Buq)n

C .
z 00 |B; %] > Cnl, (3.36)
n

for some C >0 and all n € Z*.

Proof. Recall from the proof of Lemma 3.2.3 that eigenvectors (af, arg‘)T and (f7, ﬁ’g)T of the matrix R,
satisfies the following equations:

(Voin — vIa® + Qginall = 0, bina® + (—pon® + Voin — v)alt = 0, (3.37)
(Voin — V) B+ Qoinfit = 0, binfl + (—pon® + Vin — i) B = 0, (3.38)

for n € Z. Also, recall the expressions of v} = #Vﬁ and v = %vh. We will use these equation to

n
conclude the proof of this result. Note that

B;CDZ = Vo&"(27) + Qonl(27) = Voo + Qoalt = via® # 0,
By} = Vo&y (27) + Qorn (2) = Vo + Qo = vipT # 0,

for all n € Z*, thanks to the first equations of (3.37)-(3.38). The estimates on B;;(I)Z and B;;Cbﬁ follows
directly from the above expressions.
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For the parabolic frequencies, we have

B! = bl (27) + Vol (27) + po(n)x (27) = bal + (Vo + poin)all = vial # 0,
Bi0h = bk (27) + Vonh (27) + po (nh)« (27) = b + (Vo + poin) By = viBh # 0,

for all n € Z*, thanks to the second equations in (3.37)-(3.38). Since |af| > ﬁ and v} is bounded

(away from zero) for all n € Z*, the estimate on B:®! and B*®, follows directly from the above
expressions. ]

Remark 3.2.1. For the genemhzed ezgenfunctwn <I> € S(A*) (j = +no) we can choose 0‘1 and a2
accordingly so that B, CD Vgoc1 + Q0a2 £ 0 and B i T+ (Vo + ;101])0(2 #0 for j = %ng.

3.2.5 Observability inequalities

In this section, we prove our main null controllability results of the system (3.1), namely Theorem
3.1.1 and Theorem 3.1.2. We first state two results which are equivalent to null controllability of the
system (3.1) using controls acting in density and velocity respectively. The proofs are standard (see
for instance [MZ04, Section 2.3.4],[Zua07, Section 4.3]), so we skip the details.

Theorem 3.2.1. Let T > 0 be given. Then, the system (3.1)-(3.2)-(3.3) is null controllable at time T
in the space (L?(0,27))? if and only if the inequality

T
I 0271))2 = C/ Voo (t,27) + Qoo (t, 27) | dt (3.39)
’ 0

holds for all solutions (o,0)" of the adjoint system (3.20) with terminal data (or,vr)’ € D(A*).

Theorem 3.2.2. Let T > 0 be given. Then, the system (3.1)-(3.2)-(3.4) is null controllable at time T

in the space pe]r(O 21) x L2(0,27) if and only if the inequality

T
2
||(0(0):0(0))T||H1;gr(o,2n)xL2<0 om) < C/ |bo(t,27r) + Voo(t, 27) + povs (£, 27)|* dt (3.40)

holds for all solutions (o,0)" of the adjoint system (3.20) with terminal data (o1,07)" € D(A*).

The inequalities (3.39) and (3.40) are referred as observability inequalities for the systems (3.1)-
(3.2)-(3.3) and (3.1)-(3.2)-(3.4) respectively. To prove these inequalities, we will use the Ingham-type
inequality (3.14) to obtain a lower bound of the observation terms (given in the right hand sides of
(3.39) and (3.40)) together with the upper bounds of norms of (¢(0),2(0))T in the respective spaces.

Let 2—'bQ§ ¢ N. We first assume that 'ﬂbQO ¢ N, that is, all the eigenvalues of A* are simple
(Lemma 3.2.4-(iv)), and prove null controllability of the system (3.1) (Theorem 3.1.1-Part(i) and

Theorem 3.1.2-Part(i)). In the case of multiple eigenvalues (when 2\{1@ € N), we give a detailed
proof of Theorem 3.1.1-Part(i) at the end of this section. The proof of Theorem 3.1.2-Part(i) in the
presence of multiple eigenvalues will be similar to that of Theorem 3.1.1-Part(i) and so we give some
comments at the end of this section.

3.2.5.1 The case of simple eigenvalues

V2 94/ ,
2 b(ig Y , 2 HI;QO ¢ N and let (or,07)" € (L?(0,27))2. Since the set of eigenfunctions

{®h, @ ; n € Z*} forms a Riesz basis in (L?(0,27))? (thanks to Proposition 3.2.3), therefore any
(or,0r)" € (L(0,27))2 can be written as

(or,0r)" = Z (GZ¢Z + aﬁ)ﬁ)

nez*

Let us assume that
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for some (al),ez+, (ah)nez- € £. Then the solution to the adjoint system (3.20) is

(a(t, x),v(t,x))T — Z aZeV'I’I(T_t)CDZ + Z aﬁevg(T—t)d)ﬁ,

nez* nez*

for (t,x) € (0,T) x (0,2x). Thus, we get

By ~ 0
o(t,x) = Qp Z gl (T=0) ginx Z LT nQ . oinx,
nez* nez* Vi~V

and
o(t,x) = Z aﬁe"'}:(T_t)(vg — Vo)™ + Z aﬁevg(T_t)ei"x,
nezZ* nez*
for all (¢,x) € (0,T) x (0, 2x).
Estimates on the norms of (¢(0),2(0))": We have

2 .
”(U(O)’0(0))T||?L'2(0,2n))2 <C Z a, (1 + |V§l B V0|2) e2Rea)T ”emx”;(o,zn) (3.41)
nez*
+ Z |a§|2 (;2 + 1) eQRe(Vrf)T ||einx||i2(02ﬂ)]
nez* v - Vg ’
sc| Y + )l enectr],
nez* nez*
since the sequences 1 + !vg‘ - V0|2 and 1+ 1V P are bounded for all n € Z*. We similarly have
0

|V1_

h

an

2,

nezx

, (3.42)

21
”(O'(O)’U(O))T”fqggr(ozn)xp(0,2ﬂ) <C W + Z |aﬁ|2 eQRe("f)T

nez*

since the sequences v — Vp, %_VO ~ 00 % We now find the lower bounds of the respective observation
1

terms and prove our main null controllability results for the barotropic case. We use the Ingham-type
inequality (Lemma 3.1.1) to obtain these bounds. First, we show that the eigenvalues (V,};)neZ* and
(vP) ez satisfy all the hypotheses of Lemma 3.1.1. Recall the set of eigenvalues (vf,’)nez* and (V0) ez
of the operator A*:

]/Z = — (ﬂonQ — /187’14 - 4bQ0n2 - 2V()ln) s

2
Vp 1 2 2.4 2 i
n = _5 Hon + pon - 4bQ0n - 2V0m 5

for n € Z*.
. . 24/6Q0 24/bQ0-V?2
e Due to the assumption on the coefficients ( yOQO, fg Y ¢ N), we have v # vlh, vh vf for

all n,1 € Z* with n # [ and the families are disjoint, that is, {v",n € Z*} n {v4,n € Z*} = 0, thanks
to Lemma 3.2.4.

e We now rewrite v" as

pon® — \Jugn* — 4bQon?
v = wo + Vpin — wg ,
pon? + \Jpan* — 4bQon?

ho
This shows that the family (v?),cz- satisfies hypothesis (H2) of Lemma 3.1.1 with f = —wo, 7 = Vg
pon® = pén*—4bQon?
pon?+\/ pgnt—4bQon?

|n| > np.

and e, = —wg for |n| = ng. Note that |e,| < # and therefore (e,)|n|>n, € fo-
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e On the other hand, we have for all |n| > ng

—Re(v)) 1 pon” + [ pgn* — 4bQon? n

()] ~ 2 Vo = oy

which verifies hypothesis (P2) of Lemma 3.1.1.

e We now compute for |n|, |l| = ng with n # [

2
Ve -] = (,uo(n —12)+\/y0n4 4bQyn? — \/y214 4bQ012) +V2(n -1

1
Z 7 (llo(n2 = I?) + pon”

Let |n| > |I|. Then we have pon?. |1 — i’;‘jg > pol? [1 - il;%, and this implies
0 0

2
=P > R - = -] B,

l

We similarly have for |n| < ||

0
Vb —vP| = %(12 ~n?).
This proves that (vi,i)|,,|2n0 satisfies hypothesis (P3) of Lemma 3.1.1 with r =2 and § = 5.

e Finally, we have for |n| > ng

and therefore

Ho 4 Mo 4
2" < |V‘Z’ < 2 Y |n| = ng.
This proves that the family (vﬁ)\n|2n0 satisfies hypothesis (P4) of Lemma 3.1.1 with € =

Aoz()andBO:f/—%>5.

L
\/57

We are now ready to prove the null controllability results of the system (3.1) in the case of simple
eigenvalues.

Proof of Theorem 3.1.1-Part (i): Let T > %,—g Thanks to Theorem 3.2.1, it is enough to prove the
observability inequality (3.39), that is,

T
2
/0 Voo (t, 27t) + Qoo (t, 27)|* dt > C”(0(0),0(0))T||(L-2(0,2”))2,

for all (or,07)" € D(A¥). Recall the operator B, given by (3.33). Then, we can write the observation
term as

2

Z ahev (T- t)B <I>h+ Z ae "(T_t)BZCDﬁ dt.

nez* nez*

T
/ Voo (t, 27r) + Qoo (t, 2)|* dt = /
0
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Using the combined parabolic-hyperbolic Ingham type inequality (3.14) (Lemma 3.1.1) and the ob-
servation estimates (3.35), we obtain
1

This estimate together with the norm estimate (3.41), the observability inequality (3.39) follows. This
completes the proof in the case of simple eigenvalues. ]

T 2
/ Voo (£, 27) + Qoo (£, 2m) |2 dt > C |
0

2Re(V)T |+ g h
e " B,P,

h
> Jeh
nez*

n|? P12 _2Re(v)T
>l 3 ke

nez* nez*

2 N Z ’a§|2 eQRe(Vf)T |B;(D‘Z
nez*

>C

Proof of Theorem 3.1.2-Part (i): Let T > %,—’Of Similar to the density case, it is enough to prove the

observability inequality (3.40), that is,

T
2
'/0 |b0(t, 2”) + Vov(tﬁ 2”) + #OUx(t: 2”) I2 dt 2 C ||(O-(0)a U(O))T”H};elr (O,QH)XLQ(O,QII) 5

for all (o7,07)" € D(A*). We have

2

aZeV'?(T_t)B;dDZ + Z aﬁe"’f(T_t)BZCDﬁ dt,

nez* nez*

T T
/ |bo(t, 27r) + Voo(t, 27) + povs (£, 27)|* dt = /
0 0

where B; is defined in (3.34). Using the combined parabolic-hyperbolic Ingham type inequality (3.14)
(Lemma 3.1.1), we obtain

T
/ |bo(t, 27r) + Voo(t, 27) + povs (£, 27)|* dt
0

>C Z ‘airf eQRe(v,’;)T‘BZcDZ2 N Z |aﬁ|2 p2Re()T |Bf,d>ﬁ|2]
nez* nez*
| 3 Jaf Lo 3l ementr |,

2
nez* |n| nez*

thanks to the estimate (3.36). Combining this estimate and (3.42), we deduce that

T
/O bo(t, 27) + Voo (t, 27) + povs (¢, 27)]* dt > C||(a(0), 0(0))"'||H5e1r (02012 (0.2 -

This proves the observability inequality (3.40) and hence the proof is complete for simple eigenvalues.
O

3.2.5.2 The case of multiple eigenvalues

In this section, we prove null controllability of the system (3.1) in the presence of multiple eigenvalues.
The proof will be similar in both cases (control acting in density or velocity), so we present a detailed
proof for the density case and give brief details for the velocity case. The proof is inspired from
[KLO5, Section 4.4] and [CMRR14, Section 4.2] and throughout the proof, we assume the conditions

VbQo-VZ . .
ng = % e N and QS—EVO ¢ N. Then, we only have two multiple eigenvalues VZO = vﬁo =: v, and
vt no = V2 o =t V_n, With the generalized eigenfunctions {®n,, ®n,} and {@_,, @_,,} respectively, where

D = (&, ryj)Jf and d~>j = («fj,ﬁj)T for j = +ng.

Control in density. Let (o7, 07)" € (L?(0,27))%. We decompose it as

(or,0r)" = (or1,011)" + (or2,072)", (3.43)
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where
(or1,0m,1)" = Z (a;®; +a;P;)

J=#£ng

and

(or2,072)" = Z (a"oh + b)),

neZ*\{xno}

Let (o1,01)" and (o9, v2)" be the solutions of the adjoint system (3.20) with the terminal data (or1, vT,l)Jr
and (or2,072)" respectively. Then, we have

(onon’= Y €T (a0; + (T - )3, (3.44)
J=%no
and
(09,09)" = Z (aZeVg(T_t)CDﬁ + aﬁe"g(T_t)Cbﬁ) (3.45)
nezZ*\{xng}

In the expression of (g2,v2)", all eigenvalues are simple, so we have the following observability inequality

(3.46)

T
112
/0 Vooz (1, 27) + Qova(t, 2m)* dt > C||(62(0),02(0)[[¢12 (g 9.2 -

Note that Voo1(t, 27) + Qov1 (L, 27) = Xjosn, eV (T=1) (ajB;dDj + (T - t)&jB;&)j). We first add the term

e'no(T=1) (a,,OBZCDnO + (T - t)anB;i)no) in the above inequality. Denote

Y (1) := Voo (t, 21) + Qua(t, 27) + €'ro (T71) (anOB;d>n0 +(T - t)anB;&)no)

and

)
Z(@) =Y(t) - 2—15 e Y (t +s)ds

for t € (6,T — &) with § > 0 (chosen later accordingly). Then, we have the following estimate (see
[KLO5, Section 4.4] for details).

T-6 T
/ 1 Z(1)]?dt < c/ |V (t)| dt. (3.47)
) 0

We now prove that
T-6
2
./5 |Z(t)|2 dt 2 C “(0.2(0)’ 02(0))T”(L2 (0,27))2 * (348)

From the expression of Y(t), we can get

inh h_ . P
Z(t) — Z aﬁevff(T—t)B;q)Z (1 _ S ((Vn v 0) ))

h
neZ\ {tno} (Vi = Vg9
L F ety )
neZ\{+no} (Vh = vng)d

Since inf,ez\ (£no} !vZ - vn0| > 0 and inf,ez\ (2ny) |vf,) - vn0| > 0, we have (for appropriate § > 0)

nf 1- sinh((v! = v,,,)9)

1 sinh((v5 — Vng)9)
nezZ\{+no} (vfll — Vny)O

s |

>0, and inf
neZ*\{xng}
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3.2. Controllability of the linearized compressible Navier-Stokes system (barotropic case)

Since T > %,—g, we can choose § small enough such that T — 26 > %,—g Applying Ingham-type inequality

(3.14) (for simple eigenvalues), we obtain

T-6 2 2 2
/5 ZwPdrzc| Y ‘aﬁ| e2Re<vr’i>T|3;c1>ﬁ oy |a£{2e2Re<V5>T|B;§q>ﬁ

neZ*\{xno} nezZ*\{xno}

> C||(02(0), 22(0) {1222 -

Therefore, using the estimate (3.47), we obtain

T
| WP e,0.00 i gan e (3.49)

Since T > %,—g, we can choose € > 0 such that T — € > %,—Z Therefore we can write

T
2
| woR > Clox©. 00 s gy
and thus

T T 9
/ Y (1)) dt > c/ WY (1) dt = C||(02(),02(€)) [ 120202 - (3.50)

0 €
Thanks to the well-posedness result (Lemma 3.2.2) of the adjoint system (3.20), we have

€
12
/ [Vooa (t, 27) + Qoua(t, 27)|* dt < C||(02(6),02(6))’||(L~2(0 2m))2 - (3.51)
0 )
From equations (3.50) and (3.51), we deduce that

T €
/ Y (6)]? dt > C/ [Vooa (t, 27r) + Qoua(t, 27) |2 dt (3.52)
0 0

Using this inequality, we obtain

[

2
dt (3.53)

0T (a5, B0, + (T = 1)iny BBy |
€ €
sc/ |y(t)|2dt+c/ [Vooa(t, 27r) + Qoua(t, 27) |2 dt
0 0

T
< C/ |V (1)]? dt
0

We now prove that

[

Denote the finite dimensional space

“ar 2 jan, | +[a, ) (3.54)

0T @y By By + (T = 1), By b, |

X = span {@p, On,

and define norms on X:

€
6 or.0)|[ : = /

A . 2
(61(0), 01(0))T|}(L2(0,27t))2 ’

2
dt,

g0 (T=1) (anOB;d)nO +(T - t)anB;i)no)

l6ror0) ;- = |

where (61(t),91(t))" = e (T~ (an0<1>,,0 + (T - t)&noéno) for t € (0,T) is the solution of the adjoint

system with terminal data (67,1,67,1)" € X. In fact, ||(67,1,971)|, = 0 implies B;®,, = B;Pp, = 0.
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3. LINEARIZED COMPRESSIBLE NAVIER-STOKES SYSTEM (BAROTROPIC AND NON—BAROTROPIC)

This gives ®,, = ®,, = 0 (thanks to Lemma 3.2.5 - Remark 3.2.1) and hence (67.1,67.1) = (0,0). Also,
(61(0),91(0)) = (0,0) implies ®,, = ®,, = 0 and consequently (61,91) = (0,0).

Since any two norms in a finite dimensional space are equivalent, we can write

[

proving the inequality (3.54). Hence, using (3.53), we finally obtain

2
dt > C|

) . 2
(61(0),91(0)) k||(12(0,27r)>2 ’

eV (T=1) (anOB;‘bno +(T - t)dnoB;fi)nO)

T
[ @R @600 g (3.55)

This inequality, together with (3.49) implies

T
/0 Y () dt = C [[[61(0),81 002 2m 2 + 1200002000 |20y 2

~ ~ 2
> C|(2(0) +61(0),92(0) + 61 (0) [ 120,212

Proceeding in a similar way, we can add the term e*-mo(T=%) (a_nOBZCD_nO +(T - t)d_noB;&)_,,O) and

obtain the desired observability inequality

T
2
'/0 |V00-(ta 27[) + QOU(t: 2”)|2 dt > C ||(O'(0), U(O))T”(I';(O,Q”))Q .
This completes the proof of Theorem 3.1.1-Part (i) in the case of multiple eigenvalues. 0

Control in velocity. The proof of Theorem 3.1.2-Part (i) (control acting in the velocity component) in
the case of multiple eigenvalues can be done in a similar way as above. The only missing part is the
following admissibility condition (see the inequality (3.51))

€

/0 |bos (1, 27) + Vova (t, 27) + pig (02)x (t, 27) | dt < C|(o2(e), vg(e))*”HEelr (0.2)xE2(0.27) (3.56)
The terminal data (o9,v2) € nglr((), 27) x L?(0,27) is less regular and so one cannot expect that
the observation term boo (-, 27) + Voua (-, 27) + o (v2)x (- 2m) € L%(0,€) for some € > 0. This is the
main difficulty of boundary controllability in comparison with the distributed controllability. In this
context, we refer to [CMRR14, Equation (4.43)], where one can easily have the admissibility condition
due to the internal control. However, in our setup, we can obtain a slightly modified estimate (weak
admissibility) to (3.56) as follows:

€

2 2
/0 |bon (t, 27) + Voua (8, 27) + po(v2)x (£, 270)|> dt < C ||(02(6),02(e))T||H};elr (020012 (020 - (3.57)

Using this inequality (3.57) and proceeding similarly as before, we can obtain the required observability
inequality (3.40) in the presence of multiple eigenvalues. Thus, the only technical part is to prove the
inequality (3.57), which we prove below:

Recall the expression of (g2,v2)" given by (3.45). We compute

€

/ " \boa(t, 27) + Voo (1, 27) + 1o (02 (1, 27)|” dt
0

2
%
S/ Z (aﬁevfl;(T_t)BZCDﬁ+aﬁe"'€(T_t)BZ<I>ﬁ) dt
0 |nez\{zno)
€ 2 € 2
2 2
S/ Z aZeV'?(T_t)B;CDZ dt+/ Z aﬁe"'f(T_t)B;;(D’,; dt
0 1hez\(2no) 0 lnezi\{+no}
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3.2. Controllability of the linearized compressible Navier-Stokes system (barotropic case)

Note that

2

aﬁevflli(T_t)BZdDZ dt <C Z ad'groht| < Z
neZ*\ {£ng} neZ\{ng) neZ\ {£ng) In

wolm

2 jah|”

>

J

thanks to the inequality (3.16) (right side). Note that the estimate |B;®"| < % follows due to the

fact that Bid" = vial for all n € Z* (see the proof of Lemma 3.2.5). For the parabolic part, we apply
Holder’s inequality to obtain

(3.58)

2

5
/ aﬁe"’e(T_t)B;(Dﬁ dt

0 lnez\{zno)

%

. Z |a£|2 (ZRe(E) (T—e) Z |B;jd>£|2 e-zRe(Vﬁ)(T—e)/ (2R (T=1) 4y

neZ\{+no} neZ\{+no} 0
< Z |a£|2 eQRe(vf;)(T—e) Z |B;‘Dﬁ|2 eRe(V,I;)e

nezZ*\{xng} nezZ*\{xno}
<C Z |ab|” e2ReCm) (=€)

nezZ*\{xng}

as we have Re(v/) < 0 for all n € Z*. Combining these two estimates, we obtain

€

2
/ |bos (t, 27) + Voua(t, 27) + pio (v2) (£, 27)|* dt (3.59)
0
jat”
a 2 _
<C Z Lz +C Z |ah| e2Re(w) (T=¢)
neZ\{+no) In neZ N\ {+no)

On the other hand (recall the expression given by (3.45) and (3.24)), we have

2
” (02(€), v2(€))" ”nglr (0,27)x12(0,277)

b

2
( ety 4 dhertir-o_Q_
neZ\{+no) In|

V?—VO

+Qo ‘age”}‘lq—e)(v; - Vo) + aﬁe"g(T_e)

)

2
) (3.60)

Since v} = Vo ~1oo n and v — Vo ~4e0 %, we deduce that for N large enough

h Q 2
hewi (=)0 +aﬁev5(T‘€) 0

+Qo |aZeV'IZ(T_e) (v —Vo) + aﬁevg(T_e)

n —
In|>N vi =V
ot 2 oRe(rf
n —
>C 5 +C Z |aﬁ| 2Re(r) (T-€)
non 17 [n[>N
This can be seen from the following inequality:
1 Wn 2 Zn 2 |Zn|2 2
—5 zn+ | [T+ wa| 2 C[5 + wal?, (3.61)
In n In

for all complex sequences (zp)|nj>n and (wy) s >~, Where N € N is arbitrarily large number. Indeed, if
Zn, Wy # 0 for all |n| > N, then we can write

2
, |n| > N.

1

In|”

2 _ |Zn|2
2

wp |2

Zn
Zn + —

Zn
+|2Z +w,

n

nz,

2

+1

[ Wl

In n
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3. LINEARIZED COMPRESSIBLE NAVIER-STOKES SYSTEM (BAROTROPIC AND NON—BAROTROPIC)

> 0 and inf|n|>N

Zn
nwy,

If inf|n|>N|1 + ,;WT'; + 1| > 0, the inequality (3.61) is obvious. Let us assume

inf|n|>N
This implies ;”—: =n(-1+46,) for all n € N and therefore

1+ 221 =0, then we can write (up to a subsequence) 1+ 2= = §, where §, — 0 as n — co.
n n

2 2
1 w,
_+_
n

Z 2 2 2
f"'wn =|Zn| chnl |Zn| .

1
= |Zn|2 ’_ - n(_l + 5n)
n

n

2 2 2
On the other hand, we have |n|? |z,|? = % |zn] + % |za|? > % |zn]? + C |wp|?, proving the inequality
(3.61). Similarly, we can prove (3.61) in the case inf|,>x |nz—‘:’,n +1|=0.
Now, adding finitely many terms in the estimate (3.60) (or, one can include these finitely many
terms in (o1,01)" part), we get that

Al

a
oo @ i =¢| 3 B e S apanenna) g
? nezivieno) M7 nezf\Teng)

With this, the inequality (3.57) follows. O

3.2.6 Lack of null controllability for less regular initial states

We first write the following result, the proof of which is standard and so we skip the details (see
Theorem 3.2.2).

Proposition 3.2.4. Let 0 < s <1 and T > 0 be given. Then, the system (3.1)-(3.2)-(3.4) is null
controllable at time T in the space H;er((), 27) x L2(0,27) if and only if the inequality

T
2
”(0.(0)’ U(O))T”Hggr(o,Qn)XL'Q(O)?”) < C/O |bo(t,27) + Vou(t, 27) + poox(t, 27)|? dt (3.63)
holds for all solutions (o,0)" of the adjoint system (3.20) with terminal data (or,0r)" € D(A*).

To prove Theorem 3.1.2-Part (ii), it is enough to find a sequence of terminal data (o7, 0})pcz+ €
D(A*) for which the observability inequality (3.63) fails. We will show below that the eigenfunctions
corresponding to the hyperbolic branch of eigenvalues helps us disprove this observability inequality.
3.2.6.1 Proof of Theorem 3.1.2-Part (ii)

For (o, v;?)T = ®" the solution to the adjoint system (3.20) is
(0" (£:x),0"(1,x)" = &% T00] (),

for (t,x) € (0,T) x (0,27) and n € Z*. Recall the expression of ®” from (3.24). For all n € Z*, we have
the following estimate
‘(ID

2
1™ (0, 0" (0) s, 0 20 120,20 2

C

h s &
Hys (0.2m)x£2(0.27)  |n|®’

n

and therefore
C

|n|2$
for all n € Z*, since Re(v") is bounded. On the other hand, we have the upper bound of the observation
term

T
/ |ba"(t, 27) + Voo (t, 27) + pool(t, 27r)|2 dt < W’
0 n

for all n € Z* (see (3.58) for instance). Thus, if the observability inequality (3.63) holds, then one
must have

C C
< = In>* <,
Inl™  Inl|
which is not possible due to our assumption 0 < s < 1. This completes the proof. O
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3.2. Controllability of the linearized compressible Navier-Stokes system (barotropic case)

3.2.7 Lack of controllability at small time

We prove that the system (3.6) is not null controllable in L?(0,27) when the time is small, that
is, Theorem 3.1.1-Part (ii). We construct an approximate solution for the corresponding transport
equation. The idea of constructing an approximate solution for the transport equation was addressed
in [BKLB20], where the authors proved a lack of null controllability result at a small time in the
case of an interior control (acting only on the transport equation). Very recently, in [CDM23, Section
6], this approach has been applied to a coupled transport-elliptic system in the case of a boundary
control (acts in density). We will follow mainly the proof given in [CDM23] to prove our lack of null
controllability result when the time is small.

3.2.7.1 Proof of Theorem 3.1.1-Part (ii)

Let 0<T < %,—g We first consider the transport equation
- - bQo . _
O-t(ta x) + VOO'x(ta x) - _O-(t: x) - Oa (ta .X') € (O> T) X (Oa 2”):
Ho

5(t,0)=6(t,27), te(0,T), (3.64)

o(T,x) =or(x), x€(0,2r)

with 67 € L?(0,27) . Since VT < 27, there exists a nontrivial function 67 € C*(0,27) with supp(67) C
(VoT, 27) such that the solution & of (3.64) satisfies 6(t,0) = 6(t,2x) =0 for all ¢t € (0,T), but & is not
identically zero in (0,T) X (0,2x). Let N > 0 be a fixed integer. We define the polynomial

N
PN(x) = [ [ (x=1), xe(0,27) (3.65)
I=—-N
1#0
and the function
d
N =pN (—ia) or. (3.66)

Since &7 € L?(0,27), we can write

or(x) := Z ane™, x € (0,2n),

nez*
where (an)nezs € f2. Using the definition of PV given by (3.65), we get from (3.66) that

6]TV(x) = Z an ﬁ (—i% - l) e = Z an ﬁ (n—1)e"™ = Z anPN (n)e™=,
I=-N

nez* I=-N nez* nez*
1#0 1#0

for x € (0,27). Note that PN(n) =0 for all 0 < |n| < N and therefore

6'%1(x) = Z a, PN (n)e™, x € (0,2n).

[n|>N+1
With this 6JTV , let us now consider the following system

b
Go+Vode = 220 iy (0,7) x (0,27),
Ho

5(t,0) = 5(t,27),  for t € (0,T), (3.67)

&(T, x) = 67 (x), in (0,27).

99



3.

LINEARIZED COMPRESSIBLE NAVIER-STOKES SYSTEM (BAROTROPIC AND NON—BAROTROPIC)

Since supp(&JTV) c supp(or) € (VoT,2x), the solution N of (3
all t € (0,T). We now consider the following adjoint system
or + Voo + Qoux =0,

0 — HoUxx + Voux + boyx =0,

o(t,0) = o(t,2m),

0(t,0) =o0(t,2m), vx(t,0) =0,(t,2m),
o(T,x) = oy N(x), o(T,x) = vg(x)

where we choose U%’ such that

o) = > aneh
[n|>N+1
with dﬁQo := a,PN(n) for all |n|
respectively as

.67) satisfies aN (t,0) = 6N (t,21) = 0 for

in (0,T) x (0, 2),
in (0,T) x (0, 2x),
for t € (0,7),

for t € (0,7),

in (0, 27),

(3.68)

> N + 1. We write the solutions to the systems (3.67) and (3.68)

b0 .
&N (t,x) = Z anPN(n)e(Vom_TOO)(T_I)e”‘x, (3.69)
|n|>N+1
Ntx)= ) anPN (n)e"n (T=1) ginx, (3.70)
[n|>N+1
Nex)= Y apPV (n) e'n (T=1) ginx, (3.71)
|n|>N+1 0
for (t,x) € [0,T] x [0,27]. We prove that the solution component o of (3.68) approximates the

solution ¢V of (3.67). Indeed,

o™ () = N 0 o

2 in—2=0
< 3 al?[PY ) -ty _ (voin-"20)r-o|f
|n|>N+1 LQ(O,T)
2
— 9% (n— n2_ Q0 r_
< Z |a,,|2|PN(n)|2 Voin(T—-t) , N \/7)” ) _ (Voin=220)(T-1)
|n|>N+1 201
2
Hon 5 4bQq
=
< Z |a,,|2|PN(n)|2 e ( 1y e Ho (T-t)
|n|>N+1
L2(0,T)
< Z zlanl |PN(”)|
|n|>N+1| |

for all x € [0, 2] and therefore

C

-dV(,x 5 —
o= ol < o

2,

(, T)

for all x € [0,27]. We also find L?- estimate of the solution component v

> lanl? [PV ()] 'V;Q—O

2
”UN(" x)HLQ(o,T) <
|n|=N+1

<C > anl PN ()

|n|=N+1
C

S —_—
INI?

T2
In |

|n|>=N+1
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lanl? PN (n)[°,

|n|>N+1

N We have for all x € [0, 27]

H vi(T- t)

£2(0,1)

> lanl PN ()



3.2. Controllability of the linearized compressible Navier-Stokes system (barotropic case)

Let us now suppose that the following observability inequality holds

T
2 2
/0 Voo™ (¢, 27) + Qo™ (¢, 27)|” dt > c||(aN(0),oN(O))||(L-2(O,2”))2. (3.72)
Then, we have

1™ (0), 0™ 0D 2020

T
< c/ Voo™ (1, 27) + Qoo (¢, 2m)[” dt
0
T 2 N ~N 2 2 [~N 2 21 N 2
sc/ (Vo [N (2, 27) = &N (¢, 27))|" + Vg |o™ (¢, 2)|” + QF [o™ (1, 270) )dt
0

C
< 2, lallPYol,

[n|>N+1

as we have 6N (t,0) =0 = &N (t,2x) for all t € (0,T). Thus we get

+ C C
o™ Ol 02 = 1™ O™ O iz gz < x5 2 Nanl PO < 15 0¥ O 00
[n|>N+1

since Re(vﬁ) is bounded. Therefore, 1 < % for all N and hence the above inequality cannot hold.
This is a contradiction and therefore the observability inequality (3.72) cannot hold. This completes
the proof. O

3.2.8 Lack of approximate controllability

In this section, we prove that the system (3.1) is not approximately controllable at any time T > 0

VbQo -V,
Ho

2
in (L2(0,27))? when we have the restriction on the coefficients 2 ¢ e N (that is, Proposition
3.1.1). We present the proof of Proposition 3.1.1 in the case when there is a boundary control acting
in density component. The proof will be similar for the velocity control case and so we omit the
details.

3.2.8.1 Proof of Proposition 3.1.1

1/ _vy2
Let T > 0 be given and 2%—5% € N. To prove this result (in the density case), it is enough to find
a terminal data (or,07) € D(A*) such that the associated solution (o,v) of (3.20) fails to satisfy the
following unique continuation property:
Voo (t,27) + Qou(t, 2r) = 0 implies (o0,0) = (0,0),

~/ _y2
see for instance [Cor07, Theorem 2.43]. Let us denote n; := 21’%—5% and the eigenvalue Vﬁl = V’—)nl =:

Qo
vn,- The eigenfunctions of A* corresponding to this multiple eigenvalue v,, are CIDﬁl = ("1 ll‘VO) eimx

Qo

and @, = (Vlnll‘VO) e~ M~ (see (3.24) in Lemma 3.2.3). We now choose the terminal data as

(or,0r)" = C®}, + DL,
where C, D are (complex) constants that will be chosen later. The solution of (3.20) is then given by
(a(t),0(t)" = emT=0 (coh +D®”, ), te(0,T).
Recall the operator 8, given by (3.33). We get

pny p—n1

Voo (t, 27) + Qoo(t, 27) = e (=) (cz;*cpf’ + DB ) te (0,T).

If we take C = —B;(D‘inl and D = B;d)ﬁl, then C,D # 0 (thanks to Lemma 3.2.5) and for these choice
of C,D, we have Vyo(t,2x) + Qou(t,2r) = 0 for all t € (0,T) but (o,0) # (0,0). This completes the
proof. O
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3.3 Controllability of the linearized compressible Navier-Stokes
system (non-barotropic case)

3.3.1 Functional setting

Recall the positive constants (equation (3.11))

A+2
= ‘u, and kg := K

Qo QOCV,

Ao :

and from now on-wards, we re-denote ¢, by ¢y to distinguish it from the eigenvalue v.

We define the inner product in the space (L?(0,27))? as follows

i\ (2 2 _ 27 - QQCO 27 _
<91 | 92 =Ryo | fi(x) fo(x)dx +QF /O gl(X)gz(X)dH% /0 h1(x)ha(x)dx,
hi) \ho

L2xL2xL2

for f;,gi, h; € L2(0, 2m),i=1,2,3. From now on-wards, the notation (-, -);2,;24;2 means the above inner
product in L? x L? x L?. We write the system (3.6) in abstract differential equation

U’'(t) = AU(t), U(0) =Up, te (0,T), (3.73)

where U := (p, u, ', Uy = (pos, uos 0p)" and the operator A is given by

_VOax _QOax 0
A= —RQ—‘”;ax A00ex — Vody —Ro,
0 Bhog k0 — Voo

co

with the domain

D(A) = Hp, (0,27) x (H2,,.(0,27))*. (3.74)

The adjoint of the operator A is given by

V()ax Qﬂax 0
A" = | R0, Aodx + Voo Rox (3.75)
0 Rc—‘/fax K00y + Vooy

with the same domain D(A*) = D(A). The adjoint system is given by

—o0r — Voox — Qoox =0, in (0,T) x (0, 2x),
R
0 — AgUrr — %ax ~ Voo, — Roy = 0, in (0,T) x (0,27),
0
R
—@r — KoPxx — ﬂvx - Voox =0, in (0,T) x (0,2x),
co (3.76)
o(t,0) =o(t,2n), for t € (0, T),
o(t,0) =o(t,2m), vx(t,0) = v,(t,2m), for t € (0,T),
(P(t7 0) = (P(t> 277:)’ (Px(t: 0) = ‘Px(t> 277:)’ for te (0! T)’
o(T,x) = or(x), o(T,x)=or(x), @(T.x)=¢er(x), in (0,27),

102



3.3. Controllability of the linearized compressible Navier-Stokes system (non-barotropic case)

where (or,vr, ¢r) is a terminal state. We also write the following system with source terms f, g, and
h.

—or — Voo — Qoux = f, in (0,T) x (0, 2x),
R
—0; — AQUxx — %O’x — Voux — Ropx = 9, in (0,T) x (0, 2x),
0
R
—@Pr — Ko@Pxx — ﬂvx - Voox = h, in (0,T) x (0, 2x),
co (3.77)
o(t,0) = o(t,2m), for t € (0, 7),
o(t,0) =o(t,2m), vx(t,0) = v,(t,2m), for t € (0,T),
(P(t7 0) = (P(t> 277:)’ (Px(t: 0) = (Px(t> 277:)’ for t € (0! T),
o(T,x) = or(x), o(T,x)=or(x), @(T,x)=¢r(x), in (0,27).

3.3.2 Well-posedness of the systems
We first state the following well-posedness result of the system (3.6) when there is no control input.

Lemma 3.3.1. The operator A (resp. A*) generates a CY-semigroup of contractions on (L%(0,2r))3.
Moreover, for any given Uy € (L%(0,21))3, the system (3.73) admits a unique weak solution U in the
space CO([0, T]; (L?(0,2x))3) and

NUW(2(027))% < CllUoll(12(0,27))3
for allt = 0.

For the sake of completeness, we give a proof of this result in Appendix A.1.1. As a consequence of
this result, we have the following existence results:

Lemma 3.3.2. The following statements hold:

1. For any given (f,g,h) € L?(0,T; (L?(0,27))%) and (or,vr, @7) € (L2(0,27))3, the adjoint system
(3.77) has a unique weak solution (o,v,p) in the space

C([0, TT; L*(0,2m)) x [C°([0, TT; L*(0,27)) N L*(0, T; H}., (0, 27)) 2.
Moreover, we have the hidden regularity property o(-,2x) € L2(0,T).

2. For any given (f, g, h) € L*(0, T; Héer(O, 2m)x(L?(0,27))?) and (o, 01, @1) € Hl;elr((), 27)x(L%(0,27))?,
the adjoint system (3.77) has a unique weak solution (o,v, @) in

CO([0, T]; HZL (0, 27) x (L?(0, 27))?).

per
In particular, when (or,vr, 1) = (0,0,0), the solution (o,v,¢) belong to the space
CO[0, T1; Hyer (0,27)) X [C([0, T]; Hper (0, 27)) N L*(0, T; Hye, (0, 27)) 1%,

per

The proof of this lemma can be proved similarly as in the barotropic case (Lemma 3.2.2), see
for instance [Mail5]. We now define the notion of a solution to the system (3.6) in the sense of
transposition when a boundary control is present in the system.

Definition 3.3.1. We give the following definitions of solutions based on the act of the controls.

e For any given initial state (po,ug,0p) € (L?(0,27))? and boundary control p € L*(0,T), we say
(p,u,0) € L2(0,T; (L%(0,27))3) is a solution to the system (3.6)-(3.7)-(3.8) if, for every (f,g,h) €
L%(0,T; (L%(0,27))?) the following identity holds:

T
'/0 <(P(t9 ')a u(t’ ')s Q(ts '))%3 (f(t9 ')’ g(t’ ')’ h(t’ .))T>L2><L2><L2

T
= <(p05 uo, HO)T’ (U(O’ ')5 U(O’ ')9 40(0, '))T>L2><L2><L2 + R‘ﬁo L |:V00—(t5 27[) + QOU(t, 2”) P(t)dt,

where (0,0, 9) is the weak solution to the adjoint system (3.77) with (or,vr, ¢1) = (0,0,0).
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3. LINEARIZED COMPRESSIBLE NAVIER-STOKES SYSTEM (BAROTROPIC AND NON—BAROTROPIC)

e For any given initial state (po,uo, o) € (L?(0,27))3 and boundary control g € L*(0,T), we say
(p,u,0) € LQ(O,T;nglr(O, 2)) x L2(0, T; (L%(0,27))?) is a solution to the system (3.6)-(3.7)-(3.9)
if, for any (f,g,h) € LQ(O,T;Héer(O, 27)) x L?(0, T; (L?(0,27))?) the following identity holds:

T
A <(P(t; '): u(t’ ')’ Q(t, ))T’ (f(t’ ')9 g(ta ')’ h(t’ '))T>H§ér><L2><L2,HP1,er><L2><L2 dt
= <(p0()’ uO('): 60())T> (O-(Or ')! U(O’ ')’ (P(O’ '))T>L2><L2><L2

T
+ Qo / [Rlﬁoo(t, 21) + A0Qoux (t, 27) + QoVou(t, 27r) + RQoe(t, 21) | q(t)dt,
0

where (0,0, 9) is the weak solution to the adjoint system (3.77) with (or,vr, o1) = (0,0,0).

e For any given initial state (po,ug, o) € (L%(0,27))3 and boundary control r € L(0,T), we say
(p,u,0) € L2(O,T;Hrjelr(0, 2)) X L2(0, T; (L%(0,27))?) is a solution to the system (3.6)-(3.7)-(3.9)
if, for any (f,g,h) € LQ(O,T;HIl) (0,27)) x L%(0, T; (L?(0, 27))?) the following identity holds:

er

T
‘/0‘ <(p(t3 ')’ u(t’ ')3 G(t, ))T’ (f(t3 ')s g(t3 ')’ h(t3 '))T>Hg§r><L2><L2,H;erxL2xL2 dt
= <(PO(), U(]('), 90())T9 (0(09 ')s 0(05 ')’ (/)(Or '))T>L2>(L2XL2

2 T CUVO CoKo
+0Qp Ro(t,2m) + —@(t,27) + —— @ (8, 271) | r(t)dt,
0 Yo Yo

where (0,0, ¢) is the weak solution to the adjoint system (3.77) with (or,vr, o1) = (0,0,0).

We now write the following well-posedness results for the system (3.6) based on the act of the
boundary control.

Proposition 3.3.1. For any given initial state (po,uo,0p) € (L?(0,27))> and boundary control p €
L2(0,T), the system (3.6)-(3.7)-(3.8) admits a unique solution (p,u,0) in the space

C([0,T1; L%(0,27)) x [CO([0, T]; L*(0,27)) N L*(0,T; H},., (0, 2))]°.

Proposition 3.3.2. For any given initial state (po,uo,90) € (L%(0,271))® and boundary control q €
L2(0,T), the system (3.6)-(3.7)-(3.9) admits a unique solution (p,u,0) in the space
C([0.T]; Hpey (0. 27)) X [C([0, T]; Hyer (0, 27)) N L*(0, T3 (L*(0, 27))) 1%,

per

Proposition 3.3.3. For any given initial state (po,uo,69) € (L2(0,27))® and boundary control r €
L2(0,T), the system (3.6)-(3.7)-(3.10) admits a unique solution (p,u,0) in the space

C°([0,T]; Hya (0, 27)) x [C([0, TT; Hyai (0, 2)) N L*(0, T; (L*(0, 2)))1°.

The proofs of Proposition 3.3.1, Proposition 3.3.2 and Proposition 3.3.3 can be done in a similar
way ([BCDK22, Theorem 2.4] and [CR13, Gir08]) like the barotropic case and so we skip the proofs.

3.3.3 Spectral Analysis of A*

Let o(A*) denotes the spectrum of the operator A*. We first write the following lemma.

Lemma 3.3.3. The following statements hold:

-1 1 1
(i) ker(A*) =spans| 1 |,[-1{,] 1
1 1 -1

(i) sup{Re(v) : veo(A*), v# 0} <O0.
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(iii) The spectrum of A* consists of the eigenvalue O and three branches of complex eigenvalues

{Vga Vﬁl’ VﬁZ }neZ*

with the asymptotic expressions given as

h = Voin— @ +0(|n|™2), (3.78)
VBt = —don? + Vpin + O(1), (3.79)
V2 = —kon® + Vpin + O(1), (3.80)

Ry

for all |n| large, where @ = o

(iv) The eigenfunctions of A* corresponding to v and VB VB2 are respectively

A &y (B &\ (7
CI)Z — Z — (Z;l einx’ (I)gl — Uﬁl — ﬁg einx’ (I)ﬁ2 — ’71:172 — Yg einx’ (381)
1\ ) g )

for all n € Z*, with the constants af, p* and y!' (i=1,2,3) given as

al =RQo, ay=-R(Vo—vy), af = (doin+Vo—v5)(Vo—vE)—Rip

R .
fr=—R pr=R By =gl (Rho ~ Choin+ Vo~ i) (Vo — v9)] (3.82)
. ) R2 R . R*y3
yi = (Adoin + Vo — vi) (xoin + Vo — v5) — —CZO, Yy = —%(Koln +Vo—v3), vi= Qol/;(o)’

for all n € Z*, where v, vy and v§ are roots of the cubic polynomial

R*Yo
€0

v? — [(Ao + ko)in + 3Vp]v? — [Aokon® — 2(Xo + ko) Voin — 3V§ +

Ry
co

+Ryolv (3.83)

+AokoVon® — (Ao + ko) VZin — V3 + Vo + Ryokoin + Ry Vo = 0,

forallneZ".

Remark 3.3.1. We have the asymptotic expressions of af, B, yi', i =1,2,3 as follows.

1 1
ail ~+o00 1: a; ~4o00 ma ag ~+00 m;
n 1 n n 1
1 T+ m, ,82 ~+o0 1; ,33 ~ 400 m, (384)
1 n

n n
Y1 ~+e0 Tn Yo ~+co Tnl’ Y3 ~+ec0 1

Proof. We will prove each part separately.

Part-(i).

Part-(if).

Follows immediately from the fact that A*(&n,¢)" = 0 implies (& #,{) =constant.

Let ® = (£1,0)" € D(A*) be the eigenfunction of A* corresponding to the eigenvalue v # 0.

Then, we have
&\ (¢ &\ (¢
S0
¢ \g ¢/ \g

L2XL2xL2
21 21

Rio¥y [ FOOE (o) + RioQo [ Em (o + 200% /0 7 e (x)dx

L2xL2xL2
that is,
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Parts (iii)-(iv).

106

27

2r - 2r
L0V / G0n(¥)dx + RoQo | & (x)7(x)dx + RO / 00 (x)dx
0 0 0

Q[Q)C 2 2 27

- - 27 .
K {(x) fxx (x)dx + %Vo {(x) e (x)dx +RQ§/ Nx (x){ (x)dx
Yo Yo 0 0

21 21 2 21
_ 2 2 2 Qgco 2
= VRYo /0 EGOP dx +v0? /0 )+ v fo (o) dx.

An integration by parts yields

Q co
2003 I1mxII2- =i 1l
RG(V) —_ o Mxlp (0,27r) o QxcL (0,27) <0,
2 0
R¢0 ”§HL2(0,271') + Qg ||’7||L2(0,2ﬂ) 0 ||§||L2(0 271)
which proves part (ii).
We denote
Pn(x) =™, nelZ.
©n 0 0
Then the set 4| 0 [,[¢.|,| 0 |} forms an orthogonal basis of (L%(0,2x))3. Let us define
0 0/ \on
on 0 O
E,: =10 on 0| and @, = (&n, M, éln)T;

0 0 ¢n
for all n € Z. Then, we have the following relation

A'E,®, = inE,R,®,, ne€Z, (3.85)
where

Vo Qo

Ro:= |52 Min+Vy R |, nez (3.86)
0 Rio Koin + WV

€0

Thus, if (ap, v,) is an eigenpair of R,, then (E,ay, inv,) will be an eigenpair of A*. Therefore, it
remains to find the eigenvalues and eigenvectors of the matrix R, for n € Z. The characteristics
equation of R, is

2
v® — [(Ao + ko)in + 3Vp]v? — [Aokon® — 2(Xo + ko) Voin — 3VE + ﬂ + Ryjo]v (3.87)

2%

+/10K0V0n2 — (/10 + Ko)V02in - V03 Vo + Rgﬁokoln + RlﬁoVo =

for all n € Z.
Claim 1. 0 cannot be a root of the polynomial (3.87) for any n € Z.

Proof of Claim 1. Let v =0 be a root of (3.87). Then, there exists some n € Z such that

R2
/101(?0Von2 — (/10 + KQ)VO2in - VU3 + I/IO —VWo+ RlﬁoKoln + RlﬁoVO =

which implies

21//o

A()K()n - VO + —+ Rlﬁo =0, and (/1() + K())V02 = RI,D()K().
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We then have

Ry
Aokon® = Vi - c_;// — Ry = Vg -

R? A R? A
%—(—0+1)V02:— %——OV02<O,
o Ko o Ko

a contradiction. This proves our first claim.
Claim 2. Vj cannot be a root of the polynomial (3.87) for any n € Z*.

Proof of Claim 2. Observe that Vj is a root of (3.87) if and only if Ryykpin = 0. Thus, for all
n € Z*, Vy cannot be a root of (3.87), which proves our second claim.

For fixed n € Z*, let v}, v and v§ be the roots of this cubic polynomial. The relation between
roots and coefficients are

Vi + Vg +vg = (Ao +ko)in+ 3V
VIVE + vBvE + VBV = —[Aokon® = 2(Ag + xo) Voin — SVO2 + Rj% + Ryp]
Vivevy = —[AokoVon? — (A + KO)VOQin - Vg’ + I%ZIOVO + Ryjpkoin + RypVp].
We will find the asymptotic expressions of roots of the cubic polynomial (3.87) for large values

of |n|. The first relation between roots and coefficients tells us that Vj is present in at least one
of the roots of the cubic polynomial (3.87). Thus, using the transformation

v="V+en, (3.88)

it is enough to find the roots of the transformed cubic equation in ¢,

*Yo

co

eg — (Ao + Ko)inez - (/101<0n2 + + Rgbo) €n + Ripkoin =0 (3.89)

for all n € Z*. We use the transformation €, = iné, for n € Z*, to simplify the above equation
and we get

1 (R? R
53 - (AO + Ko)gz + (/10](0 + ( I//O - I//OKO =

for all n € Z*. We now use the Rouche’s Theorem to find the roots of this polynomial. Let us
first state the Rouché’s Theorem, the proof of which can be found in [Con78, Rud87, Ahl78].

Theorem 3.3.1 (Rouché’s Theorem). Let Q c C be an open connected set and f,g: Q — C be
holomorphic on Q. Suppose there exists a € Q and R > 0 such that B(a,R) C Q and

l9(2) — f(2)| < 1g(2)| for all z € 9B(a,R),
then f and g have the same number of zeros inside B(a,R).
Let n € Z*. We define the functions f,g: C — C by

Ry
co

+ Ri,bo)) z— Rigko

. 1
f(Z) = 25 - ()Lo + K0)22 + ()Lok() + ) (
n
and
g9(z) = 23 — (Ao + x0)2° + Aokoz

for all z € C. The roots of g are 0,1y and xg. We choose Ry := %min{lo, Ko, |[Ao — ko|}. Then, we
have the following estimates

l9(2) = f(2)] =

1 (RQ% ) Rk
.

— =22 + Ry
nZ\ co v n2
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108

= S(Ro+1), for all z€ aB(0,Ry),

<C
<3

(lz| +1) 3 < %(/10 +Rg+1), for all z € dB(Ag, Ry),
< n%(Ko + Ry + 1), for all z € aB(K(), Ro),

for all n € Z*. On the other hand, the choice of Ry tells us that the function g does not have
any root on the sets dB(0,Rg), dB(Ag,Rp) and 9B(ko,Rp). This shows that inf|,_g, |g(2z)| > O,
inf|,_ =k, 19(2)| > 0 and inf|,_,;|=r, |9(2)| > 0. Therefore, for |n| large enough, we have

lg(2) — f(2)| < |g(z)| for all z € dB(0, Ry) U dB(Ag, Ry) U dB(xq, Rp).

Thus, for each n € Z*, the function f has a unique root inside each of the sets B(0, Ry), B(Ao, Ro)

and B(ko,Rp). We denote these roots by z7, z§ and zj respectively. We now find asymptotic
expressions of these roots.

Asymptotic expression of z}. Since z| € B(0,Rp), we have

1 Ryoko 1 (R%*Yp
n = _ +R n
“ (z] = A0) (2] = ko) ( n? n? ( co Vo)<
and therefore
1 R 1 (R? C
ME [ o e (e )< = 2
|zi‘—}to||z;‘ —K0| n n o In|

for |n| large enough. To find the asymptotic expression of z|', we write f(z}) = 0 in the following
way

Ryok 1 (R -
7l = szQ 0 ()LOKQ — (Ao +K0)z] + (ZT)Q + 3 (cigo +R¢0))

Ryoko 1 (Ao + xo0) 1 (Rv )
= 1- n —_

n2 AOKQ( /101(0 zl+/10K0n2 Co +R¢O +O(|n| )
@+<%+Kw,l ! (R%

Ao Ko 1 /10 K0n2 Co

+ij+oum4ﬁ

eSS

w _
= Z ro(n™),
n

. — R
since |27 < < for all |n| large, where & = %
1 n ’ Ao

Asymptotic expression of zj. Since zJ € B(4o, Ry), we have

1 Ryoko 1 (R%*yp
m_ o= - = + Ry | 27
2o zyé—xw( n? n?(a) o=
and therefore
1 Ryoko| |1 (R% ) ) C
zh — Aol < +|= +Ryp| 2" < —
=0l el (e (2 ) ) <

for |n| large enough. Thus, we can write
25 =g +0(|n|7?)
for all |n| large.

Asymptotic expression of zi. Following the similar approach as mentioned above, we can
get

2 =Ko +0(In| %)
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for all |n| large.

Combining all of the above, we obtain the asymptotic expressions of the roots of (3.89) as
€l = Agin+O(|n|™Y),
€y 1= Kkoin + o(|n|™h),

@ -3
€3 1= - +0(|n|™?)

for all |n| large. Therefore, for n € Z*, eigenvalues of the matrix R, are v}, vy and v with the
asymptotic expressions

V= doin+ Vo + O(|n|™Y), (3.91)

vy = Koin + Vo +O(|n| ™), (3.92)
) _

Ve =V — —+ o(|n|™>), (3.93)

for all |n| large.

To find the eigenvectors of the matrix R,, we now consider the equation
Rpan = vian, for neZ,

where a, = (af, &, ag’)T, n € Z*, that is,

(Vo = v5)a + Qoag =0, (3.94)
R
%a? + (Aoin+ Vo — v§)ay + Rajg =0, (3.95)
0
R
ﬂag + (koin + Vo —vi)ag =0, (3.96)
co

for all n € Z*. One solution is given by
af =RQo, af =-R(Vop—v5), af = (Aoin+Vo—vE)(Vo—vE) —Ryo, neZ".

We next consider the equation
Ryfn = Vipn, fornelZ,

where B, = (B7, B3, ﬂg)T,n € Z*, that is,

(Vo = v)BT +Qops =0, (3.97)
RQiO p1 + (Aoin+ Vo — i) 5 + RB5 =0, (3.98)
0
—Rc% p3 + (koin + Vo — V)3 = 0, (3.99)
0

for all n € Z*. One solution is given by

RQo

—_ n’
V() V1

fi=-

1 .
:Bg :R, ﬁg = ﬁ[th) - (Aoin+V0 - V?)(V{J - Vil)]: nez.

Vo — 7
We finally consider the equation
Ruyn = voyn, forneZ’,
where y, = (y{, 75, yg)T, n € Z*, that is,
(Vo = v3)yi + Qoyz =0, (3.100)
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R0 1 (hoin + Vo — By + RYZ =0 (3.101)

Qo
IPO n . ny.n _
—y2 + (koin+ Vo — vy)ys =0, (3.102)

for all n € Z*. One solution is given by

RQ R2 2
LU - ¢0(Koln+V0 w, = N
co Qo Qoco

for n € Z*. Therefore, the eigenvectors of R, corresponding to the eigenvalues v, v} and vi are
respectively ay, B, and y,, where

ay Bt T
an=\al |, Pn=|B5|, vn=|V5|
ay B Yy

for all n € Z*. Hence, the eigenvalues of the operator A* are v/ := inv3,vE" := inv2 and v5? := inv}
for all n € Z* with the asymptotic expressions

b= Voin—&+0(In|™h),
Vit = —don® + Voin + O(1),
vb? = —kon® + Vpin + O(1),

for |n| large enough and the corresponding eigenfunctions are
(DZ(X) = En(x)an = aneinx’ fbﬁl (x) = En(x)ﬁn = ﬁneinx’ (I)§2 (x) = En(x))’n = yneinx’
for all n € Z* and x € (0, 27).

This completes the proof. O

Remark 3.3.2. Note that, all the eigenvalues of A* are simple at least for |n| large enough. Depending
on the constants Qo, Vo, Yo, A0, k0, R and cqg, there may be multiple eigenvalues, but that would be only
finitely many of them. For example, if we take Qo = Vo =g =1 and Ryp = Rcfo = 2,1<0 = 2, then the
characteristics equation (3.87) of R, (with n=1) becomes

v — (Bi+3)2 +6inv+2-2i=0

and therefore v =1+1i is a root of multiplicity 3, and consequently —1 +i is an eigenvalue of A* with
algebraic multiplicity 3. In this case, the proof of null controllability of the system (3.6) will be similar
to the barotropic case (Section 3.2.5.2) and for the sake of completeness, we will give a brief proof in
this (non-barotropic) case also.

Furthermore, there can exist (finitely many) multiple eigenvalues for different values of n. For

example, if we take Qo = Vo =Ao=1=Ryp = Ri:fo =1 and kg = 2, then v = —1 is an eigenvalue of A*
with n =1 and n = =1, that is, vi = v_1 = —1. Indeed, the polynomial equation (3.87) for n =1 and
n=—1 becomes

V= Bi+3)2—(1-6i)v+3—-i=0,
V3= (=3i+3)2 - (1+60)v+3+i=0,
and the root of which are i and —i respectively. In this case, as mentioned in the barotropic case, we

have two independent eigenfunctions corresponding to this eigenvalue; as a consequence, the adjoint
system (3.76) fails to satisfy the unique continuation property; see Section 3.3.8 for more details.
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Let us assume that there exists a ng € N such that all the eigenvalues v, of A* are algebraically
simple for all |n| > ng. There can exist only finitely many multiple eigenvalues, which we re-denote
as vj for 1 < j < jo (for some jy € N). Let N; be the algebraic multiplicity of the eigenvalue v; and
let ®; denote the corresponding eigenfunction of A* for each j =1,..., jo. We also denote the set of
generalized eigenfunctions of A* by {(51, j o l=1...,N;- 1} corresponding to the eigenvalue v;. Also,
recall from Lemma 3.3.3-Part (i) that the set of (generalized) eigenfunctions of A* corresponding to

-1 1 1

the eigenvalue vg = 0is {®Pg:=| 1 |, @1,0 =(-1], &)2)0 :=| 1 [;. Then, one can have the following
1 1 -1

result:

Proposition 3.3.4. The set of (generalized) eigenfunctions
E(A") = {(IDQ fbﬁl, CID’:,)2 . |n| = ng; Qj,cf)l’j : 1<I<Nj;, 0<j< jo}

forms a Riesz basis in (L?(0,27))3. In particular, if all the eigenvalues of A* are simple, then the set
of eigenfunctions

{cpf,;, o, o ne z*}
forms a Riesz basis in (L?(0,2m))3.

Proof. In view of the proof of Proposition 3.2.3, it is enough to find an orthogonal basis of (L?(0, 27))>
that is quadratically close to the set of generalized eigenfunctions of A*. One obvious choice is the
following orthogonal basis

RQo 0 0
¥, (x):=| 0 [e™ ¥,(x) :=|R|e™, ¥(x):=| O [e™ : nez
0 0 R4
Qoco
Indeed, we have
- z 1
h _ 1 2 -
2, (|(D” ol 0mye * 108 = Fallazozmys ot 2. <L2<o,2n>)3) €L EEST
|n|>ng |n|>ng
thanks to Remark 3.3.1. This completes the proof. O

3.3.4 Observation estimates

As mentioned in the barotropic case (Section 3.2.4), we need lower bound estimates of certain obser-
vation terms associated to the system (3.6). First, we define the observation operator corresponding
to the system (3.6) as follows (see the Definition 3.3.1):

e The observation operator 8 : D(A*) — C to the system (3.6)-(3.7)-(3.8) is defined by

B,® = V&(2m) + Qon(2r), for @ =(&n) € D(AY). (3.103)

e The observation operator B;, : D(A*) — C to the system (3.6)-(3.7)-(3.8) is defined by

BL® = RyoE(27) + QoVon (27) + AoQony (27) + RQo{ (27), for ® = (£,1) € D(AT).  (3.104)

e The observation operator B : D(A*) — C to the system (3.6)-(3.7)-(3.8) is defined by

B5® := Ry(2m) + "’;/ﬂmn) + X0, (27), for @ = (£7) € D(AY). (3.105)
0 Yo
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3. LINEARIZED COMPRESSIBLE NAVIER-STOKES SYSTEM (BAROTROPIC AND NON—BAROTROPIC)

Recall that &(A*) denotes the set of all (generalized) eigenfunctions of A*. Then, we write the following
observation estimates under the assumption that all the eigenvalues of A* are algebraically simple.

Lemma 3.3.4. For all eigenfunction ®, € E(A*) \ {®o}, the observation operators satisfies B,®, #
0,8,0, # 0 and By, # 0. Moreover, we have the following estimates:

for some C >0 and all n € Z*.

R el |B;;c1>£1 >C |z;;;c1>£2 >C (3.106)
C

B:oh > T |B: @4 | > Clnl,|B;@5?| > C, (3.107)
C

Boh| > T ;082 > ¢ |B;08| > Clnl, (3.108)

Proof. Recall from the proof of Lemma 3.3.3 that v,v},v§ # 0 (Claim 1) for all n € Z* and the
eigenvectors (af, af, a:’,,’)%, (BY. B3, ,B:',)’)T and (y7,y5, yg)Jr of R, satisfies the following relations:

(Vo —v3)aq + Qoay =0, (Vo —vi)B] +Qofs =0, (Vo —v3)yy + Qoys = 0; (3.109)
R R
%ai’ + (Aoin + Vo — vI)al + Ra = 0, %p;’ + (Aoin + Vo — v") B2 + RB = 0, (3.110)
0 0
R
%yf + (Aoin + Vo — vy)yy + Ryg = 0;
0

R R
ﬂa;’ + (koin+ Vo —vi)ag =0, ll/oﬁg + (koin+ Vo —vi) 5 =0, (3.111)

co

co

R
ﬂy; + (koin+ Vo —vy)ys =0,
o

for all n € Z*.
We now consider the following cases:
Case 1. (Control acts in density) We have

B;CDZ = Vo&"(270) + Qonl (27) = Voa! + Qoal = vzal #0,
B, = V&' (27) + Qony (27) = Voy + Qo = Vi BT #0,
B, = Vo&h* (2) + Qony” (27) = Vot + Qoys = vyi #0,
for all n € Z*, thanks to the equation (3.109).
Case 2. (Control acts in velocity) We have

BLO! = Ry (27) + A0 Qo (1)< (27) + QoVonl (27) + RQo (! (27)
= Rl//oail + /loQol'n(X;l + Q(]Voag + RQ()OCgl = Q()V;(X;l # 0,

B! = Ry (27) + Ao Qo(nh)x (27) + QoVonh! (27) + RQ(E" (27)
= Ry f] + AoQoinpy + QoVoPy + RQufs = Qovips # 0,

Bi0h? = Ryoéh? (27) + A0Q0 (1h?)x (27) + QoVonh? (27) + RQo(E? (27)
= Ryoyt + AoQoinys + QoVoys + RQoys = Qovays # 0,

for all n € Z*, thanks to the equation (3.110).

Case 3. (Control acts in temperature) We have

Vi
Bid! = Ry (27) + 227 (2) + 20 (¢ (2)
0 0

¥ ¥
c c
= Raj + w—O(VO +Kopin)ay = ¢—0v§a§’ # 0,
0 0
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3.3. Controllability of the linearized compressible Navier-Stokes system (non-barotropic case)

B0k = Ryl (27 )+¢—§"1<2 ™) + Cow'“)(g’”)x(z )
= RPN + ;—0(V0+K0in)ﬁ3 _ %vl " 20,
Byl = Ryl (2 >+‘§—°¢"2<2 ™)+ S

=Ry} + —(Vo +Koin)y§ = €0 —vhys # 0,
Yo Yo

for all n € Z*, thanks to the equation (3.111).
The estimates on the observation terms follows directly from the asymptotic expressions (3.91)-(3.92)-
(3.93) and Remark 3.3.1. O

Remark 3.3.3. Similar to the barotropic case, we can choose the (finitely m(my) genemlzzed etgen-
functions <I>1] € E(AY) for 1 <1 < Nj,1 < j < jo, in such a way that B (Dl] + 0,8 (Dl] # 0 and
B@‘Dl, i #0. This can be ensured by choosing a suztable multiple of the finitely many generalized eigen-
functions.

3.3.5 Observability inequalities

As mentioned in the barotropic case, we will write the observability inequalities in this case also, which
will help us prove the null controllability results for the system (3.6). The proof is similar and so we
skip the details.

Theorem 3.3.2. Let T > 0 be given. Then, the system (3.6)-(3.7)-(3.8) is null controllable at time T
in the space (L?(0,27))? if and only if the observability inequality

T
||(a(0),o(0),¢(0))T||fi2(0’2”))3 <C /0 Voo (t, 27) + Qoo (t, 27)|* dt (3.112)

holds for all solutions (o,v,9)" of the adjoint system (3.76) with terminal data (o1,0r, @1)" € D(A*).

Theorem 3.3.3. Let T > 0 be given. Then, the system (3.6)-(3.7)-(3.9) is null controllable at time T

in the space 1De]r(O 271) x (L?(0,27))? if and only if the observability inequality

T 2
”(O—(O)’ U(O)! (P(O)) ||H§elr(0,2ﬂ)><(L2 (0,2”))2 (3113)
T
<C / [RYoo (£, 27) + AgQovx (£, 27) + Qo Voo (t, 277) + RQoo(t, 27)|* dt
0

holds for all solutions (o,v,9)" of the adjoint system (3.76) with terminal data (o1,0r, @1)" € D(A*).

Theorem 3.3. 4 Let T > 0 be given. Then, the system (3.6)-(3.7)-(3.10) is null controllable at time
T in the space HL. (0, 27) x (L2(0,27))? if and only if the observability inequality

per

2

\%
Ru(t,2n)+cfb—o(p(t,znn?bﬂ@x(t,%) dt (3.114)
0 0

holds for all solutions (o,v,9)" of the adjoint system (3.76) with terminal data (or,vr, @1)' € D(A*).

T
2
(202,000, 0O Nz 020 (12 02012 < C./o

To prove these inequalities, we require lower bound estimates of the corresponding observation
terms (given in the right hand side of (3.112),(3.113) and (3.114)) and to obtain these bounds, we
will use the Ingham-type inequality (3.14). Similar to the barotropic case, we first prove the null
controllability results (Theorem 3.1.3) when all the eigenvalues of A* are simple. The case when
there exist generalized eigenfunctions corresponding to the finitely many multiple eigenvalues will be
presented at the end of this section. Throughout the proof of null controllability of the system (3.6), we
will assume that all the eigenvalues of A* have geometric multiplicity 1, as mentioned in the hypothesis
of Theorem 3.1.3.
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3.3.5.1 The case of simple eigenvalues
Let (or,vr, 1) € (L*(0,27))3. Since the set of eigenfunctions {®?, Pt P2 . pe Z*} of A* forms
a Riesz basis of (L?(0,27))? (see Proposition 3.3.4), therefore any (or,vr, o1)" € (L?(0,27))? can be
written as
(or,or,07)" = Z ap®h + Z a, o) + Z ay’ o),
nez* nezZ* nezZ*
for some (aﬁ)nez*, (@) pezs, (ab?)nezs € £r. Then, the solution to the adjoint system (3.76) is
(o(t,x),0(t, x), qo(t, x))T — Z azev,'l’(T—t)q)Z(x) + aglevﬁl (T—t)q)? (x) + ag2ev§2 (T—t)q)ﬁ2 (x),
nez* nez* nez*

for (t,x) € (0,T) x (0,2x), that is,

_ ; 1(_ : 2 (T ;
a(t,x) — Z aﬁevf}(T t)ailemx_'_ Z aglev,f (T t)ﬁizemx_i_ Z aﬁ2ev,f (T t)}/ilemx,

nez* nez* nez*
1 _ : 1 _ . 2 _ :
Z)(t, x) — Z aﬁevfl(T t)agemx + Z aﬁlevf: (T t)ﬁgemx + Z aﬁ2ev,1: (T t)ygemx’
neZzZ* nez* nez*
_ ; 1 _ ; 2 _ :
(p(t, x) — Z aﬁev,}l’(T t)agelnx + Z a}!;lev,f (T t)ﬁgelnx + Z aﬁzevfl’ (T l’)}/élelnx’
nez* nez* nez*

for (t,x) € (0,T) x (0,27). We first rewrite the eigenvalues as {v", v} weze, where

ol ifn=2k=1 kez
"IV ifn=2k kezt
ks - E) )

for all n € Z* and v/ is as defined earlier (see Lemma 3.3.3). We also denote the eigenfunction

of - | ifn=2%k-1keZ
"T 0P, ifn=2 kez'
ks - b )

and the observation term
. B, ifn=2k-1, keZ
"8t ifn=2k keZ,

for all n € Z*. Also, recall that we have defined the set

A
S =9 (Ao, x0) : \/%GEQ

, {ail, ifn=2k-1,kez

We further denote

a =
"o |a? ifn=2k keZ
Then, we can write
T P _
(0(t,2),0(t,%), p(t,2))" = > ahe" Tl (x)+ > ahen Tk (x),
nez* nez*

for (t,x) € (0,T) x (0,2m7).
Estimates on the norms of (¢(0),(0),¢(0))": We have

> o + D |abf eRetar] (3.115)

nez* nez*

||(0(0),0(0),<P(0))%||?L‘2(0,2n))3 =C
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3.3. Controllability of the linearized compressible Navier-Stokes system (non-barotropic case)

thanks to the asymptotic expressions (3.84). We also have

2,

nez*

C

h
an

[(o(0),2(0), ¢(0))"

2
Hpd (0,27)x(L2(0,27))2 <

21

—5+ Y |ab]f 2RetnT (3.116)
Inl nez*

thanks to the asymptotic expressions (3.84).

To prove our null controllability results (Theorem 3.1.3), we will use the Ingham-type inequality (3.14)
and for that, we need to prove that the eigenvalues (Vﬁ)nez* and (v0),ez- satisfy all the hypotheses of
Lemma 3.1.1. Recall the asymptotic expressions of the eigenvalues, given by Lemma 3.3.3:

" = Voin— @ +0(|n|72),
Vit = —Aon® + Vpin + O(1),
vh? = —kon® + Vyin + O(1).

e Due to our assumption on the eigenvalues, we have v # vlh, Vvh ¢ Vf for all n,l € Z* with n # 1
and (v ; neZ*}n{Vh ; neZ}=0.

n

e From the expression of v/, it is easy to see that the family (v"),cz+ satisfies hypothesis (H2) of

Lemma 3.1.1 with f = —w,7=Vy and e, = O(|n|™?) for |n| large enough.

e On the other hand, we have

“Re(v}) _ {% ifn=2k-1, keZz

W) _ 8 . )
()| |22 if n =2k, k€ ZF,

and therefore % > min(%, %) for |n| large enough, which verifies hypothesis (P2) of Lemma

3.1.1.

e We also have for |n| large
/10712 < |Vﬁ1| < (Ao +V0)n2, and K0n2 < |V§1| < (ko +V0)n2,
and therefore (v2) satisfies hypothesis (P4) of Lemma 3.1.1 for large enough |n|.

The family (v?) satisfy hypotheses (H1)-(H2) of Lemma 3.1.1 for |n| large enough, and therefore one
can have the hyperbolic Ingham inequality (3.16). On the other hand, the parabolic branch (v£),cz:
satisfy hypotheses (P1)-(P2) and (P4), but does not necessarily satisfy the gap condition (Hypothesis
(P3) of Lemma 3.1.1) when |n| is large enough. However, we can prove the existence of a biorthogonal

family to (evg’ )nez+ under the stronger assumption (3.13) on the coefficients Ag and k; as a consequence
we have the parabolic Ingham inequality (3.15) (thanks to Remark 3.1.4).

Lemma 3.3.5. Let us assume that all eigenvalues (Vi)nez- of A* are distinct. Then, under the
assumption of Theorem 3.1.3 and given € > 0, there exists a sequence (qn)nez: C L*(0,00) biorthogonal

to the family (e"gt)nez* with the following estimate
1gnll 2 0.0) < K(€)eReC)e (3.117)
forallneZ.

The proof of this Lemma can be done in a similar way as [FCGBdT10, Lemma 3.1] and [LdT13,
Lemma 2], so we omit the details. Indeed, an easy calculation yields that

Vﬁl_V?I
vf?—vfl

> Cln* - j?|,

Vgl _V§J2
VﬁQ —V?2

> C|/10n2 - K0j2|,

> C|K0n2 - /10]'2|,

> Cln? - 7,
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for some C > 0. With the help of this Lemma and the hyperbolic Ingham inequality (3.16), we can
have the combined Ingham-type inequality (3.14) (as mentioned in Remark 3.1.4). With this, we are
now ready to prove null controllability results of the system (3.6) in the case of simple eigenvalues.

Proof of Theorem 3.1.3-Part (i). Let T > %,—g Recall from Theorem 3.3.2 that it is enough to

prove the observability inequality (3.112), that is,

T
/0 Voo (2, 27) + Qoo (t, 27)* dt = C||(0(0), 0(0), 0(0) || ;2 (0205

for all (o7, vr, o1)" € D(A*). Also, recall the observation operator B, given by (3.103). Then, we have
the observation term

T
/ Voo (t, 27) + Qoo (t, 27)|* dt
0
2

T
:/ Z aZB;(I,Zev,’Z(T—t) + Z agl‘B;@glevgl(T—t) + Z a£23;@£2eV52(T_t) it
0

nez* nez* nez*

2
T
:'/O E aZB;ZCDZeV'I;(T_t)+ E aﬁB;q)ﬁe"'I;(T_t)

dt.
nez* nez*

Using the combined parabolic-hyperbolic Ingham type inequality (3.14) (Lemma 3.1.1), we have

h2

an

2
B;tbﬁ’ p2Re(V)T

2 h 2
BZ‘PZ‘ p2Re(V) (T-1) | Z |a§
nez*

nez*

>C (Z al ’ + Z |a£|2 eZRe(v)T

nez* nez*

T
Voo (t,2 ,2m))?dt > C
| Woote.2m)+ Quoe 2m) e > (Z

5

thanks to the estimate (3.106). This estimate together with the norm estimate (3.115), the observ-
ability inequality (3.112) follows. This completes the proof in the case of simple eigenvalues.

Proof of Theorem 3.1.3-Part (ii). Let T > %,—Z We will consider only the velocity control case.

The case when a control acts in temperature (3.10), the proof will be similar (as we have similar lower
bounds on the observation term B;®" and B;d)ﬁ, see Lemma 3.3.4 for instance), and so we omit the
details. Thanks to Theorem 3.3.3, it is enough to prove the observability inequality (3.113), that is,

T
/0 IRy (t, 27) + AoQovx (1, 27) + QoVou(t, 27) + RQoo(t, 27) [*dt = C||(a(0),0(0), <p(0))?||fqggrx(p)2

for all (o7, 07, o1)" € D(A*). We have

T
/ [RYoo (£, 27) + AgQouvx (£, 277) + Qo Voo (t, 27) + RQoe(t, 2)|* dt
0
2

T

: : P

:/ aZBZ(I)ZeVg(T—l’)_i_ E a{,)IBZcDﬁlev"l(T_t)'F E a{?BZq}ﬁQQV":Q(T_t) dt
0 |pezr nez* nez*

2
T
=‘/0 Z aﬁBZ@Z@"'}:(T_t) + Z aﬁBi@ﬁevﬁ(T_t) dt

nez* nez*

where B is defined in (3.104). Using the combined parabolic-hyperbolic Ingham type inequality (3.14)
(see Lemma 3.1.1) and the observation estimates (3.107), we obtain

T
/ |RYoo (£, 27) + AgQous (£, 277) + Qo Voo (t, 277) + RQoo(t, 27) | dt
0
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2 . 2 h _ 2 2
ZC(Z aZ " n’ 2ROV (T-1) | Z |a£| |B,’j<bﬁ| p2Re(V)T
nez* nez*
21 2
> C( ah — + Z |ah| ZRe(vT |
nez* |n| nez*

Thus, we obtain that

T
/ |RYoo (£, 27) + AgQoux (£, 277) + Qo Voo (t, 27r) + RQoe(t, 2)|* dt
0
2
>C ”(0—(0), Z)(O), ¢(O))T||H5ér(0’2”)x(i2 (0,27))2°

thanks to the estimate (3.115). This proves the observability inequality (3.113) and the proof is
complete for simple eigenvalues.

3.3.5.2 The case of multiple eigenvalues

Throughout the proof, we assume that all the eigenvalues of A* have geometric multiplicity 1. Recall
that v; is the eigenvalues of A* with multiplicity N; for j = 1,2,..., jo, and for all [n| > ng, the eigenvalues
vy, of A* are algebraically simple. Also, recall the set of (generalized) eigenfunctions corresponding to
vj (for 1 < j < jo) as

{0 = @m0 5 Buy= Epinp )+ I=1o N =L = 1o}

The proof of null controllability of the system (3.6) in the presence of multiple eigenvalue will be
similar to the barotropic case, so we give a brief proof of Theorem 3.1.3 in each cases (control acting
in density, velocity and temperature).

Control in density. Let (o, 07, ¢1)" € (L?(0,27))3. We decompose it as follows:

(o101, 07)" = (011,071, 01.1) " + (072, 079, 91.2) (3.118)
with
jo N;-1 3
(or.1, 011, 011)" = Z a;j®; + Z ap;j®y
j=1 =1
and

(012,072, 012)" = Z (aﬁ@h +at ot + b cI)ﬁQ)

|n|=ng

Let (01,01, 1) and (02,02, ¢2) denote the solutions of the adjoint system (3.76) associated to the
terminal data (or.1,071, ¢11) and (or2,vr2, ¢12) respectively. Then, we can write these solutions as

Jo Nj-1

(a1(1),01 (1), 1 ()T = Zevﬂ-” a;®; + Z (T - t)ay ;@ |, (3.119)
Jj=1 =1

(0a(1), v2(2), p2(t))" = Z ( v (1= Doh 4 ghte'n (T bt +ap2e"p2(T_t)CI>ﬁ2), (3.120)
[n|>ng

for t € [0, T]. Using the observability inequality (3.112) in the case of simple eigenvalues, we get

T
fo Voo (£, 27) + Qoo (8, 2m) | dt = C||(02(0),02(0), 92(0) | 123 - (3.121)
Note that
Jo N;-1
Voor (t, 27) + Qoo (1, 27) = »_ eV T [ a; B30, + " a,(T =)' By (3.122)
j=1 I=1
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for t € (0,T). Proceeding similarly as in the barotropic case and using the well-posedness result
(Lemma 3.3.2)

€ 2
/0 Voo (8, 27) + Qooa(t, 27) | dt < C [(0(€), v2(€), 92(€) | 12 (0.2,)3

(for € > 0 small enough) and finite dimensional norm equivalence (thanks to Lemma 3.3.4-Remark
3.3.3), we can add these finitely many terms in the above observability inequality to obtain

T
/0 Voo (t, 27) + Qoo (t, 27)|? dt > cH(oz(()),vz(()),<p2(0))f||fL-2(0,2”))3 . (3.123)

and .
/0 [Voor(t, 27r) + Qoo(t, 2m)|* dt > CH(cn(O),vl(O),<p1(0))*||fp(0,2”))3 : (3.124)

Combining these two inequalities (3.123) and (3.124), we obtain the desired observability inequality
(3.112), proving Theorem 3.1.3-Part (i) in the case of multiple eigenvalues.

Control in velocity. As mentioned in the barotropic case, it is enough to prove the following in-
equality:

/ * |Ryoo (£, 27) + Ao Qo (£, 27) + Qo Voo (£, 27) + RQoo(t, 2m)|2 dt (3.125)
0
F 2
<C ”(0—2(6), 02(6)’ (P2(6)) ||Hp:e1r(0>2”)><(j'2(0’2”))2 .
Recall that (equation (3.120))

(02(1), v2(1), P2 (1)) = Z (aﬁe"'lll(T_t)CI)h+aplevpl(T DL 4 gh2e'n (1= ”@m)

|n|>ng

for t € (0,T). Since the observation term B:®”" have similar upper bound (of order %), proceeding
similarly as in the barotropic case, we can obtain

£

/ * |Ryoo (£, 27) + Ao Qoo (1, 27) + Qo Voo (1, 27) + RQoo (£, 2m)|? dt (3.126)
0

<C Z il

|n|=ng Inl

Z |ab|? 2Re (i) (T-e),

[n|=ng

see for instance the inequality (3.59). On the other hand, we compute
l|(o2(€), v2(e€), 902(6))||chlr(o,2n)x(L'2(o,2”))2

-2

|n|=ng

h vh(T €) n+aP1evp (T—e)ﬁn

2
2(T-
are'’n " a£261/,’: (T e)yil

2
+Q0’hv(T €) n+a 1AL (T- e)ﬁ +a 2 VA2 (T—e)y;

Q(Q)CO h Vi (T VL (T 2 b2 (T 2
+ — | e E)0("+a e'n ( E)ﬁ +able™ (_E)yg )
Yo
Thanks to Remark 3.3.1, we can write
l[(o2(€), v2(€), p2(EN) |52, (0.27)x (12 (0.27))2 (3.127)
>C Z |a | + Z |p12 2Re(VE1)(T- €) 4 Z |p22 2Re(122)(T-e)
[n|2ng | | In|2ng [n|2ng
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I |

[n|=no

:cZ

[n|2no

Comparing this inequality with (3.126), we deduce that

€

2
/ |Ryoo(t, 27r) + AgQoux (8, 27r) + Qo Vou(t, 27r) + RQoe(t, 2r)|* dt
0
< Cll(o2(e), v2(€), @2(Dl g1 (0.2m)x (12 (0.27))2 -
proving the required inequality (3.125).

Control in Temperature. The proof will be similar to the velocity case (due to the similar bounds
on the observation terms) and so we skip the details.

This concludes the proof of Theorem 3.1.3 in the case of multiple eigenvalues. O

3.3.6 Lack of null controllability for less regular initial states
Similar to the barotropic case, we first write the following result:
Proposition 3.3.5. Let 0 <s <1 and T > 0 be given. Then,
e the system (3.6)-(3.7)-(3.9) is null controllable at time T in the space H.(0,2m) % (L*(0,2x))?
if and only if the inequality
100,000, 0O -5 2122 02012 (3.128)
<C /0 ' IRy (t, 27) + doQouvx (£, 27) + QoVou(t, 27) + RQop(t, 27)|* dt

holds for all (o,0,0)" of the adjoint system (3.76) with (or,vr, @1)" € D(A*).
e the system (3.6)-(3.7)-(3.10) is null controllable at time T in the space ngr(O, 27) x (L%(0,27))?
if and only if the inequality

2
Vi
Ro(t,27) + 20 (1, 27) + L0, (£, 27)| dt
0 0

( 7
(3.129)
holds for all solutions (o,v,9)" of (3.76) with (or,vr, o1)" € D(A*).

T
2
(02,000, 9Ol (020 w22 02012 < C/o

3.3.6.1 Proof of Proposition 3.1.2- Part (ii)

We will present the proof for velocity case only; the temperature case will be exactly similar, because
the observation terms BZ@Z and Bj®" have same upper bounds (see Lemma 3.3.4). For (o2, 0%, ¢2)" =
®" the solution to the adjoint system is

(6" (£, x),9™(t,x), " (£, )T = " T-D D (),

for (t,x) € (0,T) x (0,2x) and n € Z*. For large |n|, we have the following estimate
C

il > ,

| "Hps (027)x(L2(0,27))2 — |nf*®

and therefore
0”070 0" )} >
(O- ( )’U ( )5(P ( )) ngsr(O,Qﬂ)X(LQ(O,QH)P = W

for all |n| large. We also have
T n n n n 2 C
|R¢0c7 (t,27) + A0Qovy (8, 27) + Qo Voo (t, 27r) + RQoe" (¢, 271)| dt < _| 2
0 n
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for all n € Z* (see equation (3.126) for instance). Thus, if the observability inequality (3.128) holds,

then we get
C C

2-2s
—= < — = |n <G,
n|* = |nf?

which is not possible since 0 < s < 1. This completes the proof. O

3.3.7 Lack of controllability at small time

The proof will be similar to the barotropic case, that is, the proof of Theorem 3.1.1- Part (ii). For the
sake of completeness, we give the proof below.

3.3.7.1 Proof of Proposition 3.1.2-Part (i)

Let 0 < T < %,—Z Following the notations in the proof of Theorem 3.1.1- Part (ii) (Section 3.2.7), we

consider the system
in (0,T) x (0,2n),

for t € (0,7),
in (0, 27).

0y + Vyox = @00,
a(t,0) =0o(t,2m),

&(T,x) = 67 (x),

(3.130)

Since supp(?f]TV) c supp(o7) C (T,27), the solution satisfies 6™ (t,0) = 6™V (t,27) = 0 for all t € (0,T).
We now consider the adjoint to our main system

-0y — Voox — Qoux = 0,
1%
Qo

Ry
—Qr = KoPxx — ——
co

0
0t — ApUxx — ——0x — Voux — Roy = 0,

Ox — Voox = 0,

o(t,0) = o(t,2r),

0(t,0) = o(t,27m), vx(t,0) = v,(t,27),

@(t,0) = o(t,27), @x(t,0) = px(t,27),

o(T,x) =67 (x), o(T,x) =07 (x), ¢(T,x) = g7 (%),

in (0,T) x (0, 2x),

in (0,T) x (0, 27),

in (0,T) x (0, 2x),
(3.131)
for t € (0,T),

for t € (0, T),
for t € (0, T),
in (0, 27),

where we choose U]TV and (pJTV such that
N N Nyi _ ~hgh
(or,vr,0r)" = Z an®y
[n|>N+1

with dﬁa’f := a,PN(n) for all |n| > N +1. We write the solutions to the systems (3.130) and (3.131)
respectively as

N (t,x) = Z anP"N (n)eVoin=®)(T-1) ginx (3.132)
[n|>N+1

N(tx)= > anPN (e T0eim, (3.133)
[n|>N+1

N N ﬁ’f (T i

oN(t,x) = Z anPN (n) 2L e¥n (T=1) ginx (3.134)
[n|>N+1 0{1’

n

N (t,x) = Z anPN(n)y—ieV'?(T_t)ei"x, (3.135)

|n|>N+1 a

for all (t,x) € [0,T] x [0,2]. Similar to the barotropic case, we prove that the solution component
o approximates the solution V. Indeed, we have

| (0) =N ey S D lanl? [P () || T - Voim-@)T-0) i

[n|>N+1

L2(0,T)
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R - 2
< D lalP PN et a0 ha-n |
[n|>N+1 1)
C 2 1N 2
<o > danl? [PV,

[n|>N+1

for all x € [0,2x]. We also have for all x € [0, 2x]

2
N ol 2 |pN 2ﬂ| -]
HU (,x)”LZ(O,T) Slnlg\”llad |P (n)| |a?|2 e 1201)
1
<c Y laPlPVmf =
[n|>N+1 |n|
C
<—2 3 laP [PV ()
|N| [n|>N+1

We suppose that the following observability inequality holds

T
9 112
/0 Voo™ (£, 27) + Qoo™ (£, 2m)[ dt = C|(a™ (0), 5™ (0), ™ (0)) [ 12 (9,2 -
Then, we have
2
(o™ (0), 0% (0), @ Ol 20,215

T
< c/ Voo™ (£, 27) + Qoo™ (¢, 2m)| dt
0

T
< c/ (V02 (o™ (£, 27) - N (1, 20) | + V2|6V (1, 2m)|7 + Q2 o, 2n)|2) dt
0

C
< 2 lalPlPVol,

[n|>N+1

since 6N (t,0) = 0 = 6V (t,27) for all t € (0,T). Thus, we get

o™ 200 < 10N ©0).0¥ (0, 0™ (0) [ 505

C C
¥ Z |an|? |PN(H)|2 N2 ”UN(O)H;(O,%)’
[n|>N+1

since Re(vfl’) is bounded. Therefore, 1 < % for all N and hence the above inequality cannot hold.
This is a contradiction and the proof is complete. ]

3.3.8 Lack of approximate controllability

In this section, we find the existence of certain coefficients Qo, Vo, Yo, Ao, ko, R, co such that the system
(3.6) is not approximately controllable at any time T > 0 in (L?(0,2x7))? (that is, Proposition 3.1.3).
Full characterization of these coefficients is very difficult due to the cubic polynomial (3.87). We
present the proof of Proposition 3.1.3 in the case when there is a boundary control acting in density
component. The proof will be similar in other cases (that is, when the control is acting in the velocity
or temperature components) and so we omit the details.

3.3.8.1 Proof of Proposition 3.1.3

Let T > 0 be given and let us choose the coeflicients
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To prove this result (in the density case), it is enough to find a terminal data (or,vr, o1) € D(A*)
such that the associated solution (0,0, ¢) of (3.76) fails to satisfy the following unique continuation

property:
Voo (t,2m) + Qou(t,2x) =0 for all t € (0,T) implies (0,0, ¢) = (0,0,0).
Thanks to Remark 3.3.2, A* has an eigenvalue v; = v_1 = =1 for n = 1 and n = —1 respectively. Let
o B
O :=|ag|eXand ®_q ;=B |e™™ (for some a;, i € C,i =1,2,3) denote the independent eigenfunctions

as B3
of A* corresponding to this multiple eigenvalue —1. We now choose the terminal data as

(o1, 01, 01)" = C®1 + DP_4,
where C, D are complex constants that will be chosen later. The solution of (3.76) is then given by
(a(t),0(t), (1)) = ™77 (CO, + DD _y)
for all t € (0, T). Therefore
Voo (t, 27) + Qoo(t, 27) = e~(T~D) (CB;cbl + Dz;;cb_l)

for all t € (0,T). If we take C = -8B70_; and D = 8,0y, then C,D # 0 (thanks to Lemma 3.3.4) and
for these choice of C, D, we have Vyo(t, 2x) + Qoou(t, 2r) = 0 for all t € (0,T) but (0,9, ¢) # (0,0,0). This
completes the proof. ]

3.4 Further comments and conclusions

3.4.1 Controllability results using Neumann boundary conditions
We consider the system (3.1) with the initial state (3.2) and the boundary conditions
p(t,0) = p(t,27), u(t,0) =u(t,2m), ux(t,0)=1uy(t,27)+q1(t), t € (0,7T), (3.136)

where q; is a boundary control that acts on the velocity through Neumann conditions. Since the
observation terms satisfies similar estimates as in (3.36), following the proof of Theorem 3.1.2, we

can obtain the null controllability of the system (3.1)-(3.2)-(3.136) at time T > %,—g in the space
Héer(O, 27) xL?(0,27), and the null controllability fails in the space ngr((), 21)xL2(0,27) for 0 < s < 1.
In this case also, null controllability of the system (3.1)-(3.2)-(3.136) is inconclusive when the time is
small (0<T < %,—g)

Similar to the barotropic case, we consider the system (3.6) with the initial state (3.7) and the
boundary conditions

p(t,0) = p(t,27), u(t,0) =u(t,271), ux(t,0) =uy(t,27) + qo(2), (3.137)
0(t,0) = 0(t,2m), 04(t,0) = 0,(¢t,27), te (0,T).

In this case also, following the proof of Theorem 3.1.3-Part (ii) and Proposition 3.1.2-Part (ii), we

get null controllability of the system (3.6)-(3.7)-(3.137) at time T > %,—” in the space H! (0,271) X
. . . O per
(L%(0,27))2, and null controllability fails in the space Hp e, (0, 27) X (L?(0,27))%? for 0 < s < 1.

We next consider the system (3.6) with the initial state (3.7) and the boundary conditions
p(t,0) = p(t,2m), u(t,0)=u(t,27), uy(t,0)=u.(t,2n), (3.138)
0(1,0) = 0(t,2m), 0x(1,0) = 0x(t,27m) + g3(t), t € (0,T).

Similar to the previous case, following the proof of Theorem 3.1.3-Part (ii) and Proposition 3.1.2-

Part (ii), we get null controllability of the system (3.6)-(3.7)-(3.138) at time T > %,—g in the space
H!.(0,2m)x(L*(0,27))?, and null controllability fails in the space H3., (0, 2)x(L*(0,2))? for 0 < s < 1.
For both systems (3.6)-(3.7)-(3.137) and (3.6)-(3.7)-(3.138), null controllability is inconclusive for a

small time 0 < T < %,—”
0
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3.4.2 Backward uniqueness property

The backward uniqueness property of the system (3.1) or (3.6) is itself an interesting question from
the mathematical point of view. It says that, when there is no control acting on the system and
the solution vanishes at time T > 0, then the solution must vanish identically at all time ¢t € [0, T].
Our system (3.1) with the initial condition (3.2) and boundary condition (3.3) (with p = 0) or (3.4)
(with g = 0) satisfies the backward uniqueness property, more precisely, (p(T),u(T)) = (0,0) implies
(p(t),u(t)) =0 for all t € [0,T]. This can be seen easily as the eigenfunctions of A*, and hence of A,
form a complete set in (L2(0,27))2. We can similarly conclude that the non-barotropic system (3.6)
with the initial condition (3.7) and boundary condition (3.8) (with p = 0) or (3.9) (with ¢ = 0) or
(3.10) (with r = 0) satisfies the backward uniqueness property.

If a system has backward uniqueness property, then null controllability of the system at some
time T > 0 will give approximate controllability at that time T. This can be seen easily, because
the observability inequality (for null controllability) and the backward uniqueness implies the unique
continuation property for the corresponding adjoint system. Thus, using a boundary control in density,
our systems (3.1) and (3.6) are approximately controllable at time T > %,—g in the spaces (L?(0,27))? and
(L2(0,27))3 respectively (thanks to Theorem 3.1.1 and Theorem 3.1.3). Similarly, when a boundary
control is acting in the velocity or in temperature (for the non-barotropic case), the systems (3.1)

21

and (3.6) are approximately controllable at time T > 7 in the spaces H;er(O, 27) x L?(0,27) and

Hrl,er(O, 2) x (L?(0,27))? respectively (thanks to Theorem 3.1.2 and Theorem 3.1.3).

In this context, we must mention that proving the backward uniqueness property might be difficult
(in general) when the associated operator do not have complete set of eigenfunctions; see for instance
[Ren15], where the author proved backward uniqueness of the linearized compressible Navier-Stokes
system (3.1) under Dirichlet boundary conditions p(t,0) = u(t,0) = u(t,1) =0 (t € (0,T)), by proving
injectivity of the associated semigroup.

3.4.3 More number of controls

Adding controls in both velocity and temperature components does not improve the null controlla-
bility result of the system (3.6) with respect to the regularity of the initial states. Estimates of the
observation terms remain the same as in the control acts in velocity or temperature.
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CHAPTER 4

Linearized compressible Navier-Stokes
system (barotropic fluids)

This chapter is taken from the article [BCDK22]:
“K. Bhandari, S. Chowdhury, R. Dutta, and J. Kumbhakar. Boundary null-controllability of 1d
linearized compressible Navier-Stokes system by one control force, 2024.”
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4. LINEARIZED COMPRESSIBLE NAVIER-STOKES SYSTEM (BAROTROPIC FLUIDS)

In this paper, we prove the boundary null-controllability of the compressible Navier-Stokes
equations linearized around a positive constant steady state in a bounded interval when the time is
sufficiently large. The novelty of this work is that we consider only one Dirichlet boundary control
at one end of the interval acting either on the velocity or density part of the concerned system,
where the first-order couplings between transport and heat-type equations arise. Moreover, we
establish that the null-controllability results are optimal/sharp concerning the regularity of initial
states for the velocity case and with respect to time for the density case.

The proofs of controllability results rely on a parabolic-hyperbolic joint Ingham-type inequality,
which is derived in this work, and a mixed parabolic-hyperbolic moments method. In light of
the requirement, we need to use some complex analytic arguments to check the Fattorini-Hautus
criterion. To this end, a careful spectral analysis of the associated non-self-adjoint operator is
performed, where the spectrum consists of parabolic and hyperbolic branches of eigenvalues. It is
one of the involved parts of this article because we analyze more general boundary conditions in
contrast to the periodic case appearing in [CMRR14].

4.1 Introduction and main results

4.1.1 The system under study

The Navier-Stokes (NS) system for a viscous compressible isentropic fluid in (0, L) is
pr+ (pu)y =0, in (0,400) x (0, L), (41)
plur +uuy) + (p(p))x — Vier =0, in (0, +00) X (0, L), '

where L > 0 denotes the finite length of the interval, p is the fluid density and u is the velocity. The
viscosity of the fluid is denoted by v > 0 and we assume that the pressure p satisfies the constitutive
law p(p) = ap? for a > 0 and y > 1. Upon linearization of (4.1) around some constant steady state
(Qo, Vo) (With Q() > 0, Vo > 0), we have

pr + Vopx + Qouy =0, in (0, +00) x (0, L),
v /2 ) (4.2)
Uy — Q—uxx +Voux +ayQy “px =0,  in (0,+00) X (0,L).
o
Now, if we consider the change of variables:
p(t,x) = ap(ft,ox), u(t,x) — u(ft,dx), VY(t,x) € (0,+c0) x (0, L),
with the choices of @, 5,6 > 0 as
_g\~1/2 QoV? QoV;
— y-3 20 5. QoW
a: (ayQO ) , B , 0 0 y
then the system (4.2) reduces to
P+ px+cuy =0, in (0, 400) x (0,8L), (4.3)
U — Uy + Uy +¢py =0,  in (0, +00) X (0,5L), ’

with ¢ = ‘Q,—g (ayQ(’)/_?’)lﬂ. Let us describe the problems on which we are going to work in the present
article. Our goal is to study the boundary controllability properties of the linearized Navier-Stokes
system (4.3) at time T > 0 with a single control force acting either on the velocity or density component.
Here, we must mention that the whole analysis of this paper will be performed in the space domain
(0,1), which is mainly for the simplicity of spectral computations. The same can be done in the
interval (0,5L).
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I. Control on velocity: The first problem under consideration is

Pt + px +cuyx =0, in (0,T) x (0,1),

Up — Uyx + Uy +Cpx =0, in (0,T) x (0,1),

p(t,0) = p(t, 1), for t € (0,T), (4.4)
u(t,0) =0, u(t,1)=q(t), for t € (0, T),

p(0,x) = po(x), u(0,x) =up(x), in (0,1),

with a Dirichlet control g acting at the right boundary point only through the velocity component u,
and (pg, ug) is the given initial state from some suitable Hilbert space.

II. Control on density: Next, we consider the case when a boundary control p acts on the density
part instead of velocity. More precisely, the system under consideration is

P+ px+cuy =0, in (0,T) x (0,1),

Up — Upx + Uy + Cpx = 0, in (0,T) x (0,1),

p(t,0) = p(t, 1) + p(t), for t € (0, T), (4.5)
u(t,0) =0, u(t,1)=0, for t € (0, T),

p(0,%) = po(x), u(0,x) =up(x), in (0,1).

The aim is to study the null-controllability of the systems (4.4) and (4.5) at a given time T > 0.
Moreover, as a consequence of the null controllability result for the system (4.5), we can also achieve
the null-controllability for the following full Dirichlet system when a control is exerted on the density
part, that is

P+ px+cuy =0, in (0,T) x (0,1),

Up — Ugx + Uy +Cpx = 0, in (0,T) x (0,1),

p(t,0) = h(t), for t € (0,T), (4.6)
u(t,0) =0, u(t,1)=0, for t € (0, T),

p(0,x) = po(x), u(0,x) =up(x), in (0,1).

Let us prescribe the notions of null and approximate controllability for the concerned systems (4.4)—
(4.6).

Definition 4.1.1. Let H be a Hilbert space. We say the system (4.4) (resp. (4.5) and (4.6)) is

e null controllable at a finite time T > 0 in H if, for any given initial state (po,ug) € H, there
exists a control q¢ € L*(0,T) (resp. p,h € L%(0,T)) such that the solution (p,u) to (4.4) (resp.
(4.5) and (4.6)) can be driven to 0 at the time T, that is,

(p(T,x),u(T,x)) = (0,0), for all x € (0,1).
e approximately controllable at o finite time T > 0 in H if, for any given initial state (po, ug) €
H, final state (pr,ur) € H and given € > 0, there exists a control g € L*>(0,T) (resp. p,h € L?(0,T))
such that the solution (p,u) to (4.4) (resp. (4.5) and (4.6)) satisfies

(o (D), u(T)) = (pr.ur)lly < e

If the system (4.4) is null controllable at some time T > 0 by using a control g € L?(0,T) acting
only on the velocity part, then we have the following compatibility condition (obtained by integrating

the first equation of (4.4)):
1 T
/ po(x)dx = c/ q(t)dt.
0 0
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We also get a similar compatibility condition for the density case (that is, for system (4.5)), given by

/ * pold = - / (o).

To avoid these constraints, we shall work on the Hilbert space L?(0,1) x L?(0, 1), where
‘ 1
L2(0,1) := {f € L%(0,1) : / fdx = 0} .
0

4.1.2 Functional setting

For any s > 0, we introduce the following Sobolev space
Hg(0,L) :={¢ € H*(0,L) : ¢(0) = ¢(L)}

and denote (Hg(O, L))" as the dual space of HE(O, L) with respect to the pivot space L?(0,L). We also
denote, for any s > 0, H*(0,L) and (H;(O, L))" as the dual spaces of Hj(0,L) and Hg(O, L) with respect

to the pivot spaces L%(0,L) and L?(0,L) respectively. We note here that, although the trace ¢(0) or

@(L) is meaningful only for s > %, we still keep the same notation for s < % to simplify the presentation.

Let us now write the underlying operator associated with the control systems (4.4) or (4.5), given by

—0x —COy
A= ) , (4.7)
—COx Oxx — Ox
with its domain
D(A) = {® = (Em) € H'(0.1) x HX(0,1) + £(0) = £(1), n(0) = 5(1) =0}, (48)
The adjoint of the operator A has the following formal expression
Oy CcOy
A" = ) (4.9)
COx Oxx + Oy

also with the same domain D(A*) = D(A), given by (4.8). Note that, the operator A is non-self-adjoint
in nature.

Notations: Throughout the chapter, C,C; > 0 for i € N*, denote the generic constants that may
vary from line to line and may depend on T.

4.1.3 DMain results

This section is devoted to announce the main results of this chapter.

Theorem 4.1.1 (Control on velocity). Let T > 1 and ¢ > 0 such that ¢* + 8¢ +5 < 4n2. Then, there
1
exists a countable set N such that for chosen ¢ ¢ N and any given (po, ug) € H; (0,1) x L?(0,1), there

exists a Dirichlet boundary control q € L?(0,T) acting on the velocity component such that the system
(4.4) is null-controllable at time T, that is

p(T,x) =u(T,x) =0, Vxe(0,1). (4.10)

Moreover, if 0 < s < %, the system (4.4) fails to satisfy the null-controllability criterion (4.10) in the
space Hg(O, 1) x L2(0,1) for any given time T > 0 and ¢ > 0.
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Theorem 4.1.2 (Control on density). Let T > 1 and ¢ > 0 such that ¢* + 8¢? +5 < 4x2. Then, for
any given initial state (po,ug) € L2(0,1) x L2(0,1), there exists a boundary control p € L?(0,T) acting
through the density component such that the system (4.5) is null-controllable at time T, that is

p(T,x) =u(T,x) =0, Vxe(0,1). (4.11)

Remark 4.1.1. We must mention here that the restrictions on ¢ appear in the above results because of
the difficulty in proving that roots of the auziliary equation (which comes from the differential equation
satisfied by the eigenfunctions of A*) are distinct, see Lemma 4.4.1 for instance. In particular, this
property ensures that all the eigenvalues of A* has geometric multiplicity 1 (see Proposition 4.3.1-Part
(iv)), which is very crucial to obtain null controllability of the systems (4.4) and (4.5). Moreover, the
set N appears while proving that all the observation terms are non-zero in the case when a control
acts only on the velocity part; see Proposition J.4.1-Part 2 for details. Note that, in particular, the
set {c >0 : c*+8c?+5 < 4n?} contains the interval (0,1].

Moreover, we have the lack of null-controllability result for the system (4.5) when T < 1. Precisely,
we prove the following proposition.

Proposition 4.1.1. Let 0 < T < 1. The system (4.5) is not null-controllable at time T in the space
L?(0,1) x L?(0,1).

As a consequence of Theorem 4.1.2, we also achieve the null-controllability for the system (4.6)
with a Dirichlet control on the density part. More precisely, we have the following result.

Theorem 4.1.3 (Dirichlet control on density). Let T > 1 and ¢ > 0 such that ¢*+8c*+5 < 472, Then,
for any given initial state (po,uo) € L?(0,1) X L?(0,1), there exists a boundary control h € L?(0,T)
acting through the density component such that the system (4.6) is null-controllable at time T, that is

p(T,x) =u(T,x) =0, Vxe(0,1). (4.12)
Moreover, if 0 < T < 1, the system (4.6) is not null controllable at time T in L?(0,1) x L(0,1).

Indeed, by Theorem 4.1.2, there exists a control p € L?(0, T) which drives the solution (p, u) of the
system (4.5) to (0,0) with initial state (pg,ug) € L2(0,1) x L2(0,1). Then, by showing p(-,1) € L2(0,T),
one can consider h(t) := p(t,1) + p(¢) for ¢t € (0,T), which acts as a null-control for the system (4.6).
Similarly, we can prove null controllability of (4.5) by assuming null controllability of the system (4.6).
As a consequence, null controllability of the system (4.5) is equivalent to that for the system (4.6).
This kind of technique has been applied for instance in [CC09a, CHO16].

To prove the main results of this paper, we notably use an Ingham-type inequality and the moments
technique. In fact, we establish the following Ingham-type inequality which is of independent interest.

Proposition 4.1.2 (A combined Ingham-type inequality). Let {Ax}ren+ and {yx}rez be two sequences
in C with the following properties: there is N € N* such that

(1) for allk,j € Z, yx # yj unless j =k;
(ii) yx = P+ 2kmi+ v for all |k| > N;

where f € C and {vi} k=N € fo.
Also, there exist constants Ag = 0, By = & with § > 0 and some € > 0 for which {Ar}ren+ Satisfies

(1) for all k,j € N*, A # A; unless j =k;

(i1) |_1516(§1/,1(k))| >¢ for somec>0 and k > N;

(iii) there exists some r > 1 such that |/1k - )Lj| >0 |k" = j"| for allk # j with k,j > N and

(z'v) €(Ag + Bok") < |Ak] € Ap + Bok™ for all k > N.
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We also assume that the families are disjoint, i.e.,
(v k€Zyn{A, ke N} =0.

Then, for any time T > 1, there exists a positive constant C depending only on T such that

T
L1 ey pyens
0

keN* keZ
for all sequences {ag}ren and {by}rez in fo.

2
dt > C Z |a,¢|2e?Re<ﬂk>T+Z|b,<|2 , (4.13)

keN* keZ

Remark 4.1.2. The first Ingham inequality was proved in 1936 by Ingham [Ing36]. He considered a
hyperbolic family of the form (iyi)ken+, where (yi)ken+ @s a sequence of real numbers satisfying the gap
condition infren |yke1 — ve| > 0. Since then, there are many variations of this inequality available in the
literature including the parabolic Ingham inequality (commonly known as the Miintz-Szdsz theorem,).
We refer to the works [A195, JTZ97, You0l, FCGBAT10, Edw06, LZ02, Lop99, KL05, MZ0j] for
proofs of these variations of Ingham-type inequality.

Zhang and Zuazua [ZZ03a, ZZ03b, ZZ04] proved a joint parabolic-hyperbolic Ingham-type inequality
with a parabolic branch of the form —k?z?+2+0(k™') and a hyperbolic branch of the form (% + k)i +
O(k|™) (Lemma 4.1 in [ZZ03a] or [ZZ04] and Lemma 4.5 in [ZZ03b]). This result has been generalized
by Komornik and Tenenbaum [KT15]. In this article, we prove a joint parabolic-hyperbolic Ingham-
type inequality under more general assumptions on the parabolic and hyperbolic branches compare to
the assumptions in [KT15, Theorem 1.1]. Our proof is based on a decoupling idea as mentioned in
[Zual6, Section 2.4] by Zuazua and [CMRR1/, Theorem 4.2] by Chowdhury, Mitra, Ramaswamy and
Renardy. In fact, our proof works with more general assumptions on the sequences (Ax)ken+ and (yi)kez
for which each of the individual parabolic and hyperbolic Ingham inequalities hold.

4.1.4 Literature on the controllability results related to the compressible
Navier-Stokes equations

In the past few years, the controllability of the compressible and incompressible fluids has turned
into a very significant topic to the control community. Ferndndez-Cara et al. [FCGIP04b] proved the
local exact distributed controllability of the incompressible Navier-Stokes system when a control is
supported in a small open set; see also the references therein. A local null-controllability result of 3D
Navier-Stokes system with distributed control for incompressible fluids having two vanishing compo-
nents has been addressed in [CL14] by Coron and Lissy. Badra, Ervedoza and Guerrero in [BEG16]
proved the local exact controllability to the trajectories for non-homogeneous (variable density) in-
compressible 2D Navier-Stokes equations using boundary controls for both density and velocity.

In the case of compressible Navier-Stokes equations, we first mention the work by E. V. Amosova
[Amol1] where she considered a compressible viscous fluid in 1D w.r.t. the Lagrangian coordinates
with zero boundary condition on the velocity and an interior control acting on the velocity equation.
She proved a local exact controllability result when the initial density is already on the targeted
trajectory. Ervedoza, Glass, Guerrero and Puel in [EGGP12]| proved a local exact controllability
result for the 1D compressible Navier-Stokes system in a bounded domain (0,L) for regular initial
data in H*(0,L) x H3(0,L) with two boundary controls, when time is large enough. This result has
been improved by Ervedoza and Savel in [ES18] by choosing the initial data from H'(0,L) x H(0, L);
see also a generalized result [EGG16] by Ervedoza, Glass and Guerrero for dimensions 2 and 3.

We also refer that Chowdhury, Ramaswamy and Raymond in [CRR12] established a null control-
lability and stabilizability result of a linearized (around a constant steady-state (Qp,0), Qp > 0) 1D
compressible Navier-Stokes equations. The authors proved that their system is null-controllable in
Hé x L? by a distributed control acting everywhere in the velocity equation. Their result is proved
to be sharp in the following sense: the null-controllability cannot be achieved by a localized interior
control (or by a boundary control) acting on the velocity part.
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Martin, Rosier and Rouchon in [MRR13] considered the wave equation with structural damping
in 1D; using the spectral analysis and method of moments, they obtained that their equation is null-
controllable with a moving distributed control for regular initial conditions in H**? x H® for s > 15/2
at sufficiently large time. See also the work of Chaves-Silva, Rosier and Zuazua [CSRZ14a] for the
higher dimensional case.

The 1D compressible Navier—Stokes equations linearized around a constant steady state with pe-
riodic boundary conditions is closely related to the structurally damped wave equation studied in
[MRR13]. Chowdhury and Mitra [CM15] studied the interior null-controllability of the linearized
(around constant steady state (Qo, Vo), Qo > 0,Vp > 0) 1D compressible Navier—Stokes system with
periodic boundary conditions. Following the approach of [MRR13], the authors in [CM15] established
that their system is null-controllable by a localized interior control when the time is large enough, and
for regular initial data in H;,Jgrl X Hy, with s > 13/2. They also achieved that, for any T > %,—g, the
system is approximately controllable at time T > %,—g in L2 x L? using a localized interior control (of the
form f(t,x) = h(t)g(x) for (¢t,x) € (0,T) x (0,27)) and, it is null-controllable at time T using periodic

boundary control with regular initial data H;Jgrl X H;,er for s > 9/2.

In [CMRR14], Chowdhury, Mitra, Ramaswamy and Renardy considered the one-dimensional com-
pressible Navier—Stokes equations linearized around a constant steady state (Qg, Vy),Qo > 0,V > O,
with homogeneous periodic boundary conditions in the interval (0, 27). They proved that the linearized
system with homogeneous periodic boundary conditions is null controllable in H ;er x L? by a localized
interior control when the time T > 2%. Moreover, in their work the distributed null-controllability

. VO .

result in H;er x L? is sharp in the sense that the controllability fails in Hp,\ X L% for any 0 <s < 1. As
usual, the large time for controllability is needed due to the presence of transport part and indeed, the
null-controllability fails for small time, see [Mail5] by Maity and [AMM22] by Ahamed, Maity and

Mitra.

Chowdhury in [Chol5] considered the same linearized Navier—Stokes system around (Qo, Vo) with
Qo > 0,V > 0in (0, L) with homogeneous Dirichlet boundary conditions and an interior control acting
only on the velocity equation on a open subset (0,1) C (0,L). He proved the approximate controllability
of the linearized system in L?(0,L) x L?(0, L) with a localized control in L?(0, T;L?(0,1)) when T > LV—BI.

In the context of the controllability of coupled transport-parabolic system (which is the main
feature of linearized compressible Navier-Stokes equations), we must mention the work [LZ98] by
Lebeau and Zuazua where the distributed null-controllability of Thermoelasticity system has been
studied. More recently, Beauchard, Koenig and Le Balc’h [BKLB20] considered the linear parabolic-
transport system with constant coefficients and coupling of order zero and one with locally distributed
controls posed on the one-dimensional torus T. Following the approach of [LZ98], they proved the
null-controllability at sufficiently large time when there are as many controls as equations. On the
other hand, when the control acts only on the transport (resp. parabolic) component, they obtained
an algebraic necessary and sufficient condition on the coupling term for the null-controllability, and
their controllability studies based on a detailed spectral analysis. According to the more general result
established in [BKLB20], we can say that for a 2x2 coupled parabolic-transport system (with periodic
boundary conditions), the null-controllability with one localized interior control holds true in L?(T) x
L2(T) (resp. in H*(T)xH?(T)) when the control acts only on the transport (resp. parabolic) component.
More recently, the distributed null-controllability of underactuated linear parabolic-transport systems
with constant coefficients in one-dimensional torus has been established in [KL23] by Koenig and Lissy
for regular enough initial data and large time.

Finally, one may find few stabilization results for linearized compressible Navier-Stokes system
available in [ABBEFR11, CRR12, CMRR15, CDM21, MRR15, MRR17].

4.1.5 Our approach and achievement of the present work

As mentioned earlier, in compressible Navier-Stokes system, the interesting feature is the first order
coupling between transport equation and the momentum equation of parabolic type. It was shown
in [CMRR14, CM15] that the linearized compressible Navier-Stokes system with Periodic-Periodic
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boundary conditions, there is a sequence of generalized eigenfunctions of the associated adjoint op-
erator that forms a Riesz Basis for the state Hilbert space. The success in obtaining this result lies
in the simplicity of the corresponding characteristic equations as well as the explicit structure of all
eigenfunctions in terms of Fourier basis.

But for the operator (A*, D(A*)) defined in (4.9), the characteristic equation is a third order ODE
and the eigenvalue equation is a non-standard transcendental equation, which is quite challenging to
handle. In fact, the method (invariant subspace idea) used in [CMRR14, CM15] is not practically
applicable to our case. However, we manage to characterize the set of eigenvalues and eigenfunctions
for the operator A*. More precisely, the spectrum of A* consists of: a parabolic part containing the
eigenvalues A‘Z such that Re(}tf:) behaves like —k?72 for large enough k € N* while Im()t‘:) is bounded;
a hyperbolic part made up of the eigenvalues AZ such that Im(AZ) behaves like 2kx for large enough
k € Z while Re(AZ) is bounded; and a finite set of lower frequencies. The Riesz basis property of the

set of (generalized) eigenfunctions has been then established by using an abstract result of B.-Z. Guo
[Guo01].

To study the boundary null controllability, we mention that the usual extension method is not
really convenient for the Navier-Stokes system. This is because, when we put one interior control in
the system, then upon extending the domain and restricting the solution on the boundary will give
rise to two boundary controls for the system. In this regard, we refer some earlier null-controllability
results [MRR17, EGGP12, ES18] with one interior control acting in the velocity equation or two
boundary controls both for density and velocity.

The main novelty of the present work is that we directly handle the boundary null controllability
with only one control acting on the density or velocity part where the boundary conditions are of
mixed type (In this regard, we mention the work [CMZ20] by Cerpa, Montoya and Zhang, where
some mixed boundary conditions has been appeared in the context of KdV-Burgers equation). More
precisely, when a control acts in velocity, we use the Ingham-type inequality glgiven by Proposition 4.1.2

to prove an observability inequality for the adjoint to the system (4.4) in (HﬁE (0,1))" x L?(0,1), leading

to the null-controllability of (4.4) at time T > 1 with initial data in HE (0,1) x L?(0,1). On the other
hand, when a boundary control acts on the density part, we proceed in the following way: first, using
the Ingham-type inequality (4.13) we obtain the null-controllability of the system (4.5) at time T > 1
in the space L?(0,1) x H& (0, 1); secondly, we apply a parabolic-hyperbolic joint moments technique as
developed in [Han94] by Hansen to conclude the null-controllability of the same system (4.5) in the
space Hg (0,1)xL?(0,1) for s > % at T > 1. Then, due to the linearity of the solution map of the system

(4.5), these two results provide the null-controllability of that system in the space L%(0,1) x L2(0,1)
when T > 1. And, consequently, we deduce the null-controllability of the system (4.6) at time T > 1
in £2(0,1) x L2(0,1). Finally, we obtain that null controllability of the systems (4.5) and (4.6) fails in
L2(0,1) x L?(0,1) when the time is small, that is, when 0 < T < 1.

4.1.6 Chapter organization

The chapter is organized as follows.

— In Section 4.2, we discuss the well-posedness results of the main systems and some associated
results have been proved in the Appendix.

— We split the spectral analysis for the associated adjoint operator into two sections for the ease of
reading. Section 4.3 contains a short description of the spectral properties whereas the detailed
analysis is prescribed in Section 4.8.

— In Section 4.4, we obtain the lower bounds for the observation terms which are crucial to deter-
mine the null-controllability for the system (4.4) or (4.5).

— Section 4.6 is devoted to prove the null-controllability of the system (4.4), that is Theorem 4.1.1.
An Ingham-type inequality (Proposition 4.1.2), proved in Section 4.5, is the main ingredient for
the required null-controllability proof.
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— Then, in Section 4.7, we prove the null-controllability of the system (4.5), that is Theorem 4.1.2
by using both the method of moments and the Ingham-type inequality obtained in Section 4.5.
As a consequence, we conclude the result in Theorem 4.1.3. Further, a lack of null controllability
result (Proposition 4.1.1) for this system (4.5) is also included in this section.

— Finally, we conclude our paper by providing some open question and remarks in Section 4.9.

4.2 Well-posedness of the system

Let us first recall the operator A* defined by (4.9). Then, we write the adjoint system associated to
the control problems (4.4) and (4.5): let (o,0) be the adjoint state and the system reads as

—0; — 0x — CUx = |, in (0,T) x (0,1),

—U; — Uxx — Ux — COx = ¢, in (0,T) x (0,1),

o(t,0) =o(t,1), for t € (0, T), (4.14)
v(t,0) =o(t,1) =0, for t € (0, T),

o(T,x) = or(x), o(T,x) =vr(x), in (0,1).

Shortly, one may express it by
=V'(t) = A"V (t) + F(t), VYte (0,T), V(T)=Vr, (4.15)

where the state is V := (o, 0), given final data is Vr := (or, v1) and source term is F := (f,g).

To show the well-posedness of the solutions to (4.4) and (4.5), let us first write the following lemma.

Lemma 4.2.1. The operator A (resp. A*) is mazimal dissipative in L?(0,1)xL?(0,1), that is, (A, D(A))
(resp. (A*,D(A*))) generates a strongly continuous semigroup of contractions in L%(0,1) x L2(0,1).

The proof of Lemma 4.2.1 can be done in a standard fashion. For the sake of completeness, we
give the proof in Appendix A.0.1. As a consequence of this result, we now guarantee the existence
of a strong solution of the Navier-Stokes equation (4.4) (resp. (4.5)) when there is no control input
acting on the system.

Lemma 4.2.2. For any given (po,up) € D(A), the system (4.4) with q =0 (or the system (4.5) with
p =0) admits a unique strong solution (p,u) € C*([0,T];L?(0,1) x L2(0,1)) N C°([0, T]; D(A)).

Once we have the existence of semigroup generated by the operator A*, we can write the following
result:

Proposition 4.2.1. For any given F := (f,g) € L*(0,T;L%(0,1)xL?(0,1)) and Vr = (or,0r) € L2(0,1) x
L%(0,1), there exists a unique weak solution V := (o,v) to the system (4.15) in the space
C([0,T];L%(0,1)) x [C([0,T];L*(0,1)) N L2(0, T; H3(0,1))] with the estimate

l(a,0)l co (o102 0.1)xL2(0,1)) + ||U||L2(0,T;H5(o,1)) <C (||F||L2(0,T;L2(0,1)><L2(0,1)) + ||VT||L2(0,1)xL2(0,1)) .

Moreover, we have the hidden regularity property o(-,1) € L?(0,T).
In particular, if F € L?(0, T; H'(0,1) x L2(0,1)) and V¢ = (0,0), the solution (o,v) to (4.15) belongs
to C°([0,T]; Hy (0.1)) x [C°([0.T]; Hy (0, 1)) N L2(0, T; H*(0, 1))].

The proof of this result can be adapted from the work [Gir08, Chapter IV, Sec. 4.3] and so we
omit the details. For the hidden regularity property, we give a detailed proof in Appendix A.1.

Now, we can define the notion of solutions to the control systems (4.4) and (4.5) in the sense of
transposition (see for instance [Cor(7]) where a non-trivial boundary source term is appearing.

Definition 4.2.1. We write the following definitions bases on the act of the control.
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e For given initial state Uy := (po, up) € L2(0,1)xL%(0,1) and boundary data q € L*(0,T), a function
U := (p,u) € L*(0,T; (Hé(O, 1))) x L%(0,T; L%(0,1)) is a solution to the system (4.4) if for any
given F := (f,g) € L>(0,T; H*(0,1)) x L2(0, T; L?(0, 1)), the following identity holds true:

T T pl
/(; (p(t,-),f(t,-)>(H1),,H1dt+/0 ./0 u(t, x)g(t, x)dxdt

T
= (Uo(-), V(0, ')>L2xL2+/O [ca(t,1) +ox(t,1)]q()dt,

where V := (o,0) is the unique weak solution to the adjoint system (4.15) with Vr = (0,0).

e For given initial state Uy := (po, ug) € L2(0,1)xL2(0,1) and boundary data p € L*(0,T), a function
U := (p,u) € L2(0,T; L%(0,1)) x L2(0, T; L?(0,1)) is a solution to the system (4.5) if for any given
F:=(f,g) € L?(0,T;L?(0,1)) x L2(0, T; L%(0, 1)), the following identity holds true:

T p1 T pl T
'/0 /0 p(t,x)f(t,x)dxdt+‘/0 ./0 u(t,x)g(t,x)dxdt=<U0(-),V(0,~))szLz+‘/0 o(t,1)p(t)dt,

where V := (o,0) is the unique weak solution to the adjoint system (4.15) with Vr = (0,0).

Let us state the following theorems that concern the existence and uniqueness of solutions to the
control problems (4.4) and (4.5).

Theorem 4.2.1. For every q € L?>(0,T) and Uy := (po,up) € L?(0,1) x L2(0,1), the system (4.4) has
a unique solution U := (p,u) belonging to the space C°([0,T]; (H&(O, 1)) x [C°([0,T]; H1(0,1)) n
L%(0,T;L%(0,1))] in the sense of transposition.

Moreover, this solution (p,u) satisfies the following estimate
”p”CO([O,T];(Hﬂl(0,1))’) +lullcoror):H-1 (01))nL20.1:22(0,1)) < C (||(Po, uo)ll201)xr2(01) + ||Q||L2(0,T))

for some constant C > 0.

The proof for Theorem 4.2.1 will be followed from [CR13, Section 3]. In fact, if (po, ug) € L(0,1) x
L2(0,1) and q € L?(0,T), the solution (p,u) of (4.4) belong to L*(0,T; (Hﬁl(o, 1))") x L2(0,T;L?(0,L)).
Using the continuity estimate for the transport equation and properties of the parabolic equation, we
can deduce that p € C°([0, T]; (Hﬂl(O, 1))’) and u € C°([0,T]; H~1(0,1)).

Theorem 4.2.2. For every p € L?(0,T) and Uy := (po, uo) € L?(0,1) x L%(0,1), the system (4.5) has
a unique solution U := (p,u) belonging to the space L?(0,T;L?(0,1)) x L2(0,T;L%(0,1)) in the sense of
transposition and the operator defined by

(Uo, p) = U(Uy, p)s

is linear and continuous from (L?(0,1) x L%(0,1)) x L2(0,T) into L?(0,T;L?(0,1)) x L2(0,T; L%(0,1)).

Moreover, the solution satisfies the following regularity result,
(pu) € C([0,T]; L*(0, 1)) x [CO([0, T]; L*(0, 1)) N L*(0, T; Hy (0, 1))] (4.16)

with the estimate

||P||CO([0,T];L2(0,1)) + ”uHCU([O,T];LQ(O,l))ﬂLQ(O,T;Hé(0,1))
< (Ipollzzo) + Muollzz o) +lpllzor) ) (417)

for some constant C > 0.

Further, we have the hidden regularity property p(-,1) € L(0,T).

We give a sketch of the proof for Theorem 4.2.2 in Appendix A.0.2-A.1.
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4.3 A short description of the spectral properties of the adjoint
operator

In this section, we briefly describe the spectral properties of the adjoint operator A* associated to our
control system (4.4) or (4.5). This part is crucial in our analysis but it is the most technical part, and
thus a detailed study will be presented in Section 4.8.

4.3.1 The eigenvalue problem

Let us denote @ := (&, 1) and consider the following eigenvalue problem:
A'® = )Ap, for AeC,
which is explicitly given by

E(x) +en'(x) = 26(x), x€(0,1),
N’ (x) +1'(x) +cf'(x) = An(x), x € (0,1),
£(0) = &(1),
n(0) =n(1) =0.

(4.18)

We prove the following proposition.
Proposition 4.3.1. The following results are true.
(i) ker A* = span{(1,0)}.
(ii) All non-zero eigenvalues of A* have negative real parts.
(iii) The resolvent operator associated with A* is compact and hence the spectrum of A* is discrete.
(iv) Let ¢ > 0 be such that ¢* +8c? +5 < 4x%. Then, the eigenvalues of A* are geometrically simple.

A quick observation tells that: when A =0, then «(1,0) with a # 0 are the only eigenfunctions of
the operator A*, which is nothing but the part (i) of the above proposition. Proofs of the other parts
are given in Section 4.8.

4.3.2 The set of eigenvalues

Let us write the properties of the eigenvalues of the operator A*. More precisely, we have the following
lemma.

Lemma 4.3.1. Let (A*, D(A")) be the operator given by (4.9). Then, there exist ko, ng € N* such that
A* has three sets of eigenvalues: the parabolic part {Ai}k2k07 the hyperbolic part {/1,}:}|k|zk0 and a finite

family {0} U {;1\,1}221 of lower frequencies. Moreover, the parabolic and hyperbolic branches satisfy the
following asymptotic properties:

A‘Z =-k*722+0(1), for all k > ko large, (4.19a)
/IZ = —c? = 2ikr + O(|k|™Y),  for all |k| > ko large. (4.19b)

The proof of the above lemma is one of the crucial part of our work and it is heavy; the details
have been provided in Sections 4.8.1 and 4.8.3.

For simplicity, we set g = 0 and the associated eigenfunction by ®,, = (1,0). We further denote
the set of eigenvalues associated to the parabolic and hyperbolic parts respectively by

Ap = {0 k2 kol Api= {21 [kl 2 ko, (4.20)
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and for the lower frequencies by
Ao = {As 1 < n <np}. (4.21)
Finally, the set of all eigenvalues are denoted by o(A*), where

o(A*) == { A} UAgUA, U A, (4.22)

4.3.3 The set of eigenfunctions

We start by writing the following proposition.

Proposition 4.3.2. Let kg be as given by Lemma 4.3.1. Then, the operator A* has the following
sets of (generalized) eigenfunctions: the parabolic part {q’ai}kzkm the hyperbolic part {q)AZ}lkIka the

singleton set {®,,} and a finite set {<I>f1; AeNy, i=0,...,my—1}, where my = 1 is the length of Jordan
chain associated to each of the eigenvalues A € Ag.

Furthermore, we have the following:

1. The parabolic part of the eigenfunctions
©p = (G0 10) (4.23)

have asymptotic expressions for large k > ko, given by

ib _1 2 2 1 1
_ Y -3+ _ x(—k?7%+0(1)) = 2
fﬂi(x) iy 2 cos(km(l—-x)) +e x O (k) +0 (k2) , (4.24)
(1) 1
M (x)=e 2 sin(kz(1-x)) +0 Ak (4.25)

for all x € (0,1) and the hyperbolic part of the eigenfunctions
q’,v,: = ('5,1/,:,’7,12) (4.26)

have asymptotic expressions for large |k| > ko, given by

92i . .
En(x) = 11 sgn(k)e_%_’sgn(k) Vikz|g=2iknx | 0 (|k|_1), (4.27)

‘ be VIFI

1 . )

Ny (x) = - sgn(k)e_%_’sgn(k) Vlfer| o =2ikx (4.28)

¢ ke VK

+ T Sgn(k)e_(l_x)( Vi =3 -isgn(k) “lkﬂl) +0 (Ikl_l),
ke VK

for all x € (0,1), where the sgn function is defined as

1 when k >0,

(4.29)
-1 when k <0,

sgn(k) = {

2. The eigenfamily, denoted by
E(AY) = { Dy, k2 kot U{@pn, k| 2 kop U{®y,} U{®)5 A€ Ao, i=0,....my— 1} (4.30)
forms a Riesz basis in L*(0,1) x L?(0,1).

The last property (Riesz basis) can also be proved in the space (H;l(O, 1)) x H2(0,1) (s1,s2 > 0)
by normalize the eigenfunctions suitably, as written below.

136



4.3. A short description of the spectral properties of the adjoint operator

Corollary 4.3.1. Let s1,s2 > 0 be given. The family of (generalized) eigenfunctions
E(AY) = {k”d)li, k> kot U {k" @, [k| > ko} U {®;,} U {®]; A e, j=0,...,my — 1},
forms a Riesz basis in (H;l(O, 1)) x H=52(0, 1).

We have taken the same finitely many eigenfunctions as before, which can be ensured by choosing
suitable multiples of the generalized eigenfunctions. We will use this Riesz basis property (with
appropriate s; and sy) to prove the required observability inequalities, see the proof of our main
results in Sections 4.6-4.7.

The existence of parabolic and hyperbolic parts of the family of eigenfunctions are proved in Sec-
tions 4.8.2-4.8.4. Then, using a result from [Guo01], we shall prove the existence of lower frequencies

of eigenvalues {1\"}2021 and the associated (generalized) eigenfunctions. Moreover, we will prove that
the set of eigenfunctions &(A*) forms a Riesz basis for L?(0,1) x L?(0, 1).

Lemma 4.3.2 (Bounds of the eigenfunctions). Recall the eigenfunctions CI>A£ = (5/1,2,17)[5:), Vk > ko
and @A]hc = (5’1}13”77‘2)’ V|k| > ko given by (4.24)—(4.25) and (4.27)—(4.28) respectively. Then there exist
constants C1,Co > 0 independent in k, such that we have the following.

1. For any s 2 0 and k > kg, we have

Crk™ ™t < 1Ep s 01))y < Cok ™7,
. o ) (4.31)
Cik™ < ”U;Lz“H*S(O,l) < Cok™*.
2. On the other hand, for any |k| = ko and s > 0, we have
Cr k™ < N1EunlEs0,1)) < Calk]™,
T o (4.32)
Cy |k| < lImaella=so1) < Calk| ™77

Again, the proofs can be found in Section 4.8.5.

Riesz basis property of the (generalized) eigenfunctions. Let us first recall the following
result.

Theorem 4.3.1 (B.-Z. GUO [Guo01]). Let A be a densely defined discrete operator (i.e., the resolvent
of A is compact) in a Hilbert space H. Let {¢,}]" be a Riesz basis of H. If there are an integer N > 0
and a sequence of generalized eigenvectors {Yn}y,, of A such that

D lgn = Yull? < 4o,

N+1

then the following results hold.

(i) There are a constant M > N and generalized eigenvectors {1,&,,0}?4 of A such that {g&no}’lwu{%}jzﬂ
forms a Riesz Basis for H.

(ii) Let {1//,10}’1‘4U{¢n}§+1 correspond to the eigenvalues {A,}7° of A. Then the spectrum o(A) = {A,}7,
where A, is counted according to its algebraic multiplicity.

(iii) If there is an My > 0 such that A, # Am for all m,n > My, then there is an Ny > My such that all
An are algebraically simple if n > Ny.
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The first assumption of Theorem 4.3.1 is true in our case since we know that the resolvent operator
of A* is compact, thanks to the Proposition 4.3.1-part (iii). So, the next duty is to find a known family
(¥, k € N*; ¥, k € Z} that defines a Riesz basis for L2(0,1) x L2(0,1) and that is quadratically close
to the countable family {(D/P,‘:’ k > ko} U {(DAZ’ |k| = ko}. Precisely, our goal is to show the following:

2 — 12
> ”‘%’ = Y ||‘1’az “%, , <o (4.33)
k>ko |k|=ko
To this end, let us consider the following functions on (0, 1):
¢k(x)) 0 .
Y (x) := = , Yk eN, 4.34a,
K (¢k(x) 2ie~2 (1+%) sin(kz(1 - x)) ( )
_ ~ 2i Sgn(k)e—%—isgn(k)\llknle—2ik7rx
To(x) o= |2 o[ . Vkez (4.34b)
Y () 0

It can be shown that the family {¥, k € N*; ¥, k € Z} of above functions forms a Riesz basis for
L?(0,1) x L?(0,1) and we have the following result.

Lemma 4.3.3. The family {¥, k € N*; ¥, k € Z} given by (4.34) is quadratically close to the family
of eigenfunctions {@Ap, k> ko} U {CIJAZ, k| > ko}.
k

Proof. Looking at the expressions of the eigenfunctions CIJ)%:, (DAZ for large modulus of k, given by

(4.23)(4.24)(4.25) and (4.26)(4.27)(4.28) (resp.) and the known functions W, ¥ given by (4.34),
it is straightforward to compute that

”q)/1£ - Y ;xL? < % Vk > kg large enough,
and
2 C
”d)/lz - ¥ a2 < ok V|k| = ko large enough,
which implies the required property (4.33). O

Sketch of the proof for Proposition /.3.2. First, recall that the countable (infinite) number of eigen-
functions {q)xz}kzko and {q)AZ}IHZkO? with their asymptotic expressions are already given by (4.24)—
(4.25), (4.27)—(4.28).

Now, thanks to Lemma 4.3.3, we can apply the point (i) of Theorem 4.3.1 to ensure the existence
of eigenmodes for lower frequencies. Accordingly, there exist an ng € N* and a finite set eigenvalues

A = {;{n}rllo

of the operator A*. But there may exist some generalized eigenfunctions corresponding to the eigen-
values of the finite set Ag. Thus, for each A € Ap, we associate a Jordan chain of length my > 1,

denoted by @Y, .. .,@;"rl which verify

(A"= D@, =), Vje{l,...my -1}, AeA,,

where in particular CIDS)L := @), the eigenfunction corresponding to A. Moreover, by virtue of Theorem
4.3.1, we can guarantee that the family, given by

E(AY) = {(D/li’ k>ko}U {‘DAL” k| > ko} U {®@p,} U{®F; A eng, j=0,...,my -1},

forms a Riesz basis in L?(0,1) x L?(0,1).
The proof ends. O
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Remark 4.3.1. In the same way, one can prove that the set of eigenvalues and (generalized) eigen-
functions of A (denoted by o(A) and E(A) respectively) have similar properties as of the eigenpairs of
A*. In this case, we can find some Akb € N* (large enough) such that A has the eigenvalues of parabolic
and hyperbolic nature for k > kg and |k| = ko respectively. For later use, we denote the eigenfunctions
of A, respectively by 5‘?, k > Eo and 52, k| > EO corresponding to the parabolic and hyperbolic branches
of eigenvalues. Moreover, using the result of Theorem 4.3.1, we can show that the set E(A) forms a
Riesz basis for the space L?(0,1) x L?(0,1).

4.4 Estimations of the observation terms

In this section, we are going to find some lower bounds of the observation terms associated to our
control systems. In this regard, we use the notations 8, and B, which represent the observation
operators for the density and velocity case respectively, and their formal expressions are given below.

e The observation operator corresponding to (4.5) (control in density) is defined by

B; = ((1]) ﬂ{le} : D(A*) - R, (4.35)
such that
B;d) =&(1), Y@= (&n) e D(AY). (4.36)

e The observation operator corresponding to (4.4) (control in velocity) is defined by

. 1 0\ 2 .
Bu = C]l{le} (O) + ]l{le} (1) a : D(A ) - R, (4.37)
such that
Bid = cE(1)+1/(1), VO =(&n) € D(A”). (4.38)

4.4.1 Characteristics of the observation terms

Let us pick any
®:=(&n) € {O1; A€ Ap UA, UAGYL,

and recall the eigenvalue problem (4.18). Substituting the first equation of (4.18) in the second one,
we get

7" (x) = (2 = 1)y’ (x) + cAé(x) — Ap(x) =0, Vx € (0,1). (4.39)
Differentiating, we have
" (x) = (¢ = )"’ (x) + A& (x) = Ay’ (x) = 0, V¥x € (0,1).
By substituting c¢£’ = Anp — p”’ — " in above, we get a third order ode satisfied only by 7 as follows

7" (x) — (A+c? = 1)n” (x) — 240" (x) + A2p(x) =0, Vx € (0, 1),
n(0) =0, n(1) =0, (4.40)
n”’(0) = (¢2 = Dy’ (0) = n” (1) = (¢ = Dy’ (D).

Let mj, my and ms be roots of the cubic auxiliary equation (associated to (4.40))
m3—(A+c2 - 1)m? —2Am+2A? = 0. (4.41)

Then, we have the following result which states some properties of the roots mi, ms and ms.
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Lemma 4.4.1. The following statements hold.

e Roots of the cubic equation (4.41) has multiplicity less than 3.

e Ifc >0 is such that c¢* + 8¢ +5 < 472, the relation €™ = e™ = e™3 cannot hold.

Proof. From the relation between roots and the coefficients, we have

mi+mo+ms=2A+c2 -1,
mimsog + moms + msm; = =24, (4.42)

mimoms = —AQ.

We prove all the statements separately.

o Let m; = my = m3 = m. Then, we have from the first equation of (4.42)

1
ng(uc?—n,

Next, from the second and third equations of (4.42), we have 3m? = —24 and m3 = —A? which
further yields
A+ -1)2=-61 (A+c%-1)3=-271% (4.43)

so that A +¢? — 1 = 1. By means of the first equality in (4.43), we then have A = —£ which

2
eventually gives

7 28 1
2 _ —A = e —
c—1+2)t 1 57 27<0,

and this is not possible. Hence mj, ms and ms cannot be equal together.

Let us now assume
™ = ™2 = ™3,

that is,
mo =mq+ 2ilr, m3 =mq+ 2ins,

for some I, n € Z. From the first equation of (4.42), we have that
1
3my +2ilm +2int = A+c* -1, ie., my= g(/l +c% -1 - 2ilx - 2inm), (4.44)
and so,
1 1
mo = g()t +¢? —1+4ilr - 2inx), mg = g(A +c¢2 =1 = 2iln + dinn). (4.45)

Substituting the above my, ma, m3 in the second equation of (4.42), we deduce (upon simplifica-
tions)
A2+ 22 +4P -In+nH® + (2 -1)? =0.

Solving the above equation, we get some particular values of A, namely

B —2(c® +2) £ 4(c2 +2)2 — 1672(12 — In + n2) — 4(c2 — 1)2
- 2

- 2 2 2(12 2
=—c2-2+£/3(2c2+1) —4x2(12 - In + n?).

A

Since I,n € Z, one has I>? —In+n? > 0' and I? = In+n? = 0 if and only if [ =n= 02. Thus for
(I,n) # (0,0) the values of A are

A== =2+ iVin2(12 - In+n?) — 3(2c2 + 1). (4.46)

Porln=0,12-In+n?2=012+n2>0,forIn<0,2-In+n?>0and forIn>0,12—In+n?2=(1I-n)2+In>0.
21f 12 —In+n? =0 and n # 0 then (%)2 - (%) + 1 =0 has no real solutions. Therefore n =0 and hence I = 0.
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Note that 47%(I?—In+n?)—3(2c%+1) is always non-negative under the assumption ¢*+8¢%+5 < 472
and for all (L, n) # (0,0).

On the other hand, putting the values of mj, ma, m3 (given by (4.44)—(4.45)) in the third equation
of (4.42), we get

(A+c? =1 =2ilx - 2inn) (A + % = 1 +4iln — 2inn) (A + ¢ — 1 = 2ilx + dinm) = —271%,
which further yields
22 +3(+8)A1% + (3(c? - 1)? + 121%7% — 12Inn® + 120% 224 + (2 - 1)3
+1272(c? = 1)(I2 = In+ n?) = 16i13 73 + 24il’nn® + 24iln*7® - 16in°7® = 0.
The real part of above equality satisfies

Re(2%) +3(c? + 8)Re(A?) + [3(c? - 1)? + 1272(12 — In + n®)]Re(})

4.47
+( =12+ 12222 - 1) (2= In+n?) =0. (4.47)

Now, from (4.46), one may find that

Re(d) = —(c? +2),

Re(1?) = ¢ +10¢? + 7 — 47%(1%2 - In + n?),

Re(1?) = =8 — 24¢* — 57¢? — 26 + 127%(c® + 2)(I? — In + n?).
Replacing the above values in (4.47), we obtain

— b —24c* - 57¢? = 26 + 1272 (? + 2) (12 = In + n?)
+3(c2+8)[c* +10c2 + 7 — 472(12 — In + n?)]

—[3(2 -1+ 12222 = In+nH)] (2 +2) + (P - 1)+ 122%(2 - D)2 = In+n®) =0
Simplifying, we eventually have
27¢* +216¢% + 135 — 10872(12 — In+n?) = 0,

so that

27¢* +216¢2+135 ¢t +8c2+5
P—In+n®= =
10872 412

by our assumption c¢*+8c?+5 < 472, which is a contradiction as I?~In+n? > 1 for any (I, n) # (0,0).

<1,

Therefore, the only possibility could be I = n = 0, but in that case, the expressions (4.44) and
(4.45) provides us m; = mg = m3, which is again a contradiction to the first part of the lemma.

Hence, the results of this lemma are true. O

We are now ready to prove that all the observation terms are non-zero for both density and velocity
control cases. For A = 0, the eigenfunction is (1,0), and thus from the expressions of observation terms
(4.36) and (4.38), we immediately get

B(L0) =1, B(L0)=c

which are non-zero.

We thus focus only on the case when A # 0. In such a situation, for any eigenfunction ® of A*, the
observation terms can be rewritten as

B0 =—— (1)~ (@~ D' (), (1.48)
B =5 (1" () - A+ =Dy (), (4.49)

where we have used the equation (4.39).

We now prove the following proposition.
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Proposition 4.4.1. We have the following results for any non-zero eigenvalue A of A*.

1. Let ¢ > 0 be such that ¢* +8c® +5 < 4x%. Then, the solution n of (4.40) satisfies n’'(1) #
(¢* =)’ (1).

2. There exists a countable set N c (0,00) such that for all ¢ € (0,00) \ N with ¢* + 8¢? + 5 < 4n?,
the solution n of (4.40) satisfies n’’(1) # (A+c? — 1)p’(1).

Proof. 1. To prove the first part, we suppose on contrary that n”’(1) = (¢ — 1)5’(1). This will
also give us 1”/(0) = (c® — 1)5’(0) since £(0) = &(1) and consequently, n” (1) — (c? — 1)n’(1) =
7"’ (0) = (c? = 1)n’(0). We will use the Fourier transform technique together with some complex
analytical arguments to prove that n = 0 on (0,1). This kind of technique is applied in many
works, see for instance [Ros97] for KdV the equation.

Let us define an extension map 9 : R — R by

_nx),  xe(0,1),
9(x) = {0, xeR\ (0,1). (4.50)

Then the transformed equation for (4.40) is

9" (x) — (A +c% = 1) (x) — 219 (x) + 129(x)

= =" (1)8x=1 + 1" (0)8x=0 — 7' (1) [8hey — (A+ ¢ = D)6y ] +17°(0) [Shsg — (A + ¢ = 1)S ]
(4.51)
for all x € R.

Let us use the conditions 7” (1) = (¢ — 1)5’(1) and ”(0) = (c? — 1)5’(0) in (4.51), which gives

9" (x) — (A+c% = 1) (x) — 219 (x) + 129(x) (4.52)
=~ (1) [81_) = A84e1] +17(0) [8.g — A0, VX ER.

Observe that, the existence of an 5 satisfying (4.40) is equivalent to the existence of a, f, A with
(e, B) # (0,0), such that

I (x) — (A +c% =1)9"(x) — 248 (x) + A129(x)

4.53
|6y~ Ae] + B[Sy~ A0umo], VE € R. (4.53)

Without loss of generality, we can assume « # 0. Indeed, a = p’(1) = 0 implies " (1) = 0 from
our assumption and thus from the equation (4.40), one has n = 0.

Taking Fourier transform on both sides of (4.53), we get

((iz)3 — (A4 = 1)(i2)? - 2(iz) + /12) (2)
= —a(ize™™ - e ) + f(iz—A), forzeC,

which yields .
(—ae ™+ p)(iz— 1)

Y G Gr oD - 220 4 2

for z € C.

Since 9 is the Fourier transform of a function n e H& (0,1), by the Paley-Wiener theorem, the

function  is entire. Thus, the roots of (iz)3 — (A +¢% — 1)(iz)? — 2A(iz) + A2 are also the roots of
(—ae™2 — B)(A — iz) with the same multiplicity. So, the main work is to find the roots of

(—ae”#+p)(iz—A) =0, forzeC. (4.54)

In fact, rewriting ¢ as a function iz € C, we have

(—ae*+p)(-z—- 1)

22— (A+c2 =122 +21z+ 1%

d(iz) = for z € C. (4.55)
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In (4.55), the roots of (—ae® + f)(—z — A) are z = —A and the zeros of e* = g (as we have a # 0).
We also note that —A is not a root of the polynomial equation

- A+t -2 +21z+ 212 =0, (4.56)

since Ac # 0.

Let ry,ro, r3 be the roots of the equation (4.56). Then one must have

which is not possible, due to Lemma 4.4.1.

Therefore, the only possibility is @ = f = 0, which gives (comparing (4.52) and (4.53)) that
n’(0) = n’(1) = 0. But, we have the boundary condition 7(0) = (1) = 0 and by assumption
7" (1) = (2 = Dn’(1) = n”(0) — (¢ = )n’(0), i.e., n”’(1) = n”(0) = 0. Consequently, n =0 in (0,1)
and thus € =0 in (0,1).

So our assumption was false, and that the assertion of first part holds true.

. To prove the second statement, we assume on contrary that
n’()=A+c2 -1y (). (4.57)

Now, our claim is to show that n = 0 in (0,1). We note here that the Fourier transform
technique used earlier will not work here due to the difficulty of the boundary condition "’ (1) =
(A+b% - 1)n’(1). However, we use a different complex analytic method, addressed for instance
in [LB20b], to conclude the proof.

Consider the following adjoint system of (4.40) as

{—0”’(x) — (A4 —1)0"(x) + 240’ (x) + A20(x) = 0, (458
0(0) =0, 0'(0)=0, 0'(1)#0.
Multiplying the equation (4.40) by 6 and then integrating by parts, we obtain
" (1)0(1) =" (HF' (1) = (A +c = Dy’ (1)6(1) = 0.
Then, due to our assumption (4.57), we get
n’(1)e’(1) = 0. (4.59)

Let us make the following claim.

Claim. There exists a countable set N such that for any ¢ € (0,00) \ N with ¢* + 8¢? + 5 < 472,
the equation (4.58) has a non-trivial solution.

Proof of the Claim. Let mj, m3, m; be roots of the following auxiliary equation
—m?— A+ —Dm?+22m+ A% =0. (4.60)

Since ¢ satisfies ¢* + 8¢ + 5 < 422, the roots of (4.60) does not satisfy e™ = e™2 = e™s, thanks
to Lemma 4.4.1. Note also that the map ¢ — m(c) is injective. In fact, m(c1) = m(co) implies
(c% - cg)m(cl) =0 and hence ¢; = ¢y (since m(cy) # 0 for any A # 0). We then write the solution
0 of (4.58) as

0(x) = Cre™* + Coe™* + C3e™3*, x € (0,1). (4.61)

Consider the following system of equations

C1+C2+C3=0
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Clm’{ + Csz + C3m§ =0

. . . ,
Cimie™ + Comye™2 + Camze™s = 0'(1),

which has a solution if and only if the matrix

1 1 1
Re=| mj m;, m;, (4.62)
mie™  mje™  mie™s
is invertible. The determinant of R, is given by
det(R.) = mZmZ(emE —es) + mgmi(emg —e™) + m’{m;(emi — ™). (4.63)

We now characterize all ¢ € (0, o) such that det(R.) # 0. Let us define three entire functions
FF:C—->C(i=123) by

Fi(z) : =z [(m§ —m5)e” — mzemz + mgemg] +myms (emg - emg) (4.64)
Fy(z): =z [(m§ —mj)e* + m’{e"ﬁi - mgemg] +msym] (emg - emi) (4.65)
F3(z):=z [(m’{ — mb)e* —mie™ + mgemg] +mimj (e'”*l - emg) . (4.66)

We first consider the function F;. Note that if F;(0) = 0, then e™2 = ™3, which implies F;(z) =
(ms — m3)z(e* — e™s) and hence Fi(m}) # 0, else e™ = ™2 = ™3 which is not possible due to
Lemma 4.4.1. Therefore, the function F; does not vanish identically. This implies that the zero
set of Fi, defined as

Zp, ={z€C : Fi(2) =0} (4.67)

is at most countable. In a similar manner, we can say that the zero sets of Fo and F3, defined as

ZF2 L= {Z eC : FQ(Z) = O}, (468)
Zp, :={z€C : F3(z) =0} (4.69)

are at most countable. Since the map ¢ +— m(c) is injective, the set
Nj:={ce (0,00) : F;j(m;(c)) =0} (4.70)

for j =1,2,3, is also at most countable. Let us then define the set

N = U/VJ (4.71)

3
Jj=1

From the construction of the set N, it is clear that for all ¢ € (0,00) \ N with ¢* + 8¢ + 5 < 472,
det(R.) is non-zero. This proves our claim.

From the previous fact, we can see that for ¢ € (0,00) \ N with ¢* +8¢2 + 5 < 422, solution of the
adjoint equation (4.58) verifies 0’(1) # 0, which implies from (4.59) that n’(1) = 0. Hence n =0
on (0,1).

This completes the proof of the Lemma. O

4.4.2 Lower bounds of the observation terms

The next lemmas show that the observation terms satisfy some lower bounds which are not exponen-
tially small. In fact, these lower bounds are crucial to conclude the null-controllability of the concerned
systems (4.4) and (4.5).
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Lemma 4.4.2 (Observation estimates: control on density). There exist constants C1,Co > 0, inde-
pendent in k, such that we have the following observation estimates for the parabolic and hyperbolic
parts of the set of eigenfunctions of A*, namely

Gy . Co
o < |quﬁ£| < = for large k > ko, (4.72a)
C1 < |B;(DAZ| < Co, for large k > ko, (4.72b)

where the number kg s introduced by Lemma 4.5.1.

Proof. Using the definition of 8} introduced by (4.36), we have

B;(I)Ai = §A£(1), Vk > ko,

(i) Let us recall the expressions of §/1£ from (4.24), so that we have

ic _ k2.2 1 1
Ge(1) = e Ly kom+0) XO(E) +0 (ﬁ)

From the above expression, it is easy to observe that
kmx ’gz(l)’ —ce ! as k o +oo,
and thus the result (4.72a) holds for large enough k.
(ii) On the other hand, from the expression of §A/Iz given by (4.27), we have
(1) = 2 sgn(kye OV 40 (1171,
and so,

2
§AZ(1)‘ — Ze72 as k — +oo.
c

As a consequence, the estimate (4.72b) follows.
The proof is completed. ]

Lemma 4.4.3 (Observation estimates: control in velocity). There exist some constants C1,Ca > 0,
independent in k, such that we have the following observation estimates:

Cikr < |BZ<D/1£| < Cokm,  for large k, (4.73a)
C C

L < |B,®,n| < 2 for large k, (4.73b)
|kl , |k

Proof. Using the definition of 8B; given by (4.37)-(4.38), we have

k k X
B,y = c&yn(1) + 1) (1),  VIk| > ko.
k k -
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(i) Recall the expressions of S(AZ and n,r, given by (4.24) and (4.25) respectively, so that we have
k

)
’ _k o —k272+0(1) 1 -1 1
Cfag(1)+’7,1£(1) k”e + be xO(k)+k7re +O(k .

Observe that,

1

km

as k — +oo,

k(1) + nﬂgm‘ —e
and hence the estimate (4.73a) holds.

(ii) For the set of eigenfunctions (4.27)—(4.28) associated to /12, the observation terms are

—1 _jsen T
Vikz| = 5 sig (k)vlk |+O(|k|‘1)

ke VikI

ey (1) + 17;;];(1) = sgn(k)

Here, one can show that

Vikn|

which concludes the required observation estimate (4.73b).

cﬁz(l) + U;Z(l)‘ - V2 ask > +oo,

The proof ends. O

4.5 A combined parabolic-hyperbolic Ingham-type inequality

This section is devoted to prove the Ingham-type inequality stated in Proposition 4.1.2 which will be
intensively used to prove the controllability results of this paper. We will closely follow the decoupling
idea given by [CMRR14, Theorem 4.2] [Zual6, Section 2.4].

Proof of Proposition 4.1.2. Recall the sequences {Ax}ren+ and {yx}rez and the hypothesis of Propo-
sition 4.1.2. We denote Ay = Ax — B, Vk € N* and yx = yx — B, Yk € Z. Let N € N* be as given in the
hypothesis. Then, we have the following known parabolic and hyperbolic Ingham inequalities

2

T - -

/ Z ape™ T dt > C Z lag)? e2ReOT for any T > 0, (4.74)
0 |k=N k>N
2
T

Gt Y Ibl* < / D b T dr<cy Y bel? for any T > 1, (4.75)

[k[>N 0 k>N [kI>N

see for instance, [Han91, L6p99, Edw06, Ing36, LZ02, FCGBdT10, KL05, MZ04].

Let us denote

HOESY e T Uh(p) = D b0 >, (4.76)
k=N |k|>=N
and
U(t) = UP(t) + UM (1), t>0. (4.77)

Motivating from [Zual6], we define for ¢ > 1

0P(1)=UP(1) ~UP(t-1) = ) a (1 - eik) M (T=1) (4.78a)
k>N

Ot =UM() - Ut -1 = Y by (1 - efk) Tk (T=1), (4.78b)
Ik|=N
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and
U)=UP()+U"(t) =U@) - Ut -1). (4.79)

.[T‘ﬁ(t)’zdtﬁ '/lTIU(t)|2dt+/lT|U(t_1)|2dt

T
sc/ |U(t)|? dt.
0

Then, we have

We now compute the L2-norms of the functions U? and U" separately. Applying the hyperbolic Ingham
inequality given by (4.75), we get

T - 2 _ 9
/ ’Uh(t)' dr<C Y frl?[1 - e,

1 k[N

Since 1 —ef* =1 — e’ and {Vi}k|=N € £2, we can choose N large enough such that |1 — e3~”<|2 < € for all
|k| > N. Thus, it follows that,

T, _ 2
/ |Uh(t)| dr<ce Y b, (4.80)
1 [k[>N
Now, recall (4.79) so that one has UP(t) = U(t) - UM1). Using the triangle inequality, we get

T, _ 2 T _ 2 T, _ 2

/ ’Up(t)| dtsC/ |U(t)| dt+C/ ’Uh(t)| dt (4.81)
1 1 1
T
sc/ U@ dt+Ce > il
0 k[>N

Let be 0 < 7 < T. Applying the parabolic Ingham inequality (4.74) to the quantity U?(t) (given
by (4.78a)), we obtain
T 2 . 2 - .
/ Up(t)’ dt =/ UP(T - t)’ dt > C Z lag|? |1 — e’k |2e2Re(Ao)T
o 0 k>N
>C Z Iak|262Re(ik)r’
k>N

thanks to the properties of 1¢. Note that the above constant C depends on 7. Let us now choose 7 > 0
small enough such that T — 7 > 1. Thus, we get

T s 2 T . 2 -
/ |Up(t)| dtz/ UP(t)| dt>C Y faf? 2R, (4.82)
E T k>N

-7

Recall the function UP(t) given by (4.76), we deduce that

T-7 -
e?Re(e) (T=1) gy (4.83)
0

T-7
2
/0 e de < |ak|2/

k>N
eRe(ik)T _ ezRe(ik)T

< lak|? :
k;v 2Re(Ae)

<C Z |ak|2 eQRe(jk)r’
k>N

-2
thanks to fact that |Re()tk)| > C for k > N large enough (combining the hypothesis (ii) and (iv) in
Proposition 4.1.2 satisfied by {Ax}ren)-
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Now, using the facts (4.82) and (4.81) in (4.83), we have
T-7 9 T
/ [UP(1)|"dt < C / [U1)|?dt + e Z 1bel? . (4.84)
0 0

Since T — 7 > 1, applying the hyperbolic Ingham inequality (4.75) to U”(t) and then following a
triangle inequality, we have

> omirse [

k[=N 0

N 2 T-7 5 T-1 ) 9 )
U (t)| dtsc(/o U(t)] dt+/0 v () dt

T
SC/ U2 dt +e b % |,
i 2

k|=N

thanks to the estimate (4.84).

Now, fix € > 0 small enough such that 1 —Ce > 0. As a consequence, there is some constant C > 0
depending only on T such that, we have

T
Z |bk|2dtsC/ |U()|? dt. (4.85)
[k[=N 0

On the other hand, using the parabolic Ingham inequality to U?(t), followed by a triangle inequality,
hyperbolic Ingham inequality to Uy (t) and the result (4.85), we obtain

) T T T 2
Z lag|? 2Be@OT < C/ |Up(t)|2 dt < C(/ |U(2)? dt+/ ’Uh(t)| dt)
0 0 0

k>N

T
sc/ |U(8)|? dt + |be|? dt
: 2, I

|k|>N
T

sc/ |U(1)|? dt.
0

Thus, eventually we have
N T
R R S A c/ U ()] dt. (4.86)
k=N lk|>N 0

Recall that A = Ax — B, 7k = yx — B, and that

2

T T
/ U(t)|?dt = / D ape AT 1 N e AIIT0] gy (4.87)
0 0

k>N Ik|>N

T
SC/ Z ape’ T 4 Z bee’*T=9| qr.
0 k>N k[N

Moreover, it is easy to see that

e2Re(L)T _ 2Re(A)T-2Re(B)T 5 (p2Re(A)T
for some C > 0 and thus combining (4.86) and (4.87), we obtain

T
Z |ak|2 e2Re(A)T Z |bk|2 < C/ Z akel"(T_t) + Z bke”’“(T—” dt.

k>N [k[=N 0 |k>N |kI>N
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4.6. Null-controllability for the velocity case

Finally, adding the finitely many terms in the above summation using a similar idea as in [MZ04,
Theorem 4.3, Chapter 4] (since {yx}xez and {Ax}ren+ are disjoint), we can conclude that

2
T
Z |ag | e2ReMT Z b < C/ Z are’* =1 4 Z breeT=01 dr. (4.88)
keN* keZ 0 |ren- keZ
This completes the proof. ]

Remark 4.5.1. Note that, in the proof we have only used the individual (parabolic and hyperbolic)
Ingham inequalities. Thus, the hypotheses on the sequences (Ax)ken+ and (yi)kez can be relaxed so that
each of the inequalities (4.74) and (4.75) holds. In this context, we refer to the works [FCGBAT10,
LZ02, LdT13] for a proof of the parabolic Ingham’s inequality (4.74) under different hypotheses on the
sequence (Ag)renr-

4.6 Null-controllability for the velocity case

In this section, we prove the null-controllability of the system (4.4) (that is, Theorem 4.1.1) by es-
tablishing a proper observability inequality. The parabolic-hyperbolic joint Ingham-type inequality as
obtained in Section 4.5, is the main ingredient to conclude this result.

Let (p,u) be the solution to the system (4.4) with a boundary control ¢q acting on the velocity part.
The following lemma gives an equivalent criterion for the null-controllability of the concerned model
(4.4).

1
Lemma 4.6.1. The system (4.4) is null-controllable at time T > 0 in H; (0,1) x L2(0,1) if and only if
there exists a control q € L?(0, T) such that

a(0)) (po o rr
<(“(O)) ’ (“0)>(Hf)'xLz,fom ) ./0 (¢ D) +5:8D)) attd, (4.89)

where (o,v) is the solution to the adjoint system (4.14) with (f,g) = (0,0) and any given final data
(O'T, UT) € D(A*)

With this result, we can now write the observability inequality that is required to prove null
controllability of the system (4.4). Recall the observation operator 8B, defined by (4.37)—(4.38).

1
Theorem 4.6.1. The system (4.4) is null-controllable at time T > 0 in the space H; (0,1) xL?(0,1) if
and only if the following observability inequality

T
/0 |85 (), 0(t)[" dt 2 CI((0), 0(0))II? , (4.90)

(H7 (0.1))'xL2(0,1)
hold for every (or,vr) € D(A*) and (f,g) = (0,0).

Proof. We only proof the null controllability by assuming the observability inequality (4.90), and
for the other part we refer to the article [MZ04]. To prove null controllability of the system (4.4),
it is enough to prove the existence of a minimizer of certain quadratic functional, see for instance
[MZ04, Zua07]. For this, we define the following set

.1
H = {(GT, or) € (H; (0,1)) X L(0,1) : the solution (,0) of (4.15) with (f.g) = (0,0)
T
satisfies / |B;(a(t),v(t))|2 dt < oo}
0
and define a quadratic functional J, : H — R by

T
Ju(or, 07) ::% /0 |BZ(0(t),U(t))|2dt+<(Z—((8)))’(po . (onop) eH. (4.91)

1 L
u0)>(Hﬁ2 )’XLQ,Huz xL2
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1
The map J, may not be coercive in H with respect to the usual (H;)’ x L?-norm. Thus, we define a

new norm on H by

T :
(o, om)ll¢ = ( /0 ERCORIONE AN

Indeed, if ||(o7,v7)|l% = 0 then B (a(t),v(t)) =0 for all t € (0,T). The observability inequality (4.90)
is then yields (0(0),0(0)) = (0,0) and as a consequence of the backward uniqueness property of the
adjoint system (4.15) (see Section 4.9), it follows that (o,v) = (0,0).

With this new norm on H, the operator J, is continuous and coercive in H. Thus, it has a unique
minimizer (6t,07) € H. Let (6,0) be the solution of (4.15) with respect to this terminal data (o7, 0r).
Then the function g = 8;(6,9) € L?(0,T) will be a null control of the system (4.4). O

We are now ready to prove our first main result, i.e., Theorem 4.1.1 of our work.

Proof of Theorem /.1.1. We prove each part separately.
1
Null-controllability in H; (0,1) x L2(0,1). Recall that the set of (generalized) eigenfunctions

{@p, k= ko} U {k2®, k| = ko} U {®}; A € Ag, i=0,....my — 1}

1
forms a Riesz basis in (H; (0,1))" xL?(0,1), due to Proposition 4.3.2 and Corollary 4.3.1, and thus one

1
can consider any given final data (or,vr) € (H; (0,1)) x L%(0,1) as follows:

my—1
1 )
(or,07) = Z ak(I))Uz + Z bkaCI)/lZ + Z Z C/qu)fv (4.92)
k>ko |k|>ko AeAg j=0

where Z lak)? + Z |b|? < 400, and cyj for A € Ag and j € {0,---,my — 1} are constants.
k>ko |k|=ko
Therefore, the solution to the adjoint system (4.14) with the above terminal data and (f,g) = (0, 0)
can be written as

my—1

(o(t)o(t) = ) akel’k’ﬁ-ﬂcpﬂkﬂr > bkk%eAZ(T‘”CDAZ+ D T -t T el (4.93)
k>ko |k|=ko AeAg j=0
for t € [0,T]. Now, we find that
B, (a(t),0(t)) = ca(t, 1) + o, (t, 1)
P 1 h ma—l i
= > ai T80, + Y bk HTIBw + YN o (T -0 T8,
k>ko , k| >ko AeAg j=0

for t € (0,T). At this point, we may assume that
By #0, VAeAg j=1--,m-1,

which can be ensured as one can add any multiple of the eigenfunction to each (finitely many) gener-
alized eigenfunction and adjust accordingly.

2

We start with T > 1. Then, in one hand, using the Ingham-type inequality (4.13) for |k| > ko, we
> eAz(T_t)B;j(I)Az + ) bk T B, di

have
/T
U |k[>ko

2
> C1( Z ‘akBZq))Li eQRe(Aﬁ)T + Z |bkk%BZ(DAZ
k>ko |k|>ko

2 ) (4.94)

P
ch Z Iak|2k262Re(Ak)T+ Z |bk|2 ,
k>ko |k|>ko
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4.6. Null-controllability for the velocity case

for some C; > 0, where we have also used the observation estimates given by Lemma 4.4.3.

On the other hand, thanks to the Riesz basis property (see Corollary 4.3.1), we have

2

P Y P h

> a0+ 3 bk sc2(§ jag|2e?FeET 4y |bk|2e2Re“k>T),
k -5

k>ko AT T (H/ ) xL? k>ko |k[>ko

for some Cy > 0. Thus, we deduce that

T 2
/ > a eﬂi(T—”B;;@AF > bkkéeAZ(T_t)BZCDAZ‘ dt (4.95)
0 lk=ko kI =ko
2
>C Z akeA£T¢Ap+ Z bkkéelqu)/lh N
k>ko © K=k a2y e

for some C > 0. But the solution (o,v) also contains some finitely many terms as written in (4.93).
Thus, to conclude the required observability inequality (4.90), we need to consider those finite number
of terms in the inequality (4.95). Indeed, this can be done by using the strategy developed in [KL05]
and [CMRR14, Section 4.2] since all the observation terms 8B;® # 0 for any (generalized) eigenfunction
@ of A* as long as we consider ¢ ¢ N with ¢* +8c? +5 < 472 (see Proposition 4.4.1- Part 2). However,
we give a detailed proof here for the sake of completeness.

1
Let (or,07) € (ij (0,1))" x L2(0,1) be given. We write (or,07) = (01.1,07.1) + (072, 7.2) With

my—1
i 1
(0'7’1,07,1) = Z Z C;qu)ﬁ, and (O'T,Q,UT’Q) = Z akq)/li + Z bkaq)AZ‘
AeAg j=0 k>ko |k|>ko

The corresponding solutions of the adjoint system (4.15) with these (o71,0r1) and (or2,vr2) are
respectively

my—1
(@) o) = > > et TN(T -1y,
AEAO jZO
_ M (T- 1 ah(r—
(02(0),02(0) = Y aree T 00y 4 > bikreli 0wy,
k=ko k| =ko

From the previous computations (the case of high frequencies), we have the following inequality

T
/0 |B; (02(1), 02(1)) [ dt > C ||(02(0),vz(0))||?. (4.96)

Hf yxL2
To prove the observability inequality (4.90), we have to include the observation term 8B; (o1 (t),v1(t)) =
2aeho ZT:"O_I ch jeMT_t) (T-t)) Bszﬁ in the above inequality. We give a detailed proof below by adding
only one term, say for instance etio(T=%) (c 0o Ba®j, + (T —t)c jOB,jCB jo) corresponding to the eigenvalue

A= Aj, € Ao, where @;, and ®;, denote the (generalized) eigenfunctions corresponding to A;,. All the
remaining finitely many terms can be added one by one using the same argument. We denote

F (1) == Bl (02(t), 02(t)) + Mo TH (%B;;@jo +(T - 1)¢;, Bid jo) , for t € (0,7T), (4.97)
and define s
G(t) := F (1) - 2—15/ eMoSF (t+5s)ds, te(5,T-95),
-5

where we will choose § > 0 later accordingly. Then, one can obtain the following estimate (see for
instance [KLO05, Section 4.4]):

T-6 T
/ 1G(1)|%dt < c/ |F ()|% dt (4.98)
) 0
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for some constant C > 0.
On the other hand, we have

: P
G(t) = Z akeafj(r—t)g*%p - sinh((A} — 2j,)6)
k>ko R (Ai - )Ljo)é
sinh((A" = 1:)6
+ Z bkk%eAZ(T_t)BZq)Ah 1- (}(l k o) ))
IK[>ko - (A = Ajo)d

for t € (8,T — §). Since T > 1, choosing § > 0 small enough so that T — 2§ > 1, we obtain by using the
Ingham-type inequality (4.13)

T-6 2 2
2 # 2Re(AP)T | 1o
/5 GPdr=c| |akBud>/1£ U 1 3 ok 810,
k>ko |k|>ko

This can be ensured from the fact that infysg, !)LZ — Ajo infrs i, |)LZ —Aj| > 0, which then gives (by
taking § > 0 suitably) that

sinh((A2 - 2,)6)

sinh((A" - 1;,)6) .
Y - g
k Jo

(A = Aj)8

in
k>ko

, 1N
k>ko

Using this inequality, we readily have (see eq. (4.94)-(4.95))

T-6
/5 IG(D)I* dt = C|l(02(0), v2(0))|?

1
(HﬁQ )’XL2

Combining this with the estimate (4.98), we deduce that

T
[ irwrds clieo.eonl? , . (4.99)
0 (H,

’ 2
ﬁ)xL

Since T > 1, we can choose ¢ > 0 small enough so that T — ¢ > 1. Then, we obtain from the above
inequality

T T
/ |F(£)]*dt > / |F (1)? dt > C||(o2(e), v2()I” : (4.100)
0 € (Hﬁz)’xLQ
We now prove a weak admissibility inequality
%
/ 1B (02(1), 02())[ dt < Cl(oa(e).o2(NI? : (4.101)
0 (H2)'xL2

#

In fact, applying Holder’s inequality and the hyperbolic Ingham inequality (4.75) (right side), we
deduce that

/0 Y By (oa(t), 0t de < 2 /0 ’

<C Z |ak|2 e2Re(A§j)(T—s) Z |BZ(DAP|2 e—2Re(A§j)(T_s) /2 e2Re(/1§)(T—t)dt
kaO ka() , 0

2

%
dt +2 / Z bkk%eﬂ’ﬂT—f)B;@AZ dt
O |Ik[=ko

2
Por_
Z ake’lk(T I)BZ(DAi
k>ko

PR
+C Y |bki B,
|k|>ko
<C Y e PRI T N 2,
k>ko |k|=ko
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thanks to the observation estimate (4.73b). On the other hand, using the Riesz basis property of the
eigenfunctions (see Corollary 4.3.1), we obtain

p —
loa(ehoa(N® ,  =2C D Jal T e 3 b,
(Hﬁz)’XL2

k>ko [k[>ko

Combining the above estimates, the weak admissibility inequality (4.101) follows. With this, we get
from (4.100) that

T 3
/ |F ()2 dt > c/ B2 (02(1), 02(1))|” dt. (4.102)
0 0
We now introduce the finite dimensional space generated by the (generalized) eigenfunctions
X = span {®;,, D),

and define the norms on X as

5 ~o2
6.0 .07 - :/0 ’eljo(T—ﬂ (chB;;cbjo +(T - t)EjOB;jcbjo) dt, (4.103)
[(61,1.7.0)|, = = 1(61(0), 81Ol 1 : (4.104)
(Hﬂ )’ xL2

where (61(),91(t)) = ehioT1) (chCI)jO +Cj, ~j0) for t € (0, T) is the solution of the adjoint system (4.15)
with the terminal data (6r1,91,1) € X and (f,g) = (0,0). In fact, the norms (4. 103) and (4.104) are
well-defined since we have 8*®;,, B~ D, i, # 0 and (41(0),91(0)) = (0,0) implies ®j, = =, i, = 0. Moreover,
as any two norms in a finite dimensional space are equivalent, we deduce that

/5
0

As a consequence, we obtain (recall the function F defined by (4.97))

dt > C||(61(0), 01(0))|I

e/ljo (=0 (%BZ@J‘O + (T - t)éjOB;(i)jo)

) xL2

£ £ T
R R 2 2 " 2
lGOaonl?, < [TiForasc [CBiemuofasc [ rora
(HﬂQ )/ XL2 0 0 0
thanks to the lower bound (4.102). This inequality together with (4.99), we deduce that

/0 |7 (1)[? dt = ClI(a(0) +61(0),0(0) + a1 (ODI* , . (4.105)

(H ) x L2

In a similar way, we can add the remaining finitely many terms in the above inequality. As a result,
we eventually get for T > 1,

T
/0 |85 (a(1),0(1)?dt 2 ClI(a(0), 0(0))|I2 by (4.106)

for given data (or,vr) € D(A").
This is a necessary and sufficient for the null-controllability of system (4.4) with given initial data
1
(posug) € H; (0,1) x L?(0,1), when T > 1, which proves the first part of Theorem 4.1.1.

Lack of null-controllability for less regular initial states. Consider (o7, vrk) = (D)LZ for |k| >
ko. Then, the solution to the adjoint system (4.15) reads as

(o (£, %), 0k (1, %)) = e T-D (), Ikl 2 ko, (£,) € (0,T) x (0,1).

Now, in one hand we have

C
> ,
(H)'xL? |k|®

”‘DAZ VIk| > ko,
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by Lemma 4.3.2-eq. (4.32), and thus

||<ak<0>,vk<0>>||?H§),XL2 > VIk| > ko.

C
|k|23’

for all k € Z*, since the real part of /12’ is bounded. On the other hand, we have the following upper
bounds of the observation terms, namely

T
N 2 c
/ |B;: (o1 (1), v (1)) dt < T Vlk| = ko,
0
in view of Lemma 4.4.3—eq. (4.73b). Thus, if the observability inequality (4.106) holds, we would have

C C

_ S — = k 1—28 S C,
|k|? ~ k| 1K

which is not possible since 0 < s < % Therefore, the system (4.4) is not null-controllable at any time

T whenever 0 < s < %

This concludes the proof of Theorem 4.1.1. O

4.7 Null-controllability for the density case

This section is devoted to prove the null-controllability of the system (4.5), more precisely Theorem
4.1.2. The proof is made of two steps:

— First, we use the Ingham-type inequality (4.13) (introduced as before) to show the null-controllability
of (4.5) in the space L?(0,1) x H&(O, 1).

— Secondly, by developing the moments method for parabolic-hyperbolic coupled system (due to
[Han94]), we prove that the same system (4.5) is null-controllable in the space Hg(O, 1) x L2(0,1)

1
for any s > 3.

As a consequence, we conclude the null-controllability of our system (4.6) in the space L2(0,1)xL?(0, 1).

Before proceeding, we first write the following lemma, which gives an equivalent criterion for the
null-controllability of system (4.5).

Lemma 4.7.1. Let s1,s2 > 0 be given. The system (4.5) is null-controllable at time T > 0 in Hgl (0,1)x
HS2 (0,1) if and only if there exists a control p € L?(0,T) such that

! P0)> - [ T Tpa 4.107
<(U(O)),(u0 (H,') xH™52,Hy' xHy? ‘/0 o(t, p(Ddt, (4.107)

where (o,v) is the solution to the adjoint system (4.14) with (f,g) = (0,0) and any given final data
(or,vr) € D(A").
4.7.1 Null-controllability in L? x H&: using Ingham-type inequality

We first write the following result, the proof of which is similar to the velocity case (Theorem 4.6.1)
and so we omit the details here.

Theorem 4.7.1. The system (4.5) is null-controllable at time T > 0 in the space L*(0,1) xH&(O, 1) if
and only if the following observability inequality

[

hold for every (or,vr) € D(AY).

B,(a(1),0(1)) “drsc 1(a(0), 2(0)I? (4.108)

[2xH-!
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Let (or,0r) € L2(0,1) x H"1(0,1) be given. Since the set of (generalized) eigenfunctions
{k chi’ k> ko} U {(I)AZ’ k| = ko} U {q)i; A€EN)i=0,...,my — 1}

forms a Riesz basis of L2(0,1) x H™1(0,1), thanks to Corollary 4.3.1, we can write (or,vr) as

my—1
(CTT, UT) = Z akk CI)AZ + Z bkCDAZ + Z Z CA,]'(Di.
k>ko |k|=ko AeAg j=0

Therefore, the solution to the adjoint system (4.14) with this terminal data (or,0r) and (f,g) = (0,0),
can be written as

my—1
(0(),0() = > ack eﬁi(T-”cpA,kp + b T 00+ 3N o (T -7 T,
k>ko |k|=ko AeAg j=0
for t € [0, T]. Note that
my—1
% Pr— ¢ h(T- * j - % x ]
By(o(,0)) = ) ack T IBrop+ > bk TIB0u 4 Y D o (T-nId T80,
k>ko |k|>ko AeNg j=0

for all t € (0,T). Since T > 1, we use the Ingham-type inequality (4.13) to obtain
D, akeTIBw,+ N b M T B dt

/T 2
0 sk, |k|>ko

2 2
> C1( Z |akkB;<D/1£ eQRe(Aﬁ)T + Z ’ka;(DAZ )
k>ko [k|>ko

(4.109)

2Cr[ D la2e 0T+ 3 2],

k>ko |k|>ko
for some C; > 0, where we also have used the observation estimates from Lemma 4.4.2.
On the other hand, we have

P h
Z ark e’lde)Ap + Z bke’lkT(I)Ah
k k
k>ko |k|>ko

P h
< C2( Z |ak|262Re(/1k)T + Z |bk|262Re(/1k)T)’
k>ko |k|>ko

2

[2xH-1

for some Cy > 0, thanks to the Riesz basis property (Corollary 4.3.1).
Thus we deduce that

&

>C

2
dt (4.110)

Z ark e’li(T_t)BZQDA,z + Z by eAZ(T_t)BZCDAZ
k>ko |k|=ko

» h
Z aik eAkTq)Ap + Z bke)'kTq)Ah

k k
k>ko [k[>ko

2

5

[2xH-1

for some C > 0.

On the other hand, since c¢*+8c?+5 < 472, all the observation terms B,2 # 0 for any (generalized)
eigenfunction ® of A* and hence it is enough to consider only the large frequencies of eigenvalues. In
fact, the lower frequencies can be added one by one by proceeding in a similar way as in the proof of
Theorem 4.1.1 to deduce the required observability inequality

T
/0 185 (o(2), o(0) 2t = Cl(o(0), 0(ODIZ, 1 (4.111)

for given data (or,vr) € D(A") provided T > 1.

This proves the null-controllability of the system (4.5) at time T > 1 for given initial data (pg, ug) €
L?(0,1) x H3(0,1).

155



4. LINEARIZED COMPRESSIBLE NAVIER-STOKES SYSTEM (BAROTROPIC FLUIDS)

4.7.2 Null-controllability in Hg xL? s> % by moments method

To prove the null-controllability of system (4.5) at T > 1 in the space Hg(O, 1) x L?(0,1) for s > %, we
shall formulate and solve a set of moments problem using the strategy developed in [Han94]. For the

sake of completeness, we recall the main results from [Han94] and use these results with respect to
our setting.

4.7.2.1 Parabolic-hyperbolic joint moments problem: results by S. W. Hansen

Let us first recall some important results by S. W. Hansen [Han94] which will be used to prove the

required null-controllability result of the system (4.5) in the space Hg(O, 1) x L?(0,1) for s > %

The author in [Han94] made the following assumptions in his work.
Hypothesis 4.7.2. Let {Ax}ken+ and {yx}rez be two sequences in C with the following properties:
(H1) for allk,j € Z, yx #y; unless j =k,
(H2) yr = p+bkri+ vy for allk € Z,

where p € C, b > 0 and {vi}rez € bo.
Also, there exist positive constants Ag, By, d,€ and 0 < 0 < /2 for which {Ax}ren+ satisfies

(P1) larg(—Ax)| < 0 for all k € N*,
(P2) | — 45| = 8|k = j?| for all k # j, k,j € N*,
(P3) e(Ag + Bok?) < |Ax| < Ag + Bok? for all k € N*.
We also assume that the families are disjoint, i.e.,
{vk» k€ Zy N {A, keN}=0.
Then, he introduced the following spaces: for any a < d,
Waa) = closed span {e*’};cz in L*(a,d),
Ej4a) = closed span {e™ ™'} in L%(a, d).
With these, the author in [Han94] has proved the following results.

Theorem 4.7.3. Assume that the Hypothesis 4.7.2 holds true. Then, for each T > 2/b, where b is

defined as in Hypothesis 4.7.2, the spaces Wio ) and Ejor) are uniformly separated. This does not hold
for T <2/b.

The proof mainly relies upon the following lemma. Hereinafter, we denote t, = 2/b.

Lemma 4.7.2. For any a € R, Wjga4s,] = L*(a,a +ty). Furthermore, for T > ty, {e"*}rez forms a
Riesz basis for each of the spaces Wig a4t -

We refer to the work [Han94] for the proofs of Theorem 4.7.3 and Lemma 4.7.2.

Let us write the following set of moments problem,
T
Pk = / et f(1)dt, k e N*, (4.112)
0

T
hy =/ e ! £ (t)dt, keZ. (4.113)
0

The space of all sequences {pg}ren U {hi}xez for which there exists a f € L2(0,T) that solves the set
of equations (4.112)—(4.113) is called the moment space.

Now, we recall the following results from the same paper which relate Theorem 4.7.3 to the moments
problem (4.112)—(4.113).
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4.7. Null-controllability for the density case

Proposition 4.7.1. Let {hi}xez € £2. Then, for any T > t,, there exists f € Wio.r], which solves the
moment problem (4.113). Moreover, any f € L?(0,T) given by f = f + f with f € W[t Tl also solves
(4.113).

The proof follows as a consequence of Lemma, 4.7.2.

Proposition 4.7.2. Assume that for any r > 0, the sequence {py}ren- satisfies
lpele™® = 0 as k — +co. (4.114)

Then, for any given T > 0, there exists g € E[q 1], which solves the moment problem (4.112). Moreover,
any g € L?(0,7) given by g =g+ g with g € E[L0 . also solves (4.112).

The proof of the above proposition is standard. It relies on the existence of bi-orthogonal family
in the space E[o] to the family of exponentials {eM!} s see [Han91] for a proof.

Let us now present the main theorem that tells the solvability of the mixed moment problems
(4.112)(4.113).

Theorem 4.7.4. Let any T > tp be given. Then, under Hypothesis 4.7.2, given any sequence {pi }xen-
satisfying (4.114) and any {hi}rez € €2, there exists a function f € L?(0,T) that simultaneously solves
the set of moments problem (4.112)—(4.113). This does not hold for T < ty.

The proof of above theorem can be found in [Han94, Theorem 4.11]. For the sake of completeness,
we give the proof below.

Proof. For T < tp, the set of moments problem (4.112)—(4.113) does not necessarily have a solution.
Thus, we start with T > t,. By Theorem 4.7.3, the spaces E := Ejgr] and W := W] are uniformly
separated. Thus the space V := E+ W is closed in L?(0,T) with its norm || - ||y = || - lz2(0,r) and so
V := E® W. Moreover, the orthogonal complements E- and W+ of E and W (resp.) in V are also
uniformly separated using a result by T. Kato [Kat95, Chap. 4, §4] and therefore, V = E*t @ W*. From
this, one can show that the restrictions Pg|y: and Py |g: are isomorphisms, where Pg and Py, are the
orthogonal projections respectively onto E and W in V. By Propositions 4.7.2 and 4.7.1, there exist
functions fi € E and fo € W which solve the equations (4.112) and (4.113) respectively. Set,

f=@Pelw) ' fi+ Pwle) ' o,

which simultaneously solves the equations (4.112)-(4.113) and moreover f € L?(0,T). O

4.7.2.2 Formulation of the parabolic-hyperbolic moments problem

Let us recall that the set of eigenvalues o(A*), given by (4.22).
The sequence {AZ}|k|2k0 satisfies (H1) and (H2) of Hypothesis 4.7.2 with

B=-c% b=2 v =0(k|™).

Moreover, it is easy to observe that {/1?1J }e>k, satisfies the properties (P1), (P2), (P3) of Hypothesis
4.7.2.

Thus, the spectrum o(A*) satisfies Hypothesis 4.7.2 except for the finite set {Ag} U {Zn},’;gl. But
this will not lead any problem to construct and solve the associated moments equations. Let us go to
the detail.
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General setting We first recall Theorem 4.7.3 and Theorem 4.7.2. As per those results, our goal
is to find uniformly separated spaces Wjor) and &[o 7] in L?(0,T) for T > t;, = 1 (where t;, = 2/b as
introduced in Section 4.7.2.1 and in our case b = 2).

We start with T > 1. Then, we pick a subset of complex numbers {an}éil in such a way that
Wiaa+1] = closed span ({e’lzt}|k|2ko U {e/ln,t}éo:l) in L?(a,a+1), for any a € R, (4.115)

equals the space L%(a, a+1); and moreover the above set forms a Riesz basis for the space W aa+t) for
each T > 1.

In particular,
Wior = closed span ({eﬂﬁt}wzko U {ei"lt}ﬁil) in L%(0, 7). (4.116)
Next, we consider the space
&[o,r) = closed span ({e”zt}kzko U{e™}aen, U {1}) in L*(0,7). (4.117)

Then, we have the following result which follows from Theorem 4.7.3.

Lemma 4.7.3. The spaces Wio ) and &jo,r] defined by (4.116) and (4.117) respectively, are uniformly
separated in L>(0,T) for T > 1. This does not hold for T < 1.

The set of moments problem To begin with, let us recall that the eigenvalues for parabolic
and hyperbolic parts, namely A, and Ay given by (4.20) are simple. Also, recall that the set of
eigenfunctions

S(A*) = {CDAZ’ k> ko} U {kscb/lz, |k| > ko} U {(Pi; A€ENY i=0,..,my— 1}

of A* defines a Riesz basis in (Hg((), 1))’ x L?(0,1) for any s > 0, thanks to Corollary 4.3.1. Thus, it is
enough to check the control problem (4.107) for the eigenfunctions of A*. In what follows, the problem
(4.5) is null-controllable at given time T > 1 if and only if there exists some p € L?(0,T) such that we
have the following:

T
- / T p(1) dt =mix Yk = ko,
0 _ (4.118)
—/ (T -t)/erT-Dp(t)dt = mj, VYA€Ao j=0,1,...,m -1,
0
and
T h
- / e T=Dp(t)dt = may, VIk| = ko, (4.119)
0
where
Ta) \uo (FE )/ XL2 HE XL
myx = 0 ., Vk = ko,
SZAP 1)
; * (4.120)
j bl
. m,) \¥o (H3)'xL2 Hyx L2
mfl: _ , YAeAy j=0,1....my;—1,
g
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4.7. Null-controllability for the density case

- n
’7’12 4o (Iq'lg)’><L2,I&($><L2

- P VK| > k. (4.121)
& (1)

and

(4.122)

The above set of equations (4.118)—(4.119) are the so-called moments problem which are well-defined
since B,® = (1) # 0 for any (generalized) eigenfunction ® € E(A”") as proved in Proposition 4.4.1-Part
1 under the assumption c¢* + 8¢2 + 5 < 472. Let us now study the solvability of those equations.

Proof of the null-controllability result in H; x L% s> % Let any parameter s > 1/2, initial
data (po,uqg) € H;(O, 1) xL?(0,1) and time T > 1 be given. We now consider the finitely many complex

numbers (inl)llil introduced earlier (see eq. (4.115)) in the above moments problem (hyperbolic part)

T——
—/ AT Dpt)dt =myy, Vi=1,...,1, (4.123)
0

where mg; € C for all [ =1,...,lp. Then, our goal is to apply the result of Theorem 4.7.4 to solve the
set of moments problem (4.118)—(4.119)-(4.123). To do this, it suffices to show the following facts: for
any r > 0

Imiile™ =0 as k — +oo, (4.124)
and
Z Imai|* < +oo. (4.125)
|k|=ko

— Recall the expression of my for k > kg from (4.120). We have
182 gy + el
|§A‘]‘c’(1)|

< Cll(po, uo)||H§XL2 e T (k757 + 1),

Re(A0)T

Ml < Cll(po. uo)llgxcr2 € (4.126)

thanks to the bounds of the eigenfunctions (4.31) and observation estimate (4.72a). Indeed, the
bound (4.126) directly implies the Claim (4.124) due to the presence of e T in the right hand
side of (4.126).

Thus, in view of Proposition 4.7.2, there exists a function p; € & := &|[o7] that solves the
set of equations (4.118) for the case of simple eigenvalues. To add the finitely many generalized
eigenfunctions, one can adapt the strategy developed for instance in [FCGBdT10] or [BBGBO14],
where the authors have proved the existence of bi-orthogonal family for a general sequence of
type {tjelnt}jzo,...,];nzl for any J € N*, where {A,},>1 verifies the properties like (P1) and (P2)
at least for large index n € N*. As a consequence, we can find a p; € &1 solving the parabolic
moment problem (4.118).

— On the other hand, we show that {mox} x>k, € ¢2. In this regard, we recall the bounds of the
eigenfunctions given by (4.32) and the observation estimate (4.72b), which yields

5+ g7

2 2
Z |m2,k| S C||(p0au0)||Hg><L2 —12
Ikl >ko 1k[=ko |§Az( )|
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< Cll(po,uo) By D (172 +1K172)
B kEko

2
< Cllpo.u) o

The above series converges due to the sharp choice s > 1/2 and indeed, it is clear that for s < 1/2,

. .
the series Z —; diverges.
KI5k, K]

Therefore, in view of Proposition 4.7.1, there exists a function ps € W := Wjg 1| that solves the
set of equations (4.119)—(4.123).

Now, as consequence of Lemma 4.7.3, the space
V=+W (4.127)

is closed and thus a Hilbert space with || - ||y = || - ll2(01), s0 V = & & W. Likewise, we have
YV = &+ & W=. Therefore, the restrictions Pg|y. and Pqy|g: are isomorphisms, where Pg and Py
denote the orthogonal projections from V onto & and ‘W respectively. Let us set

p = (Pelws) "' p1+ (Pawler) " po, (4.128)

which certainly belongs to the space L2(0,T) and simultaneously solves the set of moments problem
(4.118)—(4.119)—(4.123) for T > 1 and any pg € Hg(o, 1) for s > 1/2, ug € L?(0,1). This concludes the
proof of the result of this section.

4.7.3 Null-controllability result with L? x L? initial data

Proof of Theorem 4.1.2. We start with ¢*+8¢%+5 < 422 and pick any initial data (pg,up) € L?(0,1) x
L2(0,1) for the system (4.5). We express the initial data as

(po, uo) = (po, 0) + (0, up),

and consider the following two systems

P+ prx+cury =0, in (0,T) x (0,1),
Ul — Ulxx +ULx +Cp1x =0, in (0,T) x (0,1),
p1(8,0) = p1(t, 1) + p1(2), for t € (0,T), (4.129)
u1(,0) =0, w(t,1) =0, for t € (0, T),
p1(0,x) = po(x), u1(0,x) =0, in (0,1),
and
P2t + pax+cugy =0, in (0,T) x (0,1),
U — U xx + U2y +CPox =0, in (0,T) x (0,1),
pa2(t,0) = pa(t, 1) + pa(t), for t € (0,T) (4.130)
us(t,0) =0, us(t,1) =0, for t € (0,T),

p2(0,x) =0, u2(0,x) =ug(x), in (0,1).

Here p1,p2 € LQ(O, T) are boundary controls which are to be determined.

Now, from the analysis pursued in Section 4.7.1, if we start with initial data (pg,0) with py €
L2(0,1), then there exists a control p; € L2(0,T) such that the solution (py,u;) to the system (4.129)
verifies

(p1(T, ), ur(T,-)) = (0,0), in (0,1).

On the other hand, it is also known from Section 4.7.2.2 that, starting with initial data (0, ug) with
up € L2(0,1), we can find a control ps € L2(0,T) such that the solution (ps,u2) to the system (4.130)
satisfies

(p2(T, ), u2(T,-)) = (0,0), in (0,1).
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Let us define p(t) = py(t) + p2(t) for t € (0,T). Then p € L?(0,T), and the solution (p,u) to the
main system (4.5), with this control p and the prescribed initial state (po,uo) € L?(0,1) x L2(0, 1),
satisfies

(p(T),u(T)) = (0,0) in (0, 1).
O

Proof of Theorem 4.1.3. Let T > 1. We have already shown the existence of a null control p €
L2(0,T) for the system (4.5). Now, to prove the existence of a null control h € L2(0,T) for the control
problem (4.6), all we need to show that p(-,1) € L%(0,T), where p is the solution component of the
system (4.5) associated with the control function p € L?(0,T). But the proof for p(-,1) € L%(0,T)
follows from a hidden regularity result given in Appendix A.l1 (Lemma A.1.1). Hence, we define
h(t) = p(t,1) + p(t) for all t € (0,T), which plays the role of a Dirichlet (null) control function for the
main system (4.6).

On the other hand, when 0 < T < 1, the system (4.6) cannot be null controllable at time T in
L?(0,1) x L?(0,1). If so, then we can find a null control h € L?(0,T) for the system (4.6). By defining
p(t) == p(t, 1)+ [h(t)— p(t,1)] for t € (0,T), we see that p € L2(0,T) and is a null control for the system
(4.5), which is a contradiction to Proposition 4.1.1 (see below for the proof of Proposition 4.1.1).

The proof is complete. O

4.7.4 Lack of null-controllability at small time

This section is devoted to prove the lack of null-controllability result of the system (4.5) for 0 < T < 1,
that is precisely Proposition 4.1.1. In this regard, we mention the work [BKLB20] where the authors
proved the lack of null-controllability for a transport-parabolic system with localized interior control.
Similar result has been treated in [CDM23] in the context of boundary controllability for a transport-
elliptic system (the so-called creeping flow model).

Proof of Proposition 4.1.1. Let 0 < T < 1. Consider the transport equation

51 (t,x) + 6x(t, x) —c26(t,x) =0, (¢, x) € (0,T) x (0,1),
a(t,0) =ao(t, 1), t € (0,7), (4.131)
(T, x) = or(x), x € (0,1),

where 67 € L?(0,1). Since T < 1, there exists a nontrivial function &7 € C*(0, 1) with supp(é7) c (T, 1)
such that the associated solution & of (4.131) satisfies 6(¢,0) = 6(¢,1) =0 for all t € (0,T) and & # 0
in (0,T) x (0,1). Let N > 0 be a fixed integer. We define the polynomial

N
PN(x) = ]—[ (x=1), xe(01)
I=—N

and the function

o ==pN (—i%) &r.

We now write the terminal state 6r € L?(0,1) as

or(x) = Z ane?™™ x € (0,1).

nez
Then, the above function 5%7 becomes
N d . N . .
6'%[(x) = Z an l—[ (—ia - l) e2inx — Z an ]_l (n—1) 2" = Z an PN (n)e?nmx,
neZ I=—N neZ I=—N nez

for x € (0,1). Note that PN(n) =0 for all |n| < N and therefore

N (x) = Z anPN (n)e?nm,
[n|>N+1
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With this 5]TV , let us now consider the following system

5:(t,x) + 65 (t,x) —c25(t,x) =0,  (t,x) € (0,T) x (0, 1),
a(t,0) =a(t, 1), te(0,T), (4.132)
&(T, x) = 67 (x), x € (0,1).

Since supp(&lTV) c supp(ar) € (T, 1), the solution & to (4.132) satisfies 6V (t,0) = 6N (t,1) = 0 for all
t € (0,T). We now consider the following adjoint system

o1 (t,x) + oy (t,x) + co(t,x) =0, (t,x) € (0,T) x (0,1),

0 (t, %) — Uy (8, %) + 0y (£, x) + cox(t,x) =0, (t,x) € (0,T) x (0,1),

o(t,0) = o(t, 1), t € (0,7), (4.133)
0(t,0) =0, o(t,1) =0, t € (0,T),

o(T,x) = 6'1TV(x), o(T,x) = UJTV(x), x € (0,1),

where we choose UITV such that
@, o) = > ahdy
[n|>N+1
a, PN (n)

with a" .= N for all [n| > N +1 (note that &, (1) # 0, thanks to the eigen equation). We write
An n
the solutions to the systems (4.132) and (4.133) respectively as

5'N(t, x) — Z anPN(n)e(—Qimr—c2)(T—t)eZimrx’ (4134)
[n|>N+1
PN
Nx) = D) as’;—(i';)e’tﬁ”—”gm, (4.135)
In[>N+1 °%
PN
oNitx)= ) as’;—(g’)e’tﬁ”—”w, (4.136)
In[=N+1 °%

for (t,x) € [0,T] x [0,27]. We prove that the solution component o™ of (4.133) approximates the
solution ¢V of (4.132) at the point x = 1. Indeed,

. 2
”ffN(" 1) -aV(, 1)||L2(0,T)

i . 2
< D0 Janl PN () [T o 2imnet) ) g2ine

In|=N+1 L2(01)
2|pN 2|, ok (T-1) _ 2
< Z lan| |P (n)| “e 1 207
[n|>N+1
1 2
< > lal PN,
inf>N+1 17
and therefore c
- 2 2
oV 1) =N Do < —5 D, lanl? [PV ()]
|N| |n|>N+1
Let us now suppose that the following observability inequality holds
! N 2 N N 2
/0 o™ (¢, D[ dt = C|[(a™ (0), N (0] 1201 - (4.137)

Then, we have
T
0.8 Oy <€ [ e
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T
< c/ (|JN(t,1) N[+ |, 1)|2)dt
0

= Ol

|n|>N+1

<

as we have 6N (t,0) =0 =" (t,1) for all t € (0,T). Thus we get

C C
Z |an|? |PN(”)|2 N2 ||UN(0)||i2(0,1)’

2 2
¥ Ol < I O8O Py <
|n|=N+1

C
201 > C, ’gAQ(O)’ > C. Therefore, 1 < 15 for all N and hence the

above inequality is not true. This shows that the observability inequality (4.137) cannot hold; as a
consequence, the system (4.5) is not null controllable at time T. This completes the proof. O

since Re(v") is bounded and Hﬁz

4.8 Detailed spectral analysis of the adjoint operator

In this section, we study the detailed spectral analysis of the adjoint operator A*. We hereby recall
the eigenvalue problem (4.18) from Section 4.3 which has been rewritten below,

E(x) +en'(x) = 26(x), x€(0,1),
N (x) +1'(x) +cf'(x) = An(x), x € (0,1),
£(0) = &(1),
n(0) =0, n(1) =0.

(4.138)

We divide the analysis into several steps. Let us begin by the following results.

Proof of point (ii)-Proposition 4.3.1: all non-trivial eigenvalues have negative real parts
Multiplying the first equation of (4.138) by &, the second one by 7 and then integrating, we obtain

1 1 1
[ T e [ Fommar=a [ e Pax
1 1 1 1
[ rww s [ wdxee [ e mar=a [ i P
Adding these two equations, we get
1 1 1 1
| &g s [ ot edxre [ Eonmaree [ it s
1 1 1
+/0 n(x)n” (x)dx = ,1/0 |£(x)|2dx +)L/O In(x)|?dx, (4.139)
where we have used the following fact,

1 1 1 1
[ ®ogeix=g [ Lieeofaxi [ m@0g e =i [ m@E0g e (@140

thanks to the boundary condition £(0) = £(1).

Similarly, we can obtain

1 1 _
/ n(x)n’ (x)dx = i/ Im(n(x)q’(x))dx. (4.141)
0 0

Using the relations (4.140), (4.141) in (4.139) and performing an integration by parts, we deduce
that

1 _ _ 1 - 1 1
i /0 (ImEE () + Tm( Gy ()] dx + ¢ /0 £ (n(dx - /0 £ G (x)dx - /0 Iy (x) P
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1 1
-2 / 10 Pdx + A / In(x) dx,
0 0
from which it is clear that
I 12,
||§||i2 + IIUllfg

since ’ = 0 is not possible. If yes, then from the boundary condition n(0) = (1) = 0, we have p =0
and this yields that ¢ =constant, which is possible if and only if A = 0. Therefore, when A # 0, then
one has the condition (4.142).

Re(}) = — 0, (4.142)

Remark 4.8.1. [t can be easily seen that the first component & satisfies fol & =0 provided A # 0.

Proof of point (iii)- Proposition 4.3.1: compactness of the resolvent to the adjoint
operator In this section, we are going to prove the part (iii) of Proposition 4.3.1.
For any A ¢ o(A*), denote the resolvent operator associated to A* by R(A, A*) := (Al — A*)~! (where
o(A¥) is the spectrum of A* defined by (4.22)).
Let {Y,}n = {(f1.gn)}n be a bounded sequence in Z := L?(0,1) x L?(0,1). Our claim is to prove
that for any A > 0 the sequence {R(A;A*)Yn}n contains a convergent subsequence. Let X,, = (o,,0,) =
R(A; A")Y, € D(A*), that is

(Al = ANHX,, = Yy. (4.143)
More explicitly,
Aoy = (On)x — c(vn)x = fn in (0,1),
Aoy — C(O'n)x - (Un)x - (Un)xx =09n in (0, 1), (4.144)

0n(0) = 0n(1), v,(0) = v,(1) = 0.
Taking inner product with X, in the equation (4.143), we get
AXn, Xn)z, = (A X, Xn)z = (Xns Yn)z, -
Considering only the real parts, we see
MIXallZ = Re((A" X Xa)z) = Re((Xn, Ya)z).

Now, recall that the operator A* is dissipative, i.e., Re({A*X,, X)) < 0; in what follows, we have
2 A o 1 2
AllXnllz < Re((Xn, Ya)z) < [(Xn Yndz| < 5 I1Xullz + 57 1Yallz -

In other words,
1
I1Xallz, < = Y117

Thus, the sequence {X,}, is bounded in Z. We now prove that {X,}, is in fact bounded in Hgl (0,1) x
Hé(O, 1). Multiplying the second equation of (4.144) by v,, we get

1 1 1 1
/1/ |v,,|2 dx — c/ (0p)xOndx — / (0p) xxUpdx = / JnUndx.
0 0 0 0

Performing an integration by parts, we obtain

1 1 1 1
/1/ |Un|2 dx + C/ O-n(ﬁn)xdx + / |(Un)x|2 dx = / gnandX,
0 0 0 0

from which, it follows that

1 1 1 1
A / lon|? dx + / |(vn)x|2dx:Re( / gnandx)—cRe( / an(an)xdx)
0 0 0 0
4
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1 1
/ JnOndx / 0 (0y)xdx
0 0

1 1 9 A 1 9 C2 1 9 1 1 9
5 | P axe s [aare S [Cinlares [ i

IA

+c

IA

After simplification, we have

A 1 5 1 1 5 1 1 9 CQ 1 5
- |v|dx+—/ |(v)|dx£—/ |g|dx+—/ |on|” dx,
2‘/0‘ n 2 O n)x 2A 0 n 2 0 n

that is, the sequence {v,}, is bounded in Hé(O, 1). Then, the first equation of (4.144) gives

(On)x = Aon = c(vp)x — ﬁz,

which shows that the sequence {(op)x}n is bounded in L?(0,1).

So, we have proved that {X,}, is a bounded sequence in Hﬁl(O, 1) x Hé (0,1) (which is compactly
embedded in Z) and therefore, {X,}, is relatively compact in Z.

This completes the proof.

Proof of point (iv)-Proposition 4.3.1: all eigenvalues are geometrically simple. Let ¢ >0

be such that ¢ + 8c? +5 < 472. On contrary, let us assume that for any eigenvalue A, there are two
distinct eigenfunctions ®; := (£1,n1) and @9 := (&2,12) of A*. We prove that ®; and ®, are linearly
dependent.

Let be a1, a2 € C\ {0} and consider the linear combination ® := a;®; + aa®2. Then ® := (&, 75) also

satisfies the eigenvalue problem (4.138). We now choose a1, a2 in such a way that £(0) = 0 (a particular
_a28(0) )

5(0) ) Then, in the same spirit of Proposition 4.4.1-Part 1, we can conclude that

choice is a7 =
® =0.

This ensures the assumption that each eigenvalue of A* has geometric multiplicity 1.

4.8.1 Determining the eigenvalues for large modulus

We write the set of equations (4.138) satisfied by & and 5 into a single equation of n as obtained in
(4.40), given by

7" (x) = (A+c? = 1" (x) = 24" (x) + A%n(x) =0, Vx € (0,1), (4.145a)
n(0) =n(1) =0, 7”(0) = (¢* = ' (0) =" (1) = (¢* = ' (1). (4.145D)

Then, the auxiliary equation associated to (4.145a) is
m3—(A+c2—1)m? —2Am+ A2 = 0. (4.146)

Introduce gy = —A € C and a; = p—c? + 1, ag = 2y, a3 = p?, so that the roots of cubic polynomial
(4.146) are given by

1 Do
m =--= a1+C+— s
3 C
1 +(—1+i\/§)c+(—1—i\/§)D0
my =-gzla 5 5 c |’ (4.147)
1 (-1-iV3) _ (-1+iV3) Dy
ms ——g a + 5 C+ 5 F s

with

1/3
Dy + /D2 - 4D3

Dy = a% —3ay, Dy = 20? —9ajag + 27(13, C= 5

165



4. LINEARIZED COMPRESSIBLE NAVIER-STOKES SYSTEM (BAROTROPIC FLUIDS)

Exerting the values of aq, ao, az, we can find

D0:;12+(c2—1)2
Dy =2(u—-c?+1)3 -

-2(2+ c2),u,
9(p—c? +1)2u + 2717

=2(p® =+ 1 -3¢ +3p° + 3¢ty + 3p + 3¢t — 3¢2 - 6¢%p)
— 182 +18¢2 — 18y + 272
=243 + (15 — 6¢2) i + (6¢* + 6¢2 — 12) — 2¢5 + 6¢* — 662 + 2.

From the above expressions, we calculate

— 4D} = [21% + (15 — 6¢%) i + (6¢* + 6¢ = 12)p — 2¢® + 6¢*
—A2 - 2(2 + 2+ (2
= 45 + 4(15 — 6¢%)° + (60c*

— 62 +2]?
_ 1)2]3
—156¢2 + 177t + O (i)

— A4 = 6(c® +2)p° + (15¢* + 42¢2 + 51)pt + 0 (1P)]

=108,°

— (324¢% + 27 it + O(11%).

Using the binomial expansion and approximating for large ||, we obtain

_ 5
\D? - 4D} = [1084

= 6\/5115/2

= 6V3u5/?

= 6\/5;15/2

In terms of the above quantities, we have

C= | +3V3u°% +

[ 2
:6\/§‘u5/2 1_(120 +1

(15—

— (324¢% + 27t + 0 ()| *

1/2
+ O(u‘Q))]

1(12c2+1

1y +O(u‘2))+0<u‘2)]

12¢2 + 1
Sy

1-

+ O(u”)}

6V3
- ?‘/_(12(:2 + 1)+ o(u'?).

1/3

6c%) 5 3(
I

(12¢* + )P/ + O(p)

Now, using binomial expansion and simplifying, one can obtain for large modulus of p, that

C- (15—602)H_1

p|1+3V3u~ 2 4 5

1 ~1/2
+ 3 (3\/§,u + 5

1 15 — 6¢2
-5 (3\/5/1—1/2+( o 260 )y

(15-6¢%)
——H

1/3
3\/_(120 + D32 o 2)]

3\/_(120 +1),u_3/2+0(p 2))

2
-1 3‘/_(12c 2o rou ))

15 — 2
+831(3®_1/2+< 5 26c )1 _3V3

1+ (\/5;1‘1/2 +

1
-5 (27,1—1 +3V3(15 — 6¢2) 312
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3
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+ 31 (81\/§y_3/2 + O(,ﬂ)) + O(,u_2)]

_ 22+1 _; V3 _ _
=p|1+V3u 1/2—Ty 1+§(402—1)y 324 0(u 2)]

22+1 V3 _ _
= p+ V3% - — §(4c2—1)u 24 00h.

Similarly we have,

1
33
b, [P 4D}
2 -

1/3

\/— 5/2 (15 6C ) 2 3\/_

5 (126 + 1) + O(p)

i

1/3
15 — 6¢2 3
= ll —3V3u12 4 ( 5 ‘ )p_l \/_(12c + D32 o 2)]

=

1 15 — 6¢2 3
L+ (—3\@;1‘”2 , 45 =6 )y‘l \/_

5 L+ ) o 2))

2
1 15 — 6¢2 3
-3 (—3\/§p_1/2+ ( 5 ¢ ),u \/_(120 2o )3 vo(u ))
3

+8£1 (—3\/§u_1/2 Mp_l \/_(120 +1),u_3/2+0(,u ) +O(,u_2)}

2

=p

15 — 6¢? 3
1+ (—\/5;1_1/2 + %/fl + %(1%2 + )32 4 O(/J_Q))

1
-5 (27,u_1 —3V3(15 - 6232 ¢ o<,r2))

+85—1 (—81\/3;1—3/2 + O(p_z)) + ogﬂ)}

_ 2c2+1 _; V3 _ _
=ul1—‘/§# V2= #1—§(402—1)/13/2+0(/12)]

202+1 V3 _ _
=p= V3t - —— - = = 2o,

So, the characteristic roots are (recall (4.147))

1 2c¢2+1 V3
my = —g[y —c2+1+ (,u+ \/§p1/2 - % + %(402 — 12 +O(,u_1))

22+1 V3 _ _
+(u—\/§u1/Q—T—§(4c2—1)u Y240 1))}

= —% (3;1 —3c% + O(,u_l))

=—p+c*+0(uh),

: 2
_1+l\/§(#+\/§ﬂ1/2_202+1 \/§

1 2 2 -1/2 -1
= —— — +1+ + —(4c¢° -1 +0
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V3

-1-iV3
+— _—
8

22+ 1
A3t -
2 (¥ V3u 2

(4¢* - 1>u—1/2-+c><u—1))]

3

g +3ipt? + 0(,1—1/2)}

1
= -5 -2 +0G),

(a+ (-1 - iV3) - (-1+iV3) Dy
2 2 C

-1-ivV3 2c2+1 V3
=—= l,u—c2+1+Tl\/_(,u+\/§,ul/2—CT+%(4C2—1);1_1/2+O(,U—1))

—-1+iV3 2¢2+1 V3
+__%ai(y_¢%ua_;%;__%;

Mﬁ—lw*”+ow*ﬁ

1

3

g—&ﬁﬂ+ow%ﬂﬂ
= —% +ip' o713,
Together, we write
my = —p+c+0(u™h),
my = —% —ip'? o), (4.148)
my = —% +ip 2+ o),

with 4 = —A as mentioned earlier. Since, for large modulus of y, the roots m;, mo and ms are distinct,
we can write the general solution to the equation (4.145a) as

n(x) = Cre™* + Coe™?* + C3e™*, x € (0,1), (4.149)

for some constants Cy,Cs, C3 € C.

Using the boundary conditions (4.145b), we get a system of linear equations in C;, Co and Cs,
given by

Cl +C2 + C3 = 0,
Cleml +C2€m2 + C3€m3 = 0, (4.150)
Cim? (1 - e™) + Com3 (1 — e™2) + Cam3 (1 — &™) = 0.

These system of equations (4.150) has a nontrivial solution if and only if

1 1 1
det e™ e™2 e =0.

m% (1—e™) m% (1 —e™2) mg (1—e™s)
Expanding the determinant, we obtain
m% (1 —e™) (™ —e™)+ m% (1—-e™)(e™ —e™) + m% (1—-e™)(e™ —e™)=0. (4.151)

We shall now compute the determinant term by term for large |u|.

e Plugging the values of m;, my and m3 as given in (4.148), we obtain

m2 (1 —e™) (e™ — ™) (4.152)
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(e 4 0" (1 - erecou )
('u2 _ 202,Ll+0(ll1/2)) (1 _ e—p+c2+O(;l_1)) (e—l/2+0(y 1/2) (Cos(um) + isin(,um))
_e 120G (COS(IJl/z) - isin(lll/Q)))

= ('u? —2¢%u + o(p1/2)) (1 _ e—u+c2+0(p’1)) [O(y—1/2)e—1/2+0(p’1/2) cos(u'/?)

( —1/2+ipt2+0(u1/2) e—l/2—i/11/2+0(/1_1/2))

Hi(2+ 0 8))e 00 gin )|
where we have used the facts that

e~ 12407 2) o =1/240(uH?) _ o -1/240(u7?) (1 _ eO(ﬁ)) = e V20U o (D),

and

TIRHOUT) 4 1RO 2 0G4 007D ) 2 12007 (24 O(7)
e We also compute
mg (1-e™)(e™ —e™)

2
—% —ipt? + O(p_é)) (1 - e—1/2—iu”2+0(u’”2)) (e—ﬂ+c2+0(u1) - e—%+iu%+0(y'%))

wh—t

b + peO(uY) | 1O D) _ ke L oipBrO(uE) _ - hrip+0(u %)
-+ +0(1)) |e +e —e 2 —e 2
( H+

—p+c?+0(p ) —1+O(,u7%) _ —y+02—l+0(p7%) = R =
+0(1)] |e +e e 2 cos(pu?) —isin(pu?)
_e 2O b (cos(u%) + isin(pé))} )
e Finally, we have
mg (1 —e™) (™ —e™)
L. 1/2 -1 ? —L4 %+O( "%) -1 %+O( _%) —p+c2+0(p )

== *in +0(p"2)] [1—e 2™ FH X e 27" =) —e™H K

_ 1 O ) _ ~140(uY) | —prc?=1+0(u %) IN L rcin(ud

=(-p—iugz2 +0(1)] |-e —e +e 2 cos(p?) +isin(u?)

-1
+e" 20U ?) (cos(,u%) - isin(,u%)) )

e We add now the last two terms, in what follows
mg (L—e™)(e™ —e™)+ mg (1—e™) (e™ —e™) (4.153)

—p+c2+0(p1) —1+O(y‘%) _II+CQ+O(/1_%) —1+O(p‘%) 1 e tone)
=—ple +e —e —e +ipZ(2+0(p 2))e 1
1 “1\,—140(i2) 1 1 - Leod) L —Leoh
+ip2(2+0(p"2))e +cosp?|(—p—ip2 +O(1))(e L e )

it =340 3) |, ~A+0(u D)
—(—/1+w2+0(1))(e e = 340(u3) 4 o= 3+0(u )
vising?| (- p—ipt pr-e0(u ) _ ~Leo(u D)
2| (= = ip? + O(1)) (e =
i - Ls0( ) _ ~Lsou2)
+(—[1+l/,12 +O(1))(e pre?-1+0(p _ 30 )
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1

= — O ) HOU) _y0(uh)e 0D o (iyb 4 O(1))e e O
1 1
+ (21';1% + O(l))e_1+o(” 2) 4 isiny% (-2u+ O(p%))e_”+c2_%+o(” 2)
+ iu%O(u_%)e‘“’rCQ‘%*O(”f%) +(2u+ O(u%))e‘%m(”*%) + iuéO(ﬂ_é)e_%JrO(H%)}
1 1 2 1,003 1 L.o( %
+cos 2 | (u+O0(1))O(u™2)e e =2 0 2) 4 (1 4+ 0(1))O(pu~2)e 20w )
—ipd @+ 0(u e e HOW ) _yd oy O(u_é))e_§+0(y_%)].
We get after adding (4.152) and (4.153),
m% (1 —e™) (™ —e™) + m% (1—e™)(e™ —e™) + mg (1—e™)(e™ —e™)
=Co08 32 - 2c? 3 -3 —l+0(ﬂ’%) _ —,u+c2—l+0(,f%)
=cosp2(p” = 2¢"p+ O0(p?))0(p"2) |e™2 e 2
R -1 2 2 -1 -140( -3) —p+e?=140( -3)
+isinp2(2+O0(p"2))(p* = 2c*u+O(p~2)) e 277W 7 — gmHTe =5 ¥
-1\ —prcro(ut) -1 —1+0(,f%)
—pO(p™2)e —HO(u"2)e
- 1
+(2i,u% + O(l))e_“+62+o(” R (21';1% +0(1))e 10w 2)

_1 _1
+cos p | (j+O(1))O(u 2)e ¢ ~50U2) 4 (44 O(1)) O (7)™ 30U 2)

. -1 —p+e?—110( _%) .1 _1 ell —%)
—ipZ(2+0(p2))e He T2 T —jpa (24 O(p2))e” 27
_1 _1
+ isin#%[( - 2#+O(/1%))€_”+02‘%+O(” ?) +iy%0(#_%)e_“+c2_%+o(” ?)
1)) 340G 2) i ko (b yem 50w )
+(2u+0(uz))e2 +ipzO(p"2)e 2

_ _1

=- ,uO(,u_%)e_’”cz*'O(” D ,uO(,u_%)e_“O(“ ?)
- -1
+ (Ziy% + O(1))e‘”+62+o(” Dy (2i,u% + O(1))e‘1+0(" ?)

.1 2 8\ - 1ro(u ) 2 2)) -~ 4+0(u77)
+isinp2 (—2;1 +O(,u2))e pre T +(2ﬂ +O(p2))e A
rcosuz | = L2o(u 2 2 -3} — 2iy? e =340 7)

Iz O™ 2) + (2¢" + DpO(p~2) = 2ip? + O(1) Je 2
2090~} 3y ok Lo )
+(120u%) = pO(u™3) - 214 +O(1) ) .

Now, replacing the above quantity in the equation (4.151), and then dividing it by p? (since u # 0),
we obtain the equation

F(p) =0, (4.154)
where
N R S N el ’%) -y i s ,0( 7%)
F(p) == 2sinp? (e ’ —1)+0(,, 2)sinp2 e #CTOW H) 1 O(p2) sin pz €O
1 -1\ —pc2+0( "%) -1y o( "%)
+cosp2|O(p~2)e ™ # F2)+0(p2)e

+O(u e me 0 h) | o hem 10,
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Application of Rouche’s theorem Let G be a function of y, defined as
G(p) =-2 sin(p%) (e_‘”'C2 - 1) )
Then

_1 1
F(p) - G(ﬂ) :sin('u%) (O(ﬂ—é)e—y+c2+0(y 2) +O(,u_%)eo(” ?))

L

_1 _1
+cos(u?) (O(ﬂ‘é)e"”cm(” )+ 0(u 1)l 2))

I

+O(u e b0t | oot

I3
=h + L+ 1.

Since the function G has two branches of zeros, we will calculate them separately and in each case, we
use the Rouche’s theorem to talk about the zeros of the function F.

Case 1. We first observe that y = k272 is a zero of G for each k € N* and consider the following
region in the complex plane

7€k={z=x+iy€C:kﬂ—ngSkﬂ+g, - Syﬁg}, for k € N*. (4.155)

/s
2
Our goal is to prove that |F(u) — G(p)| < |G(p)| on dR. It is sufficient to prove that

)F(u) - G(p)

) ’ — 0 for p € 9Ry such that Re(pu) — +oo. (4.156)
U

To avoid difficulties in notations, we denote w = ,u% and without loss of generality, we simply write I,
I, and I5 as the functions w. Note that

I (w) O(w_l)e—w2+02+0(w"1) +O(w_1)eo(w_1) c |e_w2+cz ‘1
= < C
G(w) e~ we® _ 1 ~wl |€—w2+c2 1|
. )8_‘”2*‘2 +1
and since ‘ R 1) is bounded when Re(w) — +o0, therefore

I
Cl}E:vV; — 0, as Re(w) — +oo.
We now compute
-1y ,—w2+c2+0(w 1) -1,,0(w™1) —w4c?
I(w)| |cos(w) |O(W Jem T+ O(wT et | C |cos(w) |e T+l
G(w)| |sin(w) |e=w+e — 1] = wl [sin(w) | [e=we® — 1)

which yields

I
2(w) — 0, for w € 9R\ such that Re(w) — +oo,
G(w)
because of the fact that Z?S((x)) is bounded on 9Rg. We can say similarly for the third term that
I
3(w) — 0, for w € dRy such that Re(w) — +oo,
G(w)
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as we have

2,.2,1
—weHcc+ =
2|+ 1

I3(w) . C |e

Gw)| ™ |w]?

1
sin(w)

|e—w2+c2 _ 1| ’

Case 2. When sin(,u%) # 0, G(p) = 0 gives ehte’ _ 1 = 0, that is g = ¢ + 2ikx for k € Z. In this
case, we consider the following region in the complex plane

2

Sk:{z=x+iyeC te —g$x§c2+g, 2kﬂ—%§g§2kﬂ'+g}. (4.157)

We need to show that |F(y) — G(p)| < |G(g)| on dSk. In particular, we prove that

F(p) -G
’%’ — 0 for y € aS; such that Im () — +co.
u
We compute
_ 2
11(/1) 1 O(u—%)e—p+c2+0(;f%)+O(H—1)eO(/f%) C 1 |e [ R |
= S S
G(w) ’Sin(y%) emiet — 1 |H|% sin(p%) |e_”+CQ - 1’
. O(,U‘%)e‘”””O(#*%) +O(#_%)eo(“f%) Ll e 41
L(p)| |cos(p2) . _C Jeos(uz)| | *
G| |sin(u2) Jenee® 1] ©qul? [sin(uE) | et =)
and
1
Lw| C 1 |e_”+62+§ +1
< .
GUDT™ Juf? [sin@ub)| le+ =1
1 1 ‘e_’”ﬁ i1 e 3l
On 98k, |cos(p2)| and [sin(p2)| has both lower and upper bounds and‘ — 1‘, ) = 1| are bounded.
e—Htce _ e—Htce _

Therefore, for each j =1,2,3, we have
Li(p)
G(p)

Thus, combining the above two cases, we conclude that there exists some ky € N* sufficiently large,
such that

— 0, for p € Sk such that Im(u) — +oo.

|[F(p) — G(p)| < |G(p)|, Yu € aRy U Sk and for large k. (4.158)

Since any two regions Ry and R; are disjoint for k # [ and in each region Ry, there is exactly one
root of G (more precisely, the square-root of p), the same is true for the function F, thanks to the
Rouche’s theorem. Similar phenomenon holds true in the region Si. To be more precise, we have the
following.

On the region R;: parabolic part. For k > kg, the function F has a unique root in Ry of the
form

1
pp = (km+ck) + idy,
with |ex|, |dk| < §. Therefore, the first set of eigenvalues are given by

M= e == kP = 2cxkm = 2idikr — (¢ — df) - 2ickdr, Yk > ko. (4.159)

On the region Si: hyperbolic part. On the other hand, for |k| > kg, the function F has a
unique root in S of the form
Ijk = C2 + a1+ i(2k7‘[ + (Zg)k),
with ’0(1,](|, |0£2’]<| < %
Therefore, the second set of eigenvalues are given by
/1,]; = [l = - - arg —i(2kmw + agx), Vk| = ko. (4.160)
This indeed proves the results (4.19a) and (4.19b) of our Lemma 4.3.1.
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4.8. Detailed spectral analysis of the adjoint operator

4.8.2 Computing the eigenfunctions for large frequencies

From the set of equations (4.150), one can obtain the following values of Cy, Ca, Cs

Cr=em —e™,
Cy =e™ —e™, (4.161)

C3 =e™ —e™M2,

Note that C1,Cs and C3 cannot be simultaneously zero for large |u|. Once we have that, one can easily
obtain the function n(x), defined by (4.149),

n(x) = (™ —e™3)e™* + (™3 — e™1)e™?* + (™ —e™)e™*, Vx € (0,1). (4.162)

We now compute the first and second derivatives of n which will let us obtain the other component &
of the set of equations (4.138). We see

n'(x) = my(e™ —e™)e™* + ma(e™ — ™ )e™* + ma(e™ — e™?)e™3,

n"(x) = m%(e'"2 —e™3)e™X ¢ m%(em3 —e™)e™X ¢ mg(em1 —e™2)eMmx,
Now, from equation (4.138), one can obtain
7" (x) + (1= )’ (x) + eAé(x) = An(x),
and therefore, (writing y = —-21)

n” (x) + (1= c®)n’ (x) + pn(x)

E(x) = (4.163)
ey
m%+(1—c2)m1+p m%+(1—c2)m2+y
=( )(em2 _ emg)emlx + ( )(em3 _ eml)emzx
cy cp
2 _ .2
+(m3+(1 c )m?,+.u)(em1 _ em2)gmax.

cp

Set of eigenfunctions associated with Ai For the set of eigenvalues {/V;:}kzko given by (4.159),
we denote the eigenfunctions by @Az, Vk > kg, where we shall use the notation

B (x) = ( i > ) Vk > ko. (4.164)

Computing Mae- Let us recall the values of my, ms and ms from (4.148) and observe that
O(,ulzl/ 2) = O(k™1). In what follows, we have their explicit expressions for all k > ko large enough,
given by

my = k7% — 2c k- 2idikr + O(1),
1 _
my = =5 +di — i(km + ) + O(k™), (4.165)

1
my = =5 = di +i(km +cp) + O(k™h).

where we have used the expression of y = p from (4.159).

Recall the values of mi, mg, ms, given by (4.165) and from the expression (4.162), we get that
e (x) = (e—%+dk—i(kn+ck)+0(k‘1) _ e—%—dk+i(k7r+ck)+0(k'1)) X (—k2n?=2cikn—2idikm+O(1)) (4.166)

+ (e—%—dk+i(k7r+ck)+0(k‘1) _ e—k2n2—2ckk7r—2idkk7r+0(1)) o*(—ilkmter) = §+di+O (k1))
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4. LINEARIZED COMPRESSIBLE NAVIER-STOKES SYSTEM (BAROTROPIC FLUIDS)

+ (e—k2ﬂ2—2ckkn—2idkk7r+0(1) _ e—%+dk—i(kn+ck)+0(k’1)) o (ilkrter) =5 -derO (k™))

for all x € (0,1) and for all k > kg large enough.

Computing 5/12:. By using the values of my, mg, m3 from (4.165), we have

2
m? = (—k2 2 _ 9k — 2idikr + 0(1))

Kt + dep k3 + didi k73 + 0(k?),

1 2
ma = (—5 +d —i(km+cp) + O(k—l))
= —k%7% = 2cpkr + ik — 2idikr + O(1),

) 2
m3 = (_5 —di +i(km+ci) + O(k_l))

= —k%7% = 2ckkm — ikr = 2idikr + O(1),

for all k > ko large enough.
Also recall that, g = —/1‘2 = k?n?% + 2cikr + 2idkm + O(1), using which we find

mi+ (1= c)my+ e Krt + e k3 + 4idi kP + O(K2)

_ 4.167
Clk c(k2m? + 2cikm + 2idikm + O(1)) ( )
1
= ~k*x% + 0(k),
c
my+(1—c®)my+py ik +0(1) (1168)
Clk ©e(k272 + 2cikm + 2idikm + O(1)) '
ic
= —+0(k™?),
oy TOKT)
m2+ (1 —c*)ms + ]
st (U-Imstp _dc +O(k2), (4.169)
Cli krx

for all k > kg large enough.
Now, by using the quantities (4.167), (4.168) and (4.169) in the expression (4.163), we obtain

k272

c

S(Az(x) = (

+ O(k)) (e_i(k””")‘%’fkofO(k’l) _ ei(kfr+c;<)—%—dk+0(k*1)) w X (~K?72=2ckn2idik+0(1))
" (li_c + O(k_12)) (ei(kn+ck)+0(k—1)—%—dk _ e—k2ﬂ2—2ckk7r—2idkkn:+0(1)) o (—ilkmrer) - S+dirO (k1))
T

_ (i + O(i ) (e—k27r2—2ckk7r—2idkk7r+0(1) _ e—i(k7r+ck)—%+dk+0(k'l)) X (i(kmter) = § -di+O (k1))
krx k2 '

(4.170)

Set of eigenfunctions associated with AZ For the set of eigenvalues {AZ}Iklzko given by (4.160),
we denote the eigenfunctions by CDAQ’ where we shall use the notation

ﬁz (x)

B (x) = (11 ()

), VIk| = ko. (4.171)
Computing My Recall that [ = —AZ =%+ ayx +i(2km + agy), for all k| > ko, so that Let us
compute ﬁi/Q. Assume ﬁi/g = pr +iqk, Pr, qx € R and fix = ay + iby, ax, by € R, so that
(Pr +iqr)* = (P — qi) + i2Pkqr = ax + ibx,
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4.8. Detailed spectral analysis of the adjoint operator

From the fact that gq; = QP , we have

Pr — q; = ax = 4p} — dagp; — by =0,

and that yields

I
[SIE

[ 2, 12 2 [2 2 _
ak+bk+ak ak+bk ag

e e

Now,

[N

1
= [4k*2% + O(k)|? = 2lkx| + O(1), VIk| > k.

a2 +b2 = [( +arp)® + (2km + az)

Thus, it follows that

p = Vikal+ O(IkI"2), g = \/lkxl + O(Ik|™2),  VIk| > ko. (4.172)
we get
fir/? = kx| + isgn(k)ikz] + O(Ik| ™), VIk| = ko, (4.173)

(the sign function sgn has been defined by (4.29)).
Then, using the characteristic roots mj, mo, ms, given by (4.148), we get that
my = —ayx — i(2km + azg) + O(Jk| ™),
1 _1
my = = +sgn(k)Vikal - iy + O(IkI %), (4.174)
1
m3 = —2 = sgn(k)lkx + iylkr] + O(IK|™2),

for all |k| > ko large enough.

Using the above information, we now write the expression of 7 A (x) (we take the formulation after
1

Vikr|+—=
dividing by ke | |+‘/W), given by

_ 1 (esgmk)x/ﬁ—;—ix/ﬁwuu‘%) —sgn(k)\/ﬁ—m/ﬁwﬁkl'%)) (4.175)

Mn (x) = —
* ke lk”|+‘/%

% e—x((xl,k+i(2k7r+a2‘k)+0(|k|_1))

+;(—sgn<k)x/|kn| LeiTal+0(Ikl ) _ —al,k—i<2kn+az,k>+o<|k|-1))

o ex(sgn(k)\/lkﬂl—%—i\/lkﬂ:l+0(|k|_%))

P S (e—al,k—i<2kn+a2,k>+o<|k|-1) _ esgn(k)\/|kn|—;—i\/|kn|+o<|k|‘5>)
x( sgn(k)\Tkz| - +1\/|k7r|+0(|k|_§))

for all x € (0,1) and for all |k| > ko.
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Computing 5/12. By using the values of my, ma, m3 from (4.174), we calculate the following quan-
tities for all |k| > kg large enough, namely

m} = (—ark — i(2kx + ag ) + O(Jk| 1))

= —4k*n? + dikmay . + O(k),

mj = (= +sgu(R) el - iyl + O(K|$))?
= —sgn(k)V|kr| - 2isgn(k) kx| + iv|kx| + O(1),
mi = (~ = sen(k)lir] + il + O(1kI$))?
= sgn(k)v|kr| - 2isgn(k) kx| — iv/lkz| + O(1).

Next, we compute the following: for all |k| > ko large enough,

m% +(1=c®)my + jix _1 (—4k%7?% + dikmay ;. + O(k)) (c® + ayx — i(2km + oz 1)) (4.176)
cfix c (2 +ai1x)? + (2km + ag )2 '
1 —(c? + oy ) 4k2 % + 8ik3 73 + O(k?)
¢ 4k272 + O(k)
ary  2ikr

=——=+
Cc

m% +(1=c®)mg + fir B —c?sgn(k)+/|krx| — 2isgn(k)|krx| + ic2/|kn| + 2ikw + O(1) (4.177)
cfix - c(c® +ayp +i(2km + agx)) '

( — 2 sen(k)Tkr| - 2isgn(k) kx| + ic2/Jkx] + 2ikr + 0(1)) (c2 Tty —i(2kn + aQ,k))
(2 +a1x)? + (2km + ag)?
2c2 (k)32 + 2ic?(kn)3/? + O(k)
4k272 + O(k)
c ic 1
= sgn(k) + +0|—),
24|kx|  2+/|kx| (|k|)
mg +(1=c®)m3 + [ix
chik
cz(sgn(k)\/|k7r| — 2isgn(k) kx| — ic2 kx| + ik + 0(1)) (c2 +ang — i(2kr + ag,k))
(2 +a1x)? + (2km + agx)?
—2c2 (k)32 = 2ic2(kn)3/% + O(k)
¢ 4k272 + O(k)
ic

c 1
= —sgn(k) - +0[—).
WJlkr| 24|k (Ikl)

+0(1),

Ol ol

(4.178)

1

= 4.179
; (4.179)
1

Using the quantities (4.176), (4.177) and (4.178) in the expression (4.163), we obtain the component

En(x) = (esgn(k)\/|kn|—;—n/|kn|+0(|k|%) _ e—sgn(k)\/|kn|—;+n/|kn|+0(|k|%))
k

57‘2 (x), for all |k| > ko (upon a division by ke

% (—ak +2ikr + O(1)) w o= (@i (2mrar )+O(Ik[ 7))
\/|k7r|+L
ckrme Viki

+ (e—sgn(k)\/|kn|—;+n/|kn|+0(|k|5) _ e—al,k—i(anmzk)w(|k|-1))

Silew ; 1 )) L O SV el (T )

1
X ———— + +0(—
km‘/'k””xﬁ?( 2WJlkr|  24/|kx] (Ikl
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4.8. Detailed spectral analysis of the adjoint operator

+ (e—al,k—i(zknmzk)m(|k|1) _ esgn(k)\/|kn|—;—i\/|kn|+0(|k|%))

X

BTy R +O(1))><ex(‘sg“<’<>\’|’<’fl—%H\/Ww(w%)),

kﬁe‘/'k”“ﬁ?( NN A

(4.180)

We can now prove the last part of Lemma 4.3.1.

4.8.3 Proof of Lemma 4.3.1

We have already proved the existence of eigenvalues {/1‘;; Y=k, (parabolic part) and {/12}| K|k, (hyper-
bolic part) by (4.159) and (4.160) respectively, which is the first part of Lemma 4.3.1.

It lefts to show the asymptotic properties of the sequences {ci}isiy, {diktisk, and {o1x}ik>ko>
{ari}k|zko-

e Let us use the form of y (i.e., of —/1‘;;) in the eigenvalue equation (4.154). Then, for large k, it
is easy to observe that

F(u) = 2sin(kr + ¢ + idy) + O(k™h)
= 2(=1)F sin(cy +idy) + O(k™Y).

But p is a root of F and thus
sin(cg + idg) = O(k™1),  for large k > k. (4.181)

Now, since [sin(cg + idk)|2 = sin?(cx) + sinh?(dy), we can write

C
sin?(cx), sinh?(dy) <

oL Vk > kg large.

C
Therefore, |ck|?, |di]* < w2 Vk > ko, that is to say,
ek, dp = 0(k™), for large k > ko,

which gives the asymptotic formulation (4.19a) of )L‘Z given in Lemma 4.3.1.

e For the hyperbolic part {AZ}|k|2k0, using the property §/12 (0) = §Az(1) (§AZ is defined by (4.180)),
we obtain that

(1 _ e—alyk—i2k7r—itx2,k+0(|k|_l)) + O(|k|—1) — O,
that is,
e *tkTio2k = 14 O(k|™h),  for large [k| > ko. (4.182)

that is, there exists a C > 0 such that
o i C
oLk uxz,k| < (1 + m) Y |k| = ko large.

As a consequence,
e MLkTIO2k 5 1 as |k| — 4oo.

But both a;x and {aa} is bounded and therefore

g aop — 0, as |k| — oo. (4.183)
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: ; C :
Since |e“"11k"“2”< = e %Lk we have fO!1,k| < m, Y |k| = ko large and that is

ayr = O(k™Y), for large |k| > ko.
Using the above result, we get
ek = 14+ 0(k™1), for large |k| > ko.

But, one has |e"'“23k - 1| = 2|sin(az/2)| and therefore,

C
|052,k| < 3k for large |k| > ko.

that is, agx = O(|k|™!). This yields the asymptotic formulation (4.19b) of /1,’; given in Lemma
4.3.1.

Finally, we recall that the existence of lower frequencies of eigenvalues are already given in
Section 4.3.3.

Thus, the proof of Lemma 4.3.1 is complete.

4.8.4 Proof of Proposition 4.3.2—Part 1

In this portion, we shall simplify the expressions of the eigenfunctions (for large frequencies) using the
properties of ¢k, dk, a1k, azr obtained in Section 4.8.3.

— The parabolic part. Recall the component 5/1,2 given by (4.170). By using the condition §AZ (0) =
§/1,Z(1), one can deduce that

(e—i(kn+ck)—%+dk+0(k‘1) _ ei(kn+ck)—%—dk+0(k‘1)) _ O(%) for large k > ko
k3) -

We further observe that (since ¢, and di are or order O(1/k))
i (1=%) (kreptidi ) +O(k™Y) L =i(1=x) (k+cide) +O (k™)
= 2isin((1 — x)(kz + cx + idy)) + O(k™Y)
~ o0 2isin(kz(1 - x)) + O(k™H).

Using the above ingredients in the expressions of e and §A£ given by (4.166) and (4.170), we
conclude that

1
M (x) = =2 (1) sin(kr(1-x))+0 (E) ,
_ I 1(14) _ x(~k272+0(1)) 1
5/1,2 (x) k”e 2 cos(kr(l—x)) +e x O p

1 : 1
+0 (ﬁ) ex(—anQ_2ckk7r—2ldkkir+0(1)) % O(E)

+ ( ic of 1 )) (ei(k7r+ck)+o(k’1)—%—dk _ e—k27r2—2ckk7r—2idkk7r+0(1)) ox(—ilkmter) - S+di+O(k™1))

—_— + —_—
krx k2
+ (_£ +O(k_12)) (e—k2 2_9crkm—2idikm+O(1) _ e—i(k7r+ck)—%+dk+0(k‘1)) ex(i(kn+ck)—%—dk+0(k‘1))’
I

for all x € (0, 1).

— The hyperbolic part. For the hyperbolic part, we simply use the fact: ajx = O(lk|™), ask =
O(Jk|™!) in the expression of the eigenfunctions (4.180) and (4.175), to obtain the required
formulations (4.27) and (4.28).
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4.8.5 Proof of Lemma 4.3.2: bounds of the eigenfunctions

In this section, we shall give the sketch of the estimates for fﬂf’ Y for k > ko and g"ﬁ’ M for
|k| > kg. We use the interpolation results of Sobolev spaces to find the (Hg)’ and H~*-norms of the
eigen-components.

We present the proof for 0 < s < 1. In a similar way, one can prove the estimates for s > 1.

— The parabolic part. Recall the expressions of &;» and M from (4.24) and (4.25) respectively.
k
Note that

C
< —

C
— for k > ko 1 .
k (Hé(0)1>), 5k or k > kg large

[ |

L2(0,1)

Therefore, using the interpolation between (Hﬂl(O, 1)) and L? spaces, we get for any 0 < s < 1
(since —s =s X (=1) + (1 —s) x 0),

C
< , fork >kl .
Hﬁg (H5 (0,1))" ”f/1 12(0,1) ”5/1 (HO1) ~ |k|* o 0 Jaree
We also have
<C d C for k> kol
”’7’1 12(0,1) an ”’7/1 H-1(0,1) =3 fork=folarge.
Thus, for any 0 < s < 1, we deduce that
) C o fork>kl
< — > )
”’W: H-5(0,1) ”’h 2o M4l 01) = k[© OF £ = Ro Jaree

On the other hand, to find the lower bounds, first we observe that

C
> = dH >C, for k > ko large.
Hgﬂ 2oy = ko8 SZ/‘P Kl 0.1) or 0 latge
Now, using the interpolation between (Hg(O, 1))’ for 0 < s <1 and Hé (0,1), we obtain that (as
0= 1= X(=8)+ = x1)
1+s lis
tll20,1) ”5/1 (H3(0,1))" ”g’1 Hi (1)
and therefore
1+s -s C
>
Hﬁf (H3(0,1))’ ”ﬁ L2(0,1) ” kllak 1) 7 k1S
for k > ko large enough.
Next, we have
> > 2>
| r o 2 C and “’U{: Hon > Ck, for k > kg large,

and thus, by following the similar strategy as previous, we deduce that

1+s

C
HL(0,1) kS’

>
L7 MY % o L

H-$(0,1) L2(0,1)

for k > ko large enough.
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— The hyperbolic part. The steps will be exactly same as we analysed for the parabolic part. In
this case, we have the following estimates:

> Clk|,

C
< T Hf/l
k|’ H1(01)

Ci < “ﬁz < Co,

12(0,1) v (H; (0.1))’
C

H-1(0,1) |k_ ”'7’1

>C
H}(0,1)

3

H’?A

G o_ “ <
k] = 1Mz 0.0) = Tk

for large enough k > k.

Then, by following the interpolation arguments as previous, we can determine the required
norm-estimates of gAZ and s that is (4.32).

This completes the proof of Lemma 4.3.2.

4.9 Further remarks and conclusion

In the present chapter, we have proved the boundary null-controllability of our linearized 1D com-
pressible Navier-Stokes system when a control acting either on the velocity or density part. For the
1

velocity case, we have shown that when the initial states are chosen from the space H 2(0,1) x L%(0, 1),
the system (4.4) is null-controllable at time T > 1. Moreover, for 0 < s < 3, the system fails to verify
the null-controllability at any T > 0 in the space H;(O, 1)xL?(0,1). Thus, the space is Hﬁ2 (0,1)xL3(0,1)
is optimal w.r.t. the null-controllability of the system (4.4).

For the density case, we can even allow the L2(0,1) x L?(0,1) initial states for the systems (4.5)

and (4.6) to be null-controllable at time T > 1. We further proved that for small time, that is when
0 < T < 1, the system (4.5) is no more null-controllable in the space L?(0,1) x L(0, 1).

In view of the above discussion, one immediate open question is the (non) null-controllability of
the velocity case (the system (4.4)) or the full Dirichlet density case (system (4.6)) in small time
0 < T < 1. We also cannot conclude the (non) null-controllability of the systems (4.4), (4.5) or (4.6)
at the optimal time T = 1.

Let us make some final remarks related to our work.

e Backward uniqueness and approximate controllability. The backward uniqueness prop-
erty tells that when the solution of a system (without any control) vanishes at some time T > 0,
then it is identically zero at all time. This property plays an important role in the context of
unique continuation and controllability.

In this regard, we mention that the backward uniqueness is well-known for the cases when the
associated operator forms a CY-group (hyperbolic case), for instance the system

Pt + Px = Os in (O’ T) X (09 1)5
p(t,0) =p(t,1),  t€(0,7),
p(0,x) = po(x),  x€(0,1),

or an analytic semigroup (parabolic case), for instance the system

Up — Uyy = 0, in (0,T) x (0,1),
u(t,0) =u(t,1) =0, te€(0,7),
u(0,x) = ug(x), x € (0,1).
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Let us come to our problem. Consider the following system without any control input,

pr+ px+cuy =0 in (0,T) x (0,1),

U — Ugx +Ux +Cpx =0 in (0,T) x (0,1),

p(t,0) = p(t,1) for t € (0,T), (4.184)
u(t,0)=0, u(t,1)=0 for t € (0, T),

p(0,x) = po(x), u(0,x) =ug(x) forxe (0,1).

Since the system (4.184) is of mixed nature (coupling between parabolic and hyperbolic com-
ponents), the backward uniqueness question is interesting from the mathematical point of view.
In fact, it has been indicated in [LRT01, AT08, AT10], that the backward uniqueness property
is a delicate issue for the coupled parabolic-hyperbolic systems.

But in our case, the advantage is that the (generalized) eigenfunctions of the operator A forms
a Riesz basis in L?(0,1) x L2(0,1) (see Remark 4.3.1). Also, we have that (A, D(A)) defines a
strongly continuous semigroup in L%(0,1) x L?(0,1). As a result, we have the following: if the
solution (p,u) to the system (4.184) satisfies

p(T,)=u(T,)=0 in (0,1),
then we necessarily have

po=up=0, in (0,1), ie., p(t,x)=u(t,x)=0 in (0,T) % (0,1).

The above backward uniqueness property of (4.184), that is the free system of (4.4) (resp. (4.5)),
together with the null-controllability of (4.4) (resp. (4.5)), we deduce the approximate control-
1

lability of the system (4.4) (resp. (4.5)) at time T > 1 in the space H‘f (0,1) x L2(0,1) (resp.
L2(0,1) x L%(0, 1)).

Finally, the approximate controllability of the system (4.6) at time T > 1 in the space L?(0,1) x
L?(0,1) follows from the null-controllability result Theorem 4.1.3 and the backward uniqueness
of the free system associated to (4.6) (as proved in [Renl5]).

Growth bound of the semigroup and a stability result when (po, ug) € L2(0,1) x L?(0, 1).
Recall the space

1
B20.1)={p e 1201 ; / ¢ =0}.
0
We shall point out some stability result associated with the system (4.184) (that is, without any
control) when the initial data (pg,up) € L?(0,1) x L%(0,1).
In this case, the operator A with its formal expression (4.7) has the domain
D(A) = {cb = (&n) € H'(0,1) x H*(0,1) : £(0) = &(1), n(0) = n(1) = 0}, (4.185)
where H' (0, 1) contains all the functions in H!(0, 1) with mean zero. Similarly, A* has its formal

expression as (4.9) with the same domain D(A*) = D(A) as of (4.185).

It is enough to obtain the growth bound of the semigroup {S*(t)}:>0 generated by (A", D(A"))
in L2(0,1) x L2(0,1). Then, using the fact ||S(t)|| = ||S*(t)|| we can deduce the growth of the
semigroup {S(t)};>0 generated by (A, D(A)) (in L2(0,1) x L(0,1)).

We first ensure that A = 0 cannot be an eigenvalue of A* (or A) with the domain (4.185). If
yes, then the associated eigenfunction will be (1,0), but this is not possible since (1,0) ¢ D(A").
Also, observe that the first component of the eigenfunction of A* (or A) corresponding to any
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eigenvalue has mean zero (in the light of Remark 4.8.1). As a consequence, in this case we can
prove that the set of eigenfunctions of A* (or A) with the domain given by (4.185) forms a Riesz
basis for L2(0,1) x L2(0,1) (using Theorem 4.3.1). So, (A*, D(A*)) (or (A, D(A))) is indeed a
Riesz-spectral operator since there is no accumulation point of the set of eigenvalues of A* (or
A), see [CZ20, Chapter 3.

Now in one hand, since A # 0, all the eigenvalues of A* with domain (4.185) have negative real
parts (see (4.142)), i.e.,
Re(1) <0, VAeo(AY).

On the other hand, thanks to Lemma 4.3.1, the set of parabolic and hyperbolic branches of the
eigenvalues of A* with domain (4.185) have the following asymptotics properties:

Ai = —k’2% + 0(1), for large k > ko,
M= —c? = 2ikz +O([k|™"), for large |k| > k.

Thus, there exists some wg € [—c2, 0) such that
W = sup {Re(/l) tA € a(A)} < 0.

Now recall that (A*, D(A¥)) is a Riesz-spectral operator and so the semigroup {S*(¢)};>0 gener-
ated by (A%, D(A*)) has the following growth

IS ()|l < Ce™*, Vi > 0.
But, ||S(8)]| = ||S*(¢)|| and therefore
IS < Ce*, Vi > 0.

with —c? < wo < 0, which gives the exponential stability of the system (4.184) with initial data
(p(), uy) € L2(0, 1) x L2(0, 1).

Characterization of the coefficient ¢c. We have proved the null-controllability of linearized
compressible Navier-Stokes systems (4.4), (4.5) and (4.6) at a large time provided the coefficient
b is small, in particular b* + 8b? + 5 < 472. This condition ensures that all the eigenvalues of
A* has geometric multiplicity 1, thanks to Proposition 4.3.1-Part (iv). However, this is not a
necessary condition for achieving null-controllability of the systems (4.4), (4.5) and (4.6). To
be more precise, characterization of all b > 0 such that the systems (4.4), (4.5) and (4.6) are
null-controllable at a large time is not obtained and it is a very difficult problem due to the
complicated cubic polynomial (4.41). Equivalently, one can say that finding all b > 0 such that
all the eigenvalues of A* are geometrically simple is unknown.

A Dirichlet-Dirichlet system with control on velocity. Recall that, when we considered
a Dirichlet boundary control on velocity, then we have the assumption p(t,0) = p(t, 1) for the
density part. It would be really interesting to deal with the full Dirichlet case when a control g
acts on the velocity, that is the following system

pr+ px+cuy=0 in (0,T) x (0,1),

Up — Upx + Uy +Cpx =0 in (0,T) x (0,1),

p(t,0) =0 for t € (0,T), (4.186)
u(t,0) =0, u(t,1) =q(¢) for t € (0,7),

p(0,x) = po(x), u(0,x) =up(x) for x € (0,1).

This is really a challenging open problem to handle because of the difficulty in analyzing the
spectral properties of the associated adjoint operator. This can be considered as a future work.



4.9. Further remarks and conclusion
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CHAPTER 5

Nonlinear Two-Parabolic System

This chapter is taken from the article [BKM24]:
“Kuntal Bhandari, Jiten Kumbhakar, and Subrata Majumdar. Local null-controllability of a two-

parabolic nonlinear system with coupled boundary conditions by a Neumann control. Evol. Equ.
Control Theory, 13(2):587-615, 2024.”
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Abstract

This article is concerned with the local boundary null-controllability of a 1-D system of two-
parabolic nonlinear equations (often referred as reaction-diffusion system) with coupled boundary
conditions by means of a scalar control. The control force is exerted on one of the two state com-
ponents through a Neumann condition at the left end of the boundary while the other component
simply satisfies the homogeneous Neumann condition at that point. On the other hand, at the
right end of the boundary, the states are coupled through the so-called &’-type condition. Upon
linearization around the stationary point (0, 0), we apply the well-known moments method to prove
the global null-controllability of the associated linearized system with explicit control cost MeM/T
as T — 0*. Then, we show the local null-controllability of the main system by employing the source
term method developed in [LTT13] followed by the Banach fixed point theorem.
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5.1 Introduction and main results

5.1.1 The system under consideration

In this paper, we address the boundary null-controllability result of a 2 X 2 nonlinear parabolic system
with coupled boundary conditions by means of one Neumann boundary control. More precisely, for
given finite time T > 0, we consider the following system

Yr — Yxx = f (4. 2, /01 v, fol z), in (0,T) x (0, 1),

zZt—zex = 9(y, 2 /01 Y, /01 z), in (0,T) x (0, 1),

Yx(£,0) = q(1), zx(t,0) =0, for t € (0,7), (5.1)
yx(t, 1) = z,(t, 1), for t € (0, T),

y(t, 1) +z(t, 1) + ay,(t,1) =0, for t € (0, 7T),

y(0,x) =yo(x), 2(0,x) =zo(x), in (0,1),

where @ > 0 is some real parameter and (yo,zg) is the given initial data which we choose from the
space [L?(0,1)]2.

In the above system, a control function g € L?(0,T) (to be determined) is applied through the
Neumann condition of only one state (namely y) while the other state z simply satisfies the homoge-
neous Neumann boundary condition at the point x = 0. On the other hand, the states are coupled
at the boundary point x = 1 in terms of the “equality condition of their normal derivatives” and a
“combined Robin-type condition”. In the literature, this kind of combined conditions (appearing at
the point x = 1) is typically called the §'-type condition, see for instance [BK13, p. 26, Chapter 1.4.4]
or [Exn96]. In fact, it has been addressed in [Exn96] that the wavefunction of a quantum mechanical
particle living on a graph often satisfies the §’-type boundary conditions at the junction points.

The nonlinear functions f and g in (5.1) are given by

fly.z, /01 n /01 z) =-yz+ ay? + bz% + r(t)y, (5.2)
9(y. z, /01 v, /01 z) =yz+cy® +dz® +ra(t)z '
where a, b, c,d are L*((0,T) x (0,1)) functions and
1
r(t) = ap / (¥11(0y (2, x) + Yo (0)2(8,3) )
0 (5.3)

1
a0 = [ (1aly(e. ) + a0t d

with a1, a2 are real constants and 4 j, ¥ ; € L*(0,1) for j =1,2.

Observe that the nonlinear model (5.1)—(5.2) is actually a reaction-diffusion system which often
describes several biological phenomenon or chemical reactions. In the literature, such system is com-
monly known as “Lotka-Volterra” model with diffusion (without any boundary conditions and control
for the moment, let say), that sometimes characterize the dynamics of a biological system where two
species: prey and predator interact between each other; see for instance [Perl5, Jos14, Mur02]. In our
model, we consider that the two species are interacting in the reference domain (through the nonlinear
functions f,g) as well as at one boundary end (through the coupled conditions at x = 1). Then, our
goal is to put an external control force only on one species from the other boundary end to locally
control both the species at a given time T. In this regard, we refer the very detailed work [RBZ22],
where several results concerning the controllability of reaction-diffusion systems in biology and social
sciences have been addressed.

5.1.2 Bibliographic comments

The parabolic boundary control systems with less number of control(s) than equations can be a delicate
issue in various situations and that there is lack of enough mathematical tools to tackle with these
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systems. In fact, unlike the scalar problems the boundary controllability for such systems is no longer
equivalent with the distributed one, as it has been proven for instance in [FCGBdT10]. Moreover, the
very powerful Carleman technique is often inefficient in that context. Among some fascinating works
on coupled control systems, we point out [FCGBdT10] where the authors have proved a necessary
and sufficient condition for boundary null-controllability of some 2 X 2 coupled parabolic system with
single Dirichlet control. A more general result regarding the controllability to the trajectories of an
n X n parabolic system with m(< n) Dirichlet controls (applied on a part of a boundary) is available
in [AKBGBdT11a]. In those works, the authors actually proved a general Kalman condition which is
necessary and sufficient for their controllability results.

To the best of our knowledge, most of the boundary controllability results for a system with less
controls than the equations are in 1-D and the reason behind is that the spectral analysis of the
associated adjoint elliptic operator helps to deal with the so-called “moments technique” (initially
developed by Fattorini and Russell [FR71, FR75]) to construct a control. In this regard, we mention
that some multi-D (in cylindrical geometry) results have been developed in [BBGBO14, AB20], which
need a sharp estimate of the control cost for the associated 1-D problem and a Lebeau-Robbiano
spectral inequality for higher dimensions. We further refer to [AKBGBdT11b] where the authors
made a survey of several recent results concerning the controllability of coupled parabolic systems.

The above references mainly address the parabolic systems with internal couplings. Let us mention
that several systems with boundary couplings use to appear when one considers the system of pdes on
metric graphs, e.g., [Lum80, KPS08, BK13]. Concerning the controllability issues for such systems,
we first address [DZ06, Chapters 6, 8] where the authors have discussed some controllability results of
wave, heat and Schrédinger systems in the network when some control(s) is (are) exerted on some of the
vertices; see also the survey paper [Avd08]. We also refer the works [CIP18, CCV20, CCM20, ABP23]
where several controllability results have been achieved in the setting of metric graph and certainly, in
those works, the couplings are arisen in the junction points of the graph. Very recently, the boundary
null-controllability of some interior-boundary coupled linear parabolic systems has been addressed in
[BBHS21] where the boundary coupling is chosen by means of a Kirchhoff-type condition.

In the context of controllability of nonlinear systems, let us first mention [F196, Sec. 4, Chap. I| by
Fursikov and Imanuvilov where a small-time local null-controllability of semilinear heat equations has
been proved using a perturbation argument. In 2000, Barbu [Bar(00], independently Fernandez-Cara
and Zuazua [FCZ00] proved the small-time global null-controllability of semilinear heat equations
where the nonlinear functions satisfy the growth condition |s| In®2(1 + |s|). More recently, the large-
time global null-controllability has been established in [LB20a] for the nonlinearities F growing slower
than |s|In?(1 + |s|) verifying sF(s) > 0 and % € L'([0,400)). Last but not the least, we mention
[HSLB21] where the local null-controllability of a nonlocal semilinear heat equation has been inten-
sively investigated along with numerical illustrations.

In the present work, we shall deal with the local null-controllability of the parabolic system (5.1)
and, as far as we know, the §’-type condition has not been treated in the literature from the control
theoretic perspective. Moreover, we consider the nonlocal nonlinearities in this work.

5.1.3 Linearized system and functional setting

For any given boundary parameter a > 0, the linearized system around the equilibrium point (0, 0) is
given by

Yt — Yxx = 0, in (0,T) x (0,1),
Zt — Zxx = 0, in (0,T) x (0,1),
yx(£,0) = q(t), zx(t,0) =0, for t € (0, T),
(5.4)
Y (£, 1) = z,(8, 1), for t € (0, 7),
y(t,1) +z(t, 1) + ay,(t,1) = 0, for t € (0, T),
y(0,x) =yo(x), z(0,x) =zo(x), in (0,1).
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The free system, that is the set of equations (5.4) without any control input, can be written in the
form of an infinite dimensional system of ordinary differential equations as follows

Y'(t) + AY(2) = 0,

(5.5)
Y(0) = Yo,
where Y := (y,2), Yo := (yo,z0) and the operator
-0 0
A= 7 , (5.6)
0 _axx

with its domain
D(A) ={(u, v) € [H?(0,1)]% | ¥ (0) =0, v'(0) =0, v/ (1) = o' (1),
u(1) +0(1) +au' (1) = o}.

Observe that the operator (A, D(A)) is self-adjoint in nature but still we denote the adjoint of A by
A* for more clear presentation.

5.1.4 Notations

Throughout the paper, C denotes a generic positive constant that may change line to line but does
not depend on the time T or on the initial data (yg,zg9). We also denote the following Lebesgue spaces:

(i) Z:=[L?(0, )],

(i) H = [H' (0, D]
(iii) H* = dual of the space H with respect to the pivot space Z,
(iv) H{la}(O, 1) = {u e HY(0,1) : u(a) = O}, for a € {0,1},

which shall be intensively used in the present work. The inner product in the space Z is simply denoted
by (-, -)z while we denote the dual product by (-, -)x= x between the space X and its dual X*. Sometimes,
we write (-, -)ga to denote the usual inner product in the space R?, d > 1. The characteristic function
will be denoted by x[4p] in the real interval [a, b] with a < b.

5.1.5 Main results

We now write the main results of our present work.

5.1.5.1 Local null-controllability of the nonlinear system

We have the following controllability result for the system (5.1).

Theorem 5.1.1. Let f and g be given by (5.2) and a > 0. Then, the nonlinear system (5.1) is small-
time locally null-controllable around the equilibrium (0,0), that is to say, for any given time T > 0,
there is a & > 0 such that for chosen initial state (yo,z0) € Z verifying ||(yo,z0)llz < 8, there exists a
solution-control pair ((y,z),q) with (y,z) € C°([0,T];Z) N L*(0,T;H) and q € L*(0,T) to the system
(5.1) satisfying

(y(T.x),2(T,x)) = (0,0), Vx € (0,1). (5.7)
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The strategy to prove Theorem 5.1.1 is the following:

— First, we prove the global boundary null-controllability result of the associated linear model
(5.4) by using the method of moments ([FR75, FR71]) with a proper estimation of the control
cost, precisely MeM/T||(yo, z0)||z, where M is independent in T and (yo, zo).

— Next, by applying the source term method introduced in [LTT13], we prove a null-controllability
result of the linearized model with additional source terms in L?(0, T; Z) which are exponentially
decreasing as t — T, and in this step, we notably use the precise control cost as prescribed
earlier.

— Finally, we use the Banach fixed-point theorem to obtain the local (boundary) null-controllability
for our nonlinear system (5.1).

5.1.5.2 Null-controllability of the linear system

Let us now state the global null-controllability result for the linearized system (5.4).

Theorem 5.1.2. Let any T > 0, initial data (yo,z0) € Z and parameter a > 0 be given. Then, there
exists a control q € L*(0,T) such that the solution (y,z) to the system (5.4) satisfies (y(T,-),2z(T,")) =
(0,0) in (0,1). In addition, q satisfies the following estimate

lgll207) < M lI(yo, 20)l (5.8)

where the constant M > 0 neither depends on T nor on (yo, z0)-

5.1.6 Organization of the paper

— In Section 5.2, we discuss the required well-posedness results for the linear control problem (5.4)
and its associated adjoint system (without any control input).

— Section 5.3 is devoted to prove the null-controllability of the linearized system (5.4). We study
the spectral analysis for the associated adjoint operator in subsection 5.3.1, which is crucial to
apply the method of moments to construct a null-control g € L2(0,T) for the system (5.4) with
a precise control cost as introduced earlier (see subsection 5.3.5).

— In Section 5.4, we prove the main result of our work, that is, Theorem 5.1.1.

— Finally, we conclude our paper by mentioning possible extension of this work to a more general
internal-boundary coupled parabolic system related to the present paper, see Section 5.5.

5.2 Well-posedness of the linearized system

This section is devoted to prove the existence and uniqueness of solution to the linear control system
(5.4).

5.2.1 Existence of analytic semigroup

Let us first prove the well-posedness of the following homogeneous system

Yt — Yxx = 91, in (0,T) x (0,1),

Zr — Zxx = 92, in (0,T) x (0,1),

yx(£,0) =0, 2z.(2,0) =0, for t € (0, T), (5.9)
Y (£, 1) = 2, (8, 1), for t € (0, T),

y(t, 1) +z(t, 1) + ay,(t,1) =0, for t € (0, T),

y(0,x) =yo(x), z(0,x) =zo(x), in (0,1).
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with given initial data (yo,z0) € Z and source term (g1,g2) € L?(0,T;Z). We start by proving the
existence of semigroup defined by (-A, D(A)).

Proposition 5.2.1. The operator (—A, D(A)) defined in (5.6) forms an analytic semigroup in the
space Z.

Proof. We shall present the proof for the boundary parameter ¢ > 0. The case « = 0 is simpler. We
prove this result into two steps.

Step 1. Let us define the usual norm on H, given by

-

2

1 1
II(u,v)llﬂ=(/0 (Iu(X)|2+Iu'(X)IQ)dJH/0 (lo(0)[* + " (x)[)dx |

and the sesquilinear map h : H X H — R such that for any (u,v), (¢,¢) € H

1 1
h((u,0), (9. 9) = /0 W ()’ (x)dx + /0 o ()Y (x)dx
+ = [u() + o (D] p(1) + (D).
It follows that h is continuous on H X H with

|h((w,0), (@, Y] < ¢ l(w,0)llg¢ [1(@, Pl g, for all (w,0), (¢,9) € H,

where ¢ is a positive constant depending on «. We also have
h((w,0), (u,0))| 2 Il(w, )17 = (w0)ll7, for all (u,0) € H.

Therefore, by [Ouh05, Proposition 1.51 & Theorem 1.52], the negative operator associated with h
generates an analytic semigroup in Z of angle (/2 — arctan(c)).

It remains to prove that the operator associated to h is indeed A with the domain D(A).
Step 2. Let us define the operator (4, D(A)) associated with the map h as follows.

D(A) = {(a, 5)eH| 3(fi,fy) € Z such that
M(@9). (0.9) = ((fi o) (p.9))zn V(g ) € H),
A(@,9) = (fi, o).
Part (i). Here we prove D(A) ¢ D(A). Let (u,0) € D(A). Then, for all (¢, 1) € H, we have
1 1 1
h((u,0), (¢.9)) = / o' (x) ¢’ (x)dx + / o (Y (X)dx + 2 [u(1) + o ()] [0(1) + (1)].
0 0 o

Integrating by parts, we obtain

1 1
h((u,0), (¢.¥)) =— / u’ (x)p(x)dx — / o ()P (x)dx +u' (1)e(1) +0"(1)y(1)
0 0
+é[u(1)+0(1)][<ﬂ(1)+¢(1)]- (5.10)
We also have that u’(1) = 0’(1) and u(1) + v(1) = —au’(1). Therefore, we get from (5.10)
1 1
(o) (0 == [ u"@ptidr = [ o

= (A(w,0), (¢, )z

Thus, for given (u,v) € D(A) we found a pair (fi, o) = A(u,v) € Z such that h((u,0), (p,¢)) =
((fi, f2), (¢, ¥))z for all (¢,9) € H. This implies (u,0) € D(A) and consequently, D(A) c D(A).
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Part (ii). We now show that D(A) C D(A). Let (&,5) € D(A). Then, there exists (fi, f2) € Z such
that h((4,0), (¢.¥)) = ((fi, f2), (9. ¥))z, for all (¢,¢) € H with A(u,0) = (fi, f2), and accordingly,

1 1
/ & (x)¢’ (x)dx + / 5 (Y (¥)dx + = [a(1) +5(1)][o(1) + Y(1)]
0 0 o
1 1
- / fi()p(x)dx + / HeOY(x)dx,
0 0

for all (¢,1) € H. Since fi, fo € L?(0,1), by elliptic regularity theory, we have u,» € H2(0,1). Thus, an
integration by parts yields

1 1
- /0 i (x)p (x)dx - /0 & ()Y (x)dx + @ (Dp(1) — i (0)p(0) + 5 (y(1)
1 1 1
=5 OY(O) + 2 [a(1) + ()] [p(1) + (1] = /0 fi(p(x)dx + /0 HEOYE)dx, (5.11)

for all (¢,¢¥) € H.
Let us first choose any (¢, ) € [Hé(O, 1)]? ¢ H in (5.11) and as a result we deduce

filx) =-u"(x), fo(x)=-0"(x), fora.a. xe€(0,1).

Once we have this, going back to (5.11), one has

' (De(1) — ' (0)¢(0) + 0" (1)y(1) - 2" (0)y(0) + %[ﬁ(l) +o(D][e(1) +¢¥(1)] =0, (5.12)

for all (¢,¥) € H. Now consider any (¢, ¥) € H{lo}(O, 1) xH&(O, 1) € H, so that we have

@ (1) + —[a() + (0] o(1) =0,

that is,
u(l)+o(1) +au’(1) =0. (5.13)

Next, by choosing any (¢, 1) € H{ll}((), 1) x Hé(O, 1) ¢ H in (5.12) we obtain the condition

u'(0) =0, (5.14)
and similarly, the choice of any (¢,¥) € H&(O, 1) x H{ll}(O, 1) c H leads to the condition

o’ (0) = 0. (5.15)

Finally, by considering any (¢, ¢) € H and utilizing the previous boundary conditions (5.13), (5.14)
and (5.15), the equality (5.12) reduces to

@ (1) -a' (1) y(1) =0,

for all ¥ € H'(0,1) and this yields
' (1) =0'(1). (5.16)

Therefore (i1,3) € D(A), which proves D(A) C D(A).

Hence, the operator associated with the sesquilinear form h is indeed (A, D(A)). This completes
the proof. 0

We hereby denote the associated semigroup by (e7*4);5¢ and the following results hold.
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Proposition 5.2.2. Let any parameter a > 0 be given. Then, for any Yy := (yo,z0) € D(A) and G :=
(g1,g2) € CL([0,T]; Z), there exists unique strong solution Y := (y,z) € C°([0,T]; D(A)) nC([0,T]; Z)
to the system (5.9), given by

t
Y(t) = e Yy +/ e” (794G (s) ds. (5.17)
0

Proposition 5.2.3. Let any parameter a > 0 be given. Then, for any (yo,z0) € Z and (g1,92) €
L%(0,T; Z), there exists a unique weak solution

(y,2) € C°([0,T]; Z) N L?(0, T; H) N H*(0, T; H*)
to the system (5.9) which satisfies the following energy estimate

1y, DMl coo.r1,2) + 1@ D2 0.790) + 1Y 2 L2 07,94
< CeT (110 20) 12 + 191,92 2 072 ) (5.18)

where C > 0 is a constant that does not depend in T > 0.

Proof. For given initial state (yo,z9) € Z and source term (g1,¢2) € L?(0,T;Z), the existence of a
unique weak solution (y,z) € C°([0,T]; Z) can be ensured by applying Proposition 5.2.1. We just need
to prove the energy estimate (5.18).

~ We start with (yo,z0) € D(A) and (g1,92) € C*([0,T]; Z). Then, the system (5.9) has a unique
strong solution (y, z) in the space C°([0, T]; D(A))NC' ([0, T]; Z) as per Proposition 5.2.2. Taking
the inner product in Z of (5.9) with (y,z), we get

1d

57 (D), 2017 + (Ay (1), 2(0)), (y(1), 2(1))z = ((91(8), g2(1), (y(1), 2()))z, V& € [0,T].

Integrating by parts w.r.t. space and by applying the Cauchy-Schwarz and Young’s inequalities,
we have

d
5 o (0, 2D + (0, 2() B, + aly’ (1, 1)

< C(Itg1 (0, ga2(DIZ + (D, 20)IZ), Ve € [0,T]. (5.19)
Here we recall that @ > 0, and then using Gronwall’s lemma (see [EvalO, Appendix B.2]) one
can obtain the required estimate (5.18) for the quantity |[(y,z)llco([o,r];z)- Then, by integrating

(5.19) over [0, T] and using the previous estimate, we get the required bound for ||(y, 2) |20 ;%) -

— To obtain the estimate for (ys,z;) in L2(0, T; H*), we consider any (¢,%) € H and from (5.9) we
have

(We (), 2e(1)), (9. 9)) 4o g0 + (Aly(), 2(1), (0. 9)) ; = ((91(2). g2 (1)), (9.¥)) 5 V2 € [0,T],
which implies

(e (), 2:(0), (0, 9)) gy 44| < C(Il(y(l‘),z(t))llﬂ+ ||(91(t),92(t))|lz)||(<ﬂ, Wll#, vVt e [0,T],
and this gives the estimation of |[(ys, z¢)|lL2(01,9) as stated in (5.18).

Finally, by applying the usual density argument, we shall obtain the same estimate (5.18) for given
data (yo,z0) € Z and (g1,92) € L?(0,T; Z). The proof is finished. O
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5.2.2 The homogeneous adjoint system: Backward in time

The adjoint system to the linearized model (5.9) is given by

—0r = Gex =0, in (0,T) x (0, 1),

—0; — 0, =0, in (0,T) x (0,1),

Ge(8,0) =0, 0,(t,0) =0, for t € (0,7), (5.20)
Ge(8,1) = 0,(2, 1), for t € (0,7),

{(61)+60(t,1) + aly(t,1) =0, for t € (0, T),

{(T,x) = {r(x), 0(T,x) =0r(x), in(0,1),

with given final data ({r,07) € Z. In fact, we have the following result.

Proposition 5.2.4. Let any parameter a > 0 and final data ({1,0r) € Z be given. Then, the system
(5.20) possesses a unique weak solution

(£,0) € C°([0,T]; Z) N L2(0, T; H) N H' (0, T; H*)
with the following energy estimate:

1 Ol eororpz) + 1 Ol oz + 1% 8Dllr20796) < CeT 1 0, (5.21)

where C > 0 is a constant independent in T > 0.

Thanks to Proposition 5.2.1, the adjoint operator (—A*, D(A*)) (which is the same as (=A, D(A))
but we use a different notation for better understanding) defines a strongly continuous semigroup in
Z, which ensures the existence and uniqueness of solution (¢, 6) € C°([0,T]; Z) to (5.20) and moreover
it can be expressed as

(8,0)(t,x) = e” =D (&7, 07) (x),  V(t,x) € (0,T) x (0, 1),

—tA*)

where (e ;>0 denotes the semigroup defined by (-A*, D(A")).

Then the energy estimate (5.21) can be obtained by applying similar technique as described in the
proof of Proposition 5.2.3.
5.2.3 The nonhomogeneous linearized system

We now address the notion of solution to the following nonhomogeneous system (which is forward in
time) in the sense of transposition as introduced in [Cor07, TWO09]. Consider the system

Yt — Yxx = 91, in (0,T) x (0,1),

Zr — Zex = G2, in (0,T) x (0,1),

Yx(£,0) = q1(t), zx(t,0) =qa(t), forte (0,T), (5.22)
Ux (£, 1) = 2, (8, 1), for t € (0, T),

y(t, 1) +z(t, 1) + ay,(t,1) =0, for t € (0, T),

y(0,x) =yo(x), z(0,x) =zo(x), in (0,1),

and we write the following definition.

Definition 5.2.1 (Solution by transposition). Let a > 0 be a given parameter. Then, for given initial
state (yo, 20) € Z, boundary data (q1,q2) € L>(0, T;R?) and source term (g1, g2) € L?(0,T; Z), a function
(y,z) € C°([0,T]; Z) is said to be a solution to the system (5.22), if for any t € [0,T] and ({1,07) € Z,
the following relation holds:

((y(2),2(1)), (L1, 61)), Z((yo,zo),e_m*({%@r))z+/0 ((g1(5), g2(s)), e ™94 (47, 07)),
- [ (@006, (e G, 01) ) (5.23)
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Let us now write the following result.

Theorem 5.2.1. Let a > 0 be a given parameter and (yo,z0) € Z, (g1,92) € L*(0,T;Z), (q1,q2) €
L?(0,T;R?) be given data. Then the system (5.22) has a unique solution (y,z) € C°([0,T];Z) in the
sense of transposition as given by Definition 5.2.1.

Furthermore, (y,z) € L2(0,T; H) N HY(0,T; H*) and it satisfies the natural energy estimate
(v, Dl co(ro.r1,2) + 1 D 201,20 + 1 Wes 22207944
< Ce? (||(yo,zo)||z + (91, 92) 220,752y + 11 (g1, q2)”L2(O,T;R2))’ (5.24)
where the constant C > 0 does not depend on T.

The proof for the energy estimate can be done using a similar technique as implemented in the
proof of Proposition 5.2.3. We skip the details.

Remark 5.2.1. For the nonhomogeneous system (5.22), we can achieve the usual energy estimate
(5.24) since the nonhomogeneous L*(0, T)-boundary terms qi,q2 appear through the Neumann condi-
tions. This phenomenon has been broadly studied in [Nit1/] in the context of parabolic equations with
nonhomogeneous Neumann data. We also refer [BB21, Proposition 2.4] where the usual energy esti-
mate for parabolic equations with nonhomogeneous Robin condition (with L? boundary data) has been
obtained.

5.3 Controllability of the linearized system: The method of
moments

This section is devoted to the proof of null-controllability for our linearized system (5.4), that is
the Theorem 5.1.2. As mentioned earlier, the method of moments helps us to construct a boundary
null-control for our system and as it is well-known, to deal with this method we first need to study
the spectral analysis of the corresponding (adjoint) spatial operator. We discuss about this in the
following section.

5.3.1 Spectral analysis of the operator A*

The eigenvalue problem associated with the operator A* is
A*U = AU, for A e€C,

with U := (u,v), which explicitly looks like

—u" (x) = Au(x), for x € (0,1),

-0 (x) = Av(x), for x € (0,1),

u'(0)=0, o/(0)=0, (5.25)
u'(1) =0'(1),

u()+o()+au’'(1) =0, a=0.

We divide the analysis into several parts.
e Observe that the spatial operator (defined by (5.6)) is self-adjoint and thus, all eigenvalues are real.

e From the set of equations (5.25), it is clear that u =0 < v =0 for any A € R.

. . . . . . 1
e 1 =0 is an eigenvalue of the operator A* associated with the eigenfunction | 1)

We denote this particular eigenfunction by @, , associated with the eigenvalue A := 0 just to be
consistent with the notations introduced for the first set of eigenfunctions given by (5.27).

e Assume now that A # 0 and denote g = VA € R*. Thanks to the boundary condition u’(0) = v’(0),
we expect the solutions to (5.25) as

u(x) = Ay cos(ux), o(x)=Agcos(ux), Vxe[0,1].
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Then, the boundary conditions u’(1) = 2’(1) and u(1) + 0(1) + au’(1) = 0 respectively gives

Ajpsinpu = Agusin g, (5.26a)
Aj cos p+ Ag cos p— aAqpsin p = 0. (5.26b)

The case when A; # Az, the equation (5.26a) yields y = kx for any k > 1, since y # 0. Using this
information in (5.26b), we deduce A; = —As. Therefore, the eigenfunctions of the first family, denote
them as @y, ,, are given by

P cos(kmx) (5.27)
At —cos(knx) |’ '

associated with the eigenvalues Ay := k?z2 for all k > 1.

In the case when sinp # 0, that is A; = Az (# 0 since we seek for non-trivial ), we have from
(5.26b) that

h(p) :=2cosp—ausinp=0, a>0. (5.28)

(i) The case a = 0 is straightforward; we have the eigenfunctions ®jo_ as follows:

1 X
- (cos((k+ D) )), (5.20)

o . 1
k.2 cos((k + 5)mx)
associated with the eigenvalues 122 =(k+ %)2712 for all k > 0.

(ii) The case when a # 0, we compute that
1 1
h(k) = (-1)*2 and h ((k + §>n) = (-)"a ((k ¥ §)n)

have different signs which ensures the existence of at least one root of h in the interval (kr, (k +
%)7‘[) for all k > 0.

To prove the uniqueness, we compute

R (p) = —(a+2) sin g — ap cos

which has the same sign throughout the interval (k, (k+%)7r) for any k > 0 and thus the required
claim follows.

We denote this unique root by g, and the eigenvalues by A7, := (;1]‘;’2)2 € (k272 (k + %)2712) for
any k > 0. The associated eigenfunctions will be then

cos (/A7 5%)
Dja = - , Vk>0. (5.30)
K2\ cos(( A ,x)
We now write the following lemma concerning the eigen-elements of A*.

Lemma 5.3.1. Let any a > 0 be given. Then, we have the following.

1. The spectrum of the operator A* consists of only real simple eigenvalues and it is given by

A% = {)Lk,l,/l,‘jg}kzo, (5.31)
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where
= (k+ l)27r2, when o =0,
Ay = k27® and Ao { °

The associated eigenfunctions are

cos(kmx)

q>,1k’1 (x) = ( ) and (D’IIZ,Z (x) =

—cos(krx)

for the eigenvalues A1 and A7, respectively for all k > 0.

€ (k27r2, (k+ %)an), when o > 0.

cos (/A7 5 %)

a b
cos( )Lk’2x)

(5.32)

(5.33)

2. Moreover, the set of eigenfunctions {q)/lk,l’q)ﬂzg}bo forms an orthogonal basis in Z = [L*(0,1)]?.

The formal proof of part 1 has been already discussed before the statement of Lemma 5.3.1.
Further, we note that the operator A* is self-adjoint and it can be proved that A* has compact

resolvent. Consequently, the result of part 2 follows.

Lemma 5.3.2 (Asymptotics of the eigenvalues for & > 0). For each a > 0, the asymptotic of the

y o
second set of eigenvalues /1,@2 are

4 1
)LZ‘Q =Kr+=-+0 (ﬁ) for large enough k € N,
; a

Proof. Recall that uf, € (kx, (k+ $)7) which uniquely satisfies the equation

2cos p, —apy,sinpg, =0, for each k > 0.

We set pff, = kx + 67 with 67 € [0, 5]. Then, from (5.35) we have

(-1)2cos 87 — (-1)*a (kz + 87) sin 8¢ = 0,

:tan5,f:a(k”—+5;:)—>0 as k — +oo

= 6 =0 as k — +oo.

Using the fact (5.37) in (5.36), one has

and thus,

& ~ioo kT ——.
g ~eo akmr

2

Thereafter, expressing pf, = km + -

Sar

4 - 4
5 — a6 - 5,

Stk =
FOkIT ak?x km

which asymptotically gives SZ‘ ~400 O(1/k?). So, finally we have

2 1
PZ{,Q =kmr+ o +0 (ﬁ) for large enough k € N¥,

and that the asymptotic expression (5.34) follows.
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5.3. Controllability of the linearized system: The method of moments

5.3.2 Formulation of the control problem and approximate controllability
We first present an equivalent criterion for the null-controllability of the linear model (5.4).

Proposition 5.3.1 (Formulation of the control problem). Let any (yo,z0) € Z, time T > 0 and
parameter a > 0 be given. Then a function q € L?(0,T) is said to be a null-control for the system (5.4)
if and only if it satisfies: for any ({r,07) € Z,

T
(w200 @61, = [ q<t><(é),(e-<T—f>A*<§T,9T>)(0>> . (5.38)

R2

We hereby introduce the observation operator
1
B* = 1 -0y (0) :HH—-R (5.39)

(recall that H = [H'(0,1)]?) and to this end, we have the following result.

Proposition 5.3.2 (Approximate controllability). Let « > 0 be given. Then, the linearized system
(5.4) is approximately controllable at any given time T > 0 in the space Z.

Proof. Note that 8*®,, | = B Q) =1 for all « = 0 and k > 0. Then, by applying the Fattorini-Hautus
criterion (see [Fat66, Olil4]), we conclude the proposition. O

5.3.3 The moments problem

Recall that for any parameter a > 0, the set of eigenfunctions {®;}1ca« of A* forms an orthogonal basis
in Z (see Lemma 5.3.1). Thus, it is enough to check the control problem (5.38) for all ®) € {®;}1cpe.
This gives us the following.

e For any (yo,20) € Z and parameter a > 0, a function ¢ € L?(0,T) is a null-control for the system
(5.4) if and only if we have

T —-AT
/ e AT=0g(p) = ;*q) ((y0,20), ®3) ,,  for all 1 € A*, (5.40)
0 A

Here, we have used the fact that

e P, = e D), VAeA”

We also recall that 8*®, = 1 for all A € A* which ensures that the set of moment problems (5.40) is
well-defined and we shall solve those in the next subsections.
5.3.4 Existence of bi-orthogonal family

In the framework of parabolic control theory, the existence of bi-orthogonal families to the family of
exponential functions in L2(0,T) has been extensively studied from the pioneer work [FR75] up to the
very recent developments. In this paper, we use [Boy23, Theorem V.4.26 & Corollary V.4.27] (which
is similar to [BBGBO14, Theorem 1.5] but with a more general set of assumptions) to establish the
following result.

Lemma 5.3.3. For any a > 0 recall the set A* given by (5.31). Then, there exists a family (pr)repe C
L?(0,T) bi-orthogonal to (e *T=));cpe, i.e.,

T oy —_~
/ pa(H)e T = 8,7 for any A, A € A% (5.41)
0 ,
In addition, they satisfy the following estimate
Ipall2 (o) < CeTes VA VA e A%, (5.42)

where the constant C > 0 is independent in T.
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Remark 5.3.1. Without loss of generality, we assume that all the eigenvalues are positive. In fact,
we can choose some cq > 0 such that A +cy > 0 for all A € A%. In what follows, an extra factor e’
will appear in the estimation of control cost, but without any consequences on our analysis.

Now, as mentioned earlier, we shall use [Boy23, Theorem V.4.26] in order to prove Lemma 5.3.3,
and for that we need to show that the set of eigenvalues A* defined by (5.31), belongs to some sector
of the complex half-plane, satisfies a uniform gap property and some asymptotic conditions on the
counting function.

e The sector condition. For any v > 0, we define the sector

S, :={z€ C|Rez >0, and |Imz| < (sinhv) Rez}.

In our case, the set of eigenvalues A% is real and so it is clear that there exists some v > 0 such
that
A*C Sy, (5.43)

for any a > 0.

e The gap condition.

Recall the set of eigenvalues given by (5.31) and the asymptotics of the eigenvalues A7, fora >0
from Lemma 5.3.2. Then it can be seen that there exists some c¢; > 0 such that we have

A1 — Akal = ik, Vk>1,
|/1Ii[+12 _A/i(2| >cik, Vk>1 and a >0,

and there is some k, € N* such that
A0y — Al 2 etk Vk 21,

C1

Ay = Al 2 = Yk 2 ke

Remark 5.3.2. Unlike the case of « = 0, we note that for a > 0 the gap between /1]0("2 and Ay
tends to a finite positive number as k goes to infinity but does not tend to infinity like for the
other cases. This is the reason why we needed to compute the precise asymptotic expansions of
the eigenvalues /1]‘:’2 for a > 0.

Using the above lower bounds of the differences of eigenvalues and the fact that the spectrum
is discrete, we can say that there is some p > 0 such that

A=A > p, forany LA € A% with A # A, (5.44)
which is the uniform spectral gap property.

e The condition on counting function. Let N be the counting function associated with the set of
eigenvalues A* (for any a > 0) defined by

No(r) =#{Ae A% st. |A| <r}, Vr>0.

Our goal is to show that there exists some kp > 0 independent in the set of eigenvalues such that

N (r) < iort/?, Vr >0, (5.45a)
ING(F) = N (5)] < Ko (1 +|r —s|1/2), Vr,s > 0. (5.45b)

From (5.31), we recall that
A% = {1 A s
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As it is shown for instance in [Boy23, Lemma V.4.20], it is enough to establish the required
results (5.45) for each of the two sets {Ax1}r>0 and {Af 5 k=0. We shall show this for {A7,}x>0

when a > 0 since the same reasoning will be applicable for the set {Agz}kzo or {Ax1}k>0-

We denote the associated counting function by Ny 2.

— Let r > 0 be fixed. Then, Ng2(r) = k (k € N¥) implies
Mo S,

since {A¢,}k0 Is increasing. But we have A% |, € ((k —1)?7?, (k — $)272) for any k > 1,
which gives

1
(k-12r%<r, e, k<1+—4r
T

and the first condition (5.45a) follows for the counting function.

— Let any 0 < s < r be given. Assume that [ = Nya(s) and k = N, 2(r) for some [,k € N*
(certainly, k > I). Then, using the properties of the set {4}, }r>0, one has

1
(k-1 < ,MZ‘_LQ <+r I+ 5)7‘[ > /12‘2 > /s,

which yields

3 1 3 1
k-1<-+—=(Vr—-+5) < - +—=+r-s,

2 2
and that the second condition (5.45b) on the counting function is true.

Since the three conditions (5.43), (5.44) and (5.45) are now satisfied, by using [Boy23, Theorem
V.4.16], we can ensure the existence of a bi-orthogonal family (pj)ieae € L2(0,T) to (e_’l(T_')),lAa
satisfying the sharp estimate as mentioned in Lemma 5.3.3.

5.3.5 Existence of a boundary null-control

Now, we are in position to solve the set of moments problem (5.40) to find a control for the system
(5.4).

Proof of Theorem 5.1.2. For any a > 0 and initial data (yo,z9) € Z, we consider

gt)= > q), Ve[0T, (5.468)
AEAX
—-AT

) e
with (];L(t):B*(p/1

((yo. zo),<l>,1)zp,1(t), Vit € [0,T], VAeA”* (5.46Db)

where p, are given by Lemma 5.3.3. Observe that, the above choice of function g formally solves the
set of moments problem (5.40), thanks to the property (5.41) verified by p, for each A € A“.

Now, recall that 8*®, =1 for all 1 € A* (see Proposition 5.3.2). Also, from the expressions of the
eigenfunctions given by (5.27)—(5.29)—(5.30), we have ||®,]|z < C for any A € A*. Using these and the
L?(0, T)-estimates of bi-orthogonal family (py)icae given by (5.42), we obtain A € A%, that

T T
761

MOV (y,, e

T € c _ c? c _T
ligall 201y < Ce*eTe? z0)|lz < CeTe TN (yo, 20) |1z < CeTe™ 4| (yo, z0) ||z (5.47)

where we have used the Young’s inequality

T. C?
cVa < Z)H-T’ VA € A%.
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Using (5.47) we have

c T M
llallz20) < Z lgallzz o) < CeT [[(yo, z0)llz Z e < MeT ||(yo, 20) |z,
AEA* AEAX

thanks to the fact that A% is an increasing sequence of order k? (see (5.31)). Moreover, it is clear that
the constant M > 0 does not depend on T or (yo, 2g).
The proof is complete. ]

5.4 Local null-controllability of the nonlinear system

This section is devoted to prove the local null-controllability result for the nonlinear system (5.1), i.e.,
Theorem 5.1.1. The proof will be based on the so-called source term method developed in [LTT13]
followed by a Banach fixed point argument and to employ this we shall extensively use the control
cost MeT I(yo, z0) ||, for the linear system, given by Theorem 5.1.2.

5.4.1 The source term method

Let us discuss the source term method for our problem. We first consider the following system:

Yt = Yxx = &, in (0,T) x (0, 1),

Zt = Zxx =1, in (0,T) x (0,1),

yx(1,0) = q(t), zx(t,0) =0, for t € (0,T), (5.48)
Y (£, 1) = z,(8, 1), for t € (0,7),

y(,1) +z(t, 1) + ay,(t,1) =0, for t € (0, T),

y(0,%) = go(x), 2(0,x) =zo(x), in (0,1).

Then, our goal is to establish the null-controllability of the above system for any given parameter « > 0,
initial data (yo,z9) € Z and source terms (& 1) which belong to some certain weighted L?(0, T; Z) space.
Let us discuss it at length in the next couple of subsections.

5.4.1.1 Construction of weight functions and weighted spaces

Assume the constants f > 0, y > 1 in such a way that

YZ

2-y

l<y<V2, and f> (5.49)

5
We now define the weight functions

(1) =TT
po(t) =e (y=-1)(T-1) |

(1ep)y2M Vt € [T (1 - —2) s T}, (550)
P.S(t) =e r-DT-0),

and extended them in a constant way in [O,T (1 - y—lg)} such that they are continuous and non-

increasing in [0, T]. Note that po(T) = ps(T) = 0 and further, we compute that

2 2 014 2_
O Se welr(1-4).a]
ps(t) r?

Due to the choices of y, 8 in (5.49), we have M(y?+8(y?-2)) < 0, (y—1) > 0 and therefore we conclude
that

Py (t)
25D <1, Vtel0,T]. (5.51)
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Let us now define the following weighted spaces:

S = {g e L%(0,T;L%(0,1)) | pi e L%(0, T; L*(0, 1))} (5.52)
S
= {(y, z) € L*(0,T;2) | (i, i) € L*(0,T; Z)} (5.53)
PO PO
Q= {q € 12(0,T) | pi e 12(0, T)}, (5.54)
0

where the functions pg and pg are defined in (5.50). The inner product on the spaces S,Y and Q are
respectively given by

(8= [ ()<§(>§<>>L2(0Ddt, veges
7 ,

T
(4,2, (3.2) y ¢=/0

5— ((y(2), 2(1)), (§(1), 2(2)) 7 dt, V(y,2).(4.2) €Y,
py(t)

N LS| N 5
@ Dq = /0 a0 VaicQ

Accordingly, the associated norms on the spaces S, Y and Q are respectively

9 T

113 = /0 s<t> IEOay dt, VEES, (5.55)
T

I = /0 2()||<y(t> ZO)Zdt Y (y2) e Y, (5.56)
5 T

lal?, = /0 2()|q<t>| i, VqeQ. (5.57)

5.4.1.2 Null-controllability of the linearized system with source terms

Our next result addresses the null-controllability of the inhomogeneous linear system (5.48) with given
source terms &, n from the space S and by definition of S, it is clear that the function & or  vanishes
exponentially near t = T. With the above choice of source functions in hand, and then by utilizing the
explicit control cost Me™ for the homogeneous control system (see Section 5.3.5), we shall eventually
show that there exists a solution-control pair ((y,z), q) in the space Y X Q to the system (5.48). Then,
by definitions of the space Y and weight function py (see (5.53) and (5.50) resp.), one can conclude
that the solution (y,z) has to be “zero” at t = T. Precisely we prove the following proposition.

Proposition 5.4.1. Let any parameter a > 0 be given. Then, for any given initial state (yo,z9) € Z
and source terms (& 1) € L2(0,T; Z), there exists a linear map T : Z x L?(0,T; Z) — Y x Q such that

T ((yo, z0), (&,1)) := ((y,2),q) solves the system (5.48).
In addition, we have the following estimate

z z o
I(2.£) H( Z) 2] e o, (£ 2] ,
Po Po/llco([or);2) Po’ Po 2o+ PollL2(01) PSS PS/liL2(01;2)
(5.58)
for some constant C > 0 that is independent in T.
Proof. For the given time T > 0, let us define a sequence (Ty)r>o given by
T
T, :=T—-—, Vk=>0, (5.59)
Y
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where y is introduced in (5.49), and it can be easily seen that

(0,T) = Ugz0(Ti, Ties1)-

We also note that with this choice of Ty, one has

M
po(Tira) = T Tt ps(Ti), Wk 2 0, (5.60)

where py and ps have been defined by (5.50) .

Now, our goal is to decompose (5.48) in (Ti, Tr+1) for each k > 0, into two parts: one is only with
forcing terms and zero initial data, and the other one is a homogeneous control system along with the
initial data.

e Inhomogeneous system without control input.
Let us define a sequence (ag)r>o such that

aop = (Yo, 20) € Z and ap4q = (Q(Tkjrl),i(Tk_Jrl)), Vk > 0, (5.61)

where (g, 2) is the unique weak solution to the system

Jr — Yxx = &, in (Tk, Tes1) X (0, 1),
Et - Exx = ’75 ln (Tk: Tk+1) X (05 1)’
Ux(8,0) =0, Z.(£,0) =0, for t € (T, Trs1), (5.62)
U (t, 1) = 2, (1, 1), for t € (Ti, Tes1), '
G(L1) +2(t 1) +ade(t,1) =0, for t € (T Tenn),
§(TH ) =0, #T*-) =0, in (0,1),
for all k > 0. Thanks to the estimate (5.18) in Proposition 5.2.3, we get
1@ Dl co (1 107:2) 1@ D2 (1 7300y 500 < CeT |I(&, D212y, Yk = 0. (5.63)
In particular, by means of (5.61), we have
llaksllz < Ce“TI(E, M2t 10152, Yk 2 0. (5.64)

e Control system without the source terms. We now consider the following homogeneous control
system:

Yt — Yxx = 0, in (Tg, Tre1) X (0, 1),

2y = Zxx =0, in (T, Trs1) X (0, 1),

(6,0) = Ge(D), 2(60) =0, for £ € (T Tien), 565
Ux(t,1) = 2x(1, 1), for t € (Tg, Tk+1),

g, 1) +2(t, 1) + agx(t,1) =0, for t € (Tg, Trs1),

(9(TE ). 2(TE ) = ax, in (0,1),

for all k > 0. Using Theorem 5.1.2, we have the existence of a control gx € L?(Ti, Tyy1) with the
estimate o
NGwllr2 (1 1) < MeTin ™k Jlagl| 2, (5.66)

such that the associated solution (7, 2) to (5.65) satisfies
(9(T 1 %), 2(T, 1, x)) = (0,0), V¥x € (0,1) and Vk > 0.
Combining (5.66) with (5.64), we have

M M
~ Thoio—-T1.1 CT T -1,
”qk+1“L2(Tk+1,Tk+2) < Me k2Tt lager ]|z < Ce™ e ez T ||(€, '7)||L2(Tk,Tk+1;Z) , Vk=0.

202



5.4. Local null-controllability of the nonlinear system

But pg is a non-increasing function in [Ti, Tr41]; in what follows we have

ko) < T ps () (£, 2L k20
’ PS PS/IL2 (T Tis2)
Then, using the relation (5.60) between the weight functions py and ps, we get
- CT £
||qk+1”L2(Tk+1,Tk+2) < Ce pO(Tk+2) _—, s Vk > 0 (567)
PS PSJIL2 Tk Tsa32)

Again, since pg is non-increasing, we deduce

Gr+1 n crll( £ 7

— < l1Grs1l 2 < Ce (—, —) , Vk>0. (5.68)

20 itz 20(Tera) AL L2 (Tt 1, Tha2) s’ ps iz, 2)

We now define the control function g as follows:

q:= ) GkXrtiny 0 (0.T). (5.69)
k>0

Recall that we have already established the L?-estimates of 9% for all k > 1 by (5.68). It only remains
PO
to find the L%estimate of 22. But from the bound (5.66), we get
PO

M M
ldoll 20,y < Me™ llaoll = Me™ [[(yo,20)

and then using the fact that pg is non-increasing, one has

~

L < ldoll < e li(wo,z0)ll = Me 5T [[(yo. 20) (5.70)
— S T llqoll = e’ 05 20 = Me 0, 20 ) .
pollziomy ~ Tpo(TI 0" = po(y)© IOz 902071z
. . . T _ M
where in the last inclusion, we have used the fact that T, =T — — and po(T1) = po(T2) =e ¥~-DT. Now,
14
the quantity W being positive, we eventually obtain (by combining (5.68) and (5.70))
c
4o o+ (£ L , (5.71)
Polizz(o,1) pPs Ps/liL2(0,1;2)
where the constant C > 0 is independent in T > 0.
e Control system with the source terms. We now define
(y.2) = (3,2) + (1, 2). (5.72)
Then (y, z) satisfies the following system
Yt — Yxx = §: in (Tk: Tk+1) X (0’ 1)’
Zl‘ - Zxx = ’7: ln (Tk’ Tk’+1) X (Oa 1);
Yx(£,0) = G (1), zx(,0) =0,  for t € (Tx, Txs1), (5.73)
yx (£, 1) = z,(t, 1), for t € (Tx, Ties1)s
y(t, 1) +2(61) + aye(6,1) =0, for t € (T Ten),
(y(Tk: ')9 Z(T/W )) = dg, in (0’ ]-)a

for all k > 0. Note that, the solution (y, z) satisfies
(y(To), 2(To)) = ao = (Yo, 20).
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and, for all k > 0 we have
(Y(Tean) 2(Tpn)) = (T 2(Ti) + (9T ), 2(Ty)) = ke,
(y( 1) z(T, +1)) (y( 1) Z(T, +1)) (y( 1) Z(Tk+1)) = Ak+1-

Therefore (y,z) is continuous at Ty for all k > 0.

Now, applying the energy estimate (5.24) for the system (5.73), and using the estimations for a1
from (5.64) and Gk from (5.66), we have

I(y, z) leo (T Tenzti2) + I (y,2) 22 (Ti1 Tesas0)

CT ~

< CeT (llakellz + 1E M2, 102y + 1kt 2 00 )
CT M

S Ce (||ak+1”Z + ||(§, ’7)||L2(Tk+l’Tk+2;Z) + MeTk+27Tk+1 ||ak+1||Z)

< ce“T (& + CeCT e Tim Tt (& ml
ste s TL2 (T Tieyos2) T € € s L2 (T Ties52)

< CeCTeTon Tt
< Ce™ " eTiev2 s ||(§”7)||L2(Tk,Tk+2§Z)’

for all k > 0.
Since pgs is non-increasing in [Ti, Tx4+2], we obtain from above,
CeCT e Tirz-Trert e T, i a
1 Do (11, T0021i2) + 1 D127, 730570 < Ce eTor2 Tt ps (Ti)
Ps’ P N2 (1 10:2)
T po(Tes2) ( s 1 ) , (5.74)
P3P iz (1 1:2)
M
for all k > 0, since po(Tis2) = eTk2 Tkt pg(Ti) (see (5.60)).
Using the fact that pg is non-increasing on [Tiy1, Tr42], we further deduce from (5.74) that
%) |7
PO POJICO([Tisr T ;) VPO POTIIL2 (T Tiesos H)
1
< 0T (Il(y, Dl o1 T2 112 + 1Y Z)||L2<Tk+1,Tk+2;ﬂ))
< CeCT (i,i) , (5.75)
PS PSJNL2 (T T3 2)

for all k > 0.
Now, it remains to find the estimates of (y,z) in [0,T1]. Again, using the energy estimate (5.24)

_ _YPM
we find that (also having in mind po(T}) = e <Yy*1>T)
(v 2 coro.1y 132 + 1@ D 2013590
< CeT (llaoll + ldollz2 o) + 1E D202
cT M
< CeT (Jlaoll, + Me ™t flaoll + 11CE M2 01,2

cr Mra+p) M
< CeTe T po(T3) (110 20l + Me T laoll + 1E M2, ) -

But, pg and ps are non-increasing functions in [0, T1] and thus the above estimate follows to:

z c
I(2.2] o(£.2) < e {20l + | L) (5.76)
po’ po/llcooriizy - NP0 ol oy ps Ps/liLzom;2)
Combining the estimates (5.75) and (5.76), we have
z c
H( ) ; (i,—) < CeT { (w0 20)l, + (i,i) . ()
pO Po/llco(ro,11:2) PO PO L2 (0,T;H) PSs Ps/lLz(0,1;2)
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5.4. Local null-controllability of the nonlinear system

for some constant C > 0 independent in T.

The above bound (5.77) along with (5.71), we achieve the required estimate (5.58) of the proposi-
tion. This completes the proof. O

5.4.2 Application of Banach fixed point theorem
This section is devoted to prove the local null-controllability result of our nonlinear system (5.1), that
is Theorem 5.1.1.

Let any parameter & > 0 be given as earlier and assume any initial data (yg,z¢) € Z such that
II(yo, z0)|l , < &, where § > 0 will be specified later. We now define the set

G5 ={(&m €SS : (En)llses <0},

where the space S is defined in (5.52).

By Proposition 5.4.1, we can say that for any given source term (¢, ) € SXS, there exists a control
q € L?(0,T) such that the corresponding trajectory (y,z) of the system (5.48) satisfies the estimate
(5.58). In what follows, we define the map & : s — L?(0,T; Z) by

1 1
flwzfy v )y 2)
F(En) = ( R (5.78)
9.z fy v [y 2)
for all (& 1) € Gs, where we recall that the nonlinear functions f and g are givem by
1 1
f(y. Z’/() y,fo z) =-yz+ ay? + bz% + r1(t)y, (5.79)
9(y. z, /01 Y, /01 z) =yz+cy? +dz? +ra(t)z, ‘
where a, b, c,d are L*((0,T) x (0,1)) functions and
1
r(t) = / (¥11(0y (2 x) + Yo (0)2(8, ) )
0 (5.80)

1
ra(®) = [ (1aly(e. ) + a0t d

with a1, a2 € R and 1,0 ; € L*(0,1), j=1,2.

Our goal is to prove that there exists some § > 0 such that the map § has a unique fixed point in
the set S5 and to do so, we shall apply the Banach fixed point theorem. We begin with the following
lemma.

Lemma 5.4.1 (Stability). There exists some § > 0 such that S5 ¢ S X S is stable under the map §.

Proof. We have for (¢, 1) € Gs,

1 1 2
IS E DI = (f v ’/01 y’f(’l ))
g(y’ Z’/(.) y’/(.] Z) SXS

< H—yz + ay2 +b2% + rl(l‘)ynf9 + Hyz + cy2 +dz% + rg(t)sz )

Using the definition of norm in S (see (5.55)), we deduce from above that,

T
I§(E mI%,s <C /O (Il Oz o) + 2Ol 0y * 2Ol 1)

p5(®)
IOy, + I (020 ) ) d, (5.81)
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where C = C(||al|t=, ||l s llcllz, ||d]|L=) > 0. We now estimate the terms appearing in the r.h.s. of
(5.81). Note that,

1

1
IO s, = [ w0z dx <2 [ (el + 0] (5:52)

and

1 1
Ol = [ weitdn 20, = [ et (5.89)

We also have for j =1,2

1 1 2
2 2
s 0Oy = ool [ aen) [ s we0) + s 1200, )]
1 1
<[ e a0 [ ok i (5.84)
0 0
where C := C(lan | ozl Y]l [Wrall s W21l s 922 ) > 0.
Combining the above estimates (5.82), (5.83) and (5.84), we obtain from (5.81),
B <C [ L ( Ji (w1t + o) dx) dt
5x8 o px®) \Jo
T pl 4t T T 1 pd(; 4
:c/ / pg() y(t,) dxdt+C/ / pg() UL (5.85)
o Jo pg(t) | po(t) o Jo pg(t) [ po(t)
Thanks to the fact (5.51), we get from (5.85) that
2 "y | y(t,0)[* HECK et
IFEMsxs <C x|dt+C x| dt
o lpo(t) L*(0,1) Po(t) o 1lpo(t) L=(0,1) po(t)
<o /T yo |* @ | 20N . EION &
—Jo PO I 0.1y 1PO D IL20.1)  11PO() (g2 0,1y 110 (E) [lr2(0,1)
2 2
S i I ol I
PO PO Jlico(ro,T1:2) INPO PO JIL2(0,1;H)
Using the estimate (5.58) in above, we finally arrive to the following:
y z y z
1F(EmMllsxs <€ ( ) + (—,—)
xS po’ po/lico(rory:z) PO PO /L2 (0,1;H)
< CeTF (w0, 20) 12 + 1) sxs)?
< CeCTHT 52, (5.86)

due to our choices of initial data ||(yo,z0)|lz < § and source terms (&, 1) € Sg.

Now, one can choose § > 0 small enough in (5.86) so that we have [|F(&n)llgs < 6 for all
(&, 1) € Ss. This concludes our lemma. O

The following lemma shows that & : S5 — S5 is a contraction map.

Lemma 5.4.2 (Contraction). There exists a § > 0 such that the map § defined by (5.78) is a con-
traction map on the closed ball Sgs.
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5.4. Local null-controllability of the nonlinear system

Proof. Consider any two pairs (&,n;) € Ss for i = 1,2. Then, by means of Proposition 5.4.1, there
exist control functions g; € Q for the system (5.48) with solutions (y;, z;) € Y associated to (&, 1;) € S5
fori=1,2.

Accordingly, we use the notations f;, g; for the nonlinear functions (see (5.79)—(5.80)) where

{ﬁ (i 2 fol Yi, /01 z)  =-yizi+ay; + bz} +ri1(ys,
9i(ys zi, /01 Yi» /01 z) =yizi+cyl +dzl i)z,
with .

a0 = an [ (i ue0) + ¥ (92,0

1
()= ax [ (Ialouen) + ()20 d,

for i = 1,2. Then, we compute

IF(ELm) - §(En2) s

2
B (—y121 + ay% + bz% + rl,l(t)yl) ~ (—y222 + ay% + bzg + rg,l(t)yg)

2 2 2 2
Y121 + cyy +dzy +ria(t)z; Yozo + cys +dzs +roa(t)z2

SxS

2
B (—(ylzl — y222) +a(y; — y3) +b(z} — 23) +ra(t)yr - r2,1(t)y2)

Y121 — Yozo + C(y% - y%) + d(Z% - Z%) +r12(t)z1 — ro2(t)z2 SxS

< C/T : (||y1(t)21(t)—yz(t)22(t)||2z +Hy%(t)—y§(t)”22
0 p%(t) L2(0.1) 12(0,1)
22 () = B2 (00, * 11 (Oy1(8) = 121 (DD g1
#2218 = raa (V22D 12g.) |- (5.87)
To this end, we find
ly1(£)z1 () = yo(Dz2() 12 g1 (5.88)
<2 (Il () (21 (8) = 22 (DI ) + w1 (D) = 222D )

< Cllyr (Do 121 (1) = 22O 01, + Cllz2 D12 01y I91(8) = 12D o
< Cllyi D12 o1, 12108 = 22220 1) + Cllza 120 0 1) 191D = 92Dy, - (5:89)
(0,1) (0,1) (0,1) (0,1)

A straightforward computation also gives
938 = B30y < (11O ) + IO o)) 11D = 92Dl ), (5.90)
and
1220 = Oy < (11O o) + 1221 1)) 1218 = 22 (D11 g1 - (5.91)
Next we look at the remaining terms in (5.87), we compute
1 (Dy1 (1) = rax (D2 (D2 01

1 1
<2 / Iraa (D@1 (8.0 = y2(1,20) [ de + 2 / (2 (®) = raa ()gas, 0
0 0

1 2 a1
<2 /0 (P (X1 (8, 3) + P (x) 21 (1,3) ) /O [y (£.3) — ya (£, dx

1 1
+2 / lya (£, )1 dx |en / W11 (1 (4, %) + o ()21 (1)) dx
0 0
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2

1
—a /0 (Y10 (X)ya (b, X) + P ()2 (8, x))dx
1
< Cllgr () - g2 (D2 /0 (g (£.)2 + 218, %)) dx

+Claalg,) [ (110 0 630 = vt ) s O ) = 0,0
< (g1 ) + 922 ) + 12112 g )
X (llg1(5) = 2B g ) + 121(5) = 22D g ) (5.92)
We similarly obtain
[r12021(6) = 22022001, < C (191D 1) + 11O ) + 22D g 1))
X (910 = (D22 ) + 1210 = 22D ) - (5:93)
Combining the estimates (5.88), (5.90), (5.91), (5.92) and (5.93), we obtain from (5.87), that
1§ m) - F (&)l s
<c ' glm (12 (2, 22 () + 1120 22(0) 3] % [ 1) = y20). 21.0) — 22 (0) |

<c po<t> H(yl(t) Z1<t>) H(y2(t) zw)) i XH(W(”‘W(” Zl(t)—22(t)) C

B o p%(@®) [I\po(®) po(t) po(t)” po(t) po(t) 7 po(t) z

o N [
Po PO Po pPo/llco(o,T]:2) Po Po/llL2(0,1;#) Po PO/ llL2(0,1;#)

2
where we have used the fact that f)gx; <1 (see (5.51)).

But, due to the linearity of the solution map (see Proposition 5.4.1), we have the following estimate

(by means of (5.58))
el e RS o B
po, Lo po’ Po Co([0,T];2) pO’ Po PO’ PO

Using the above bound and the estimate (5.58) in (5.94), we get

c
< Ce“THT ||(E, 1) — (£2.12) |l s -
L2(0,T;H)

I1F (&1 m1) — F(&2.m2) l sxs
< CeCT*F || (£v, 1) — (&, n2)llsxs X [0, 20) 17 + 1(EL, 1) | sxcs + I1(E2, 12) 1l s
< CeCTHE 8 ||(E1,m1) — (6o n2)llsxs

< % 1) = (212l s

1
for chosen 0 < 6 < 5—=rc77-

This proves the contraction property of the map § in the closed ball S5 provided we start with
initial data ||(yo,20)||z < & and source terms in Sg. O

We now conclude the proof of the main result of our work.

Proof of Theorem 5.1.1. Let any boundary parameter ¢ > 0 and time T > 0 be given. According to
Lemma 5.4.1 and Lemma 5.4.2, there exists some § > 0 small enough such that if we choose the initial
data (yo,z0) € Z with ||(yo,z0)|lz < , then by using Banach fixed point theorem we can ensure that
the map § : G5 — S5 (defined by (5.78)) has a unique fixed point (59, ) € Gs.
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At this point, by means of Proposition 5.4.1, there exists a solution-control pair ((y,2),q) € ¥ xQ
to the system (5.48) associated with the above source term (¢, 7) € Ss, which in addition satisfy the
estimate (5.58). Then, by construction of the space Y (see (5.53)) and the property lir%l po(t) =0

t—T-

force the solution (y, z) to satisfy
y(T,x) =0, z(T,x) =0, Vxe(0,1),

which is the required boundary local null-controllability result of our nonlinear system (5.1). O

5.5 Concluding remarks

In the present paper, we study the controllability property of a parabolic system where the boundary
couplings are posed in terms of the §’-type condition. The linear model of our work (see (5.4)) simply
consists of the aforementioned boundary couplings, and no internal coupling appears. It would be
interesting if one could impose internal coupling(s) as well, for instance let us consider the following
linear system,

Yr — Yxx + k12 =0, in (0,T) x (0,1),

Zr — Zxx + koy = 0, in (0,T) x (0,1),

yx(1,0) = q(t), zx(t,0) =0, for t € (0, T), (5.95)
Ux(t, 1) =z (8, 1), for t € (0,7),

y(t, 1) + z(t, 1) + ay,(t,1) =0, for t € (0, 7),

y(0,x) =yo(x), z(0,x) =zo(x), in (0,1),

with some constants (k1,k2) # (0,0). In this regard, we mention the work [BBHS21], where the
presence of a zeroth order internal coupling in a parabolic system with Kirchhoff boundary condition
leads to different controllability results depending on the position of the boundary control (i.e., on y or,
on z). To study the controllability of system (5.95), the main work will be to investigate the spectral
properties of the associated adjoint operator, which is not so obvious in the case of §-type boundary
condition. Thus, this needs further care and it is an interesting open problem in the viewpoint of
controllability of coupled parabolic systems.
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CHAPTER 6

Conclusion and Future Directions

In this chapter, we will summarize the contents of this thesis and mention some of the open questions
and future directions that can be pursued based on the work in this thesis.

We have first considered the compressible Navier-Stokes systems linearized around some constant
steady states (Qo, Vo) (with Qq, Vo > 0) for barotropic fluids and around (Qo, Vo, ¥o) (with Qo, Vo, Yo > 0)
for non-barotropic fluids. In the barotropic case, we have considered three types of boundary conditions
onto the system, namely Periodic, Dirichlet and mixed (Periodic-Dirichlet) type, and studied the null
controllability using only one boundary control acting either in density or velocity. We summarize the
results that we have obtained for the barotropic system in the following table (NC=null controllable);
see Theorems 1.1.1-1.1.5.

Barotropic Case

Boundary Controls acting in
conditions density velocity

. , 2,/bQg-V2 . , 2,/bQg-V2
oNCatT>%,—ginL2xinﬁ$eN. oNCatT>%inH1xinﬂ$eN.

Periodic
ONotNCat0<T<%,—§inL2xL'2. e Not NCatany T >0in HS xL? for 0 < s < 1.

L e NCat T>1in L2 xL?if ¢ +8c?+5 < 4x2.
Dirichlet Unknown

e Not NCat 0 <T <1inL? x L2,

. 1
eNCatT>1in L2 x L2 if ¢*+8c2+5 < 472, eNCatT>1in HZ xL? if ¢*+8¢2 +5 < 472.
Mixed-type 4

e Not NCat 0<T < 1in L2 x L2 oNotNCaLtanyT>OinI-'I;><L2 for0§s<%.

As a consequence of the above null controllability results, we obtained approximate controllability
of the barotropic system at large time T in respective spaces.

On the other hand, for non-barotropic fluids, we have only considered the periodic setup and
studied boundary null controllability properties of the linearized system using only one control acting
either in density, velocity or temperature. Using a boundary control acting only in the density part,
we have proved null controllability of the system at time T > %,—g in (L2(0,27))3 under two assumptions;

(i) the eigenvalues of A* have geometric multiplicity 1 and (ii) the coefficients Ay, ko satisfies ﬁ—g ¢Q

and

1/% - %‘ > bLM for all rationals § and some M > 0 (see Theorem 1.1.6-Part (i)). Further, in

this case, we have proved that null controllability fails when the time is small, that is 0 < T <

%,—g, in the space (L?(0,27))? (Proposition 1.1.1-Part (i)). When a boundary control acts either in

velocity or temperature, we have proved null controllability of the linearized system at time T > %,—g

in H!_(0,27) x (L?(0,27))? under the same two hypotheses mentioned above (see Theorem 1.1.6-Part

per

(ii)) and that null controllability fails in the space ngr(O, 271) x (L?(0,27))? with 0 < s < 1 at any

T > 0 (Proposition 1.1.1-Part (ii)). In addition, we have proved that the condition 1/% ¢ Q on the

coefficients is not sufficient to conclude null controllability of the linearized system (see Proposition
1.1.2).
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Finally, we have considered a coupled system consisting of two nonlinear parabolic equations with
square, product and non-local nonlinearities. In the system, a Neumann boundary control is applied
to only one state while the other satisfies homogeneous Neumann boundary condition at x = 0. On
the other hand, the states are coupled at x = 1 in terms of “equality condition of their normal
derivatives” and a combined Robin-type condition. In this setup, we have proved small-time local null
controllability of the system in the space (L?(0,1))? by applying the so called “source term method”.

In view of all the above discussions, we now make some comments and give future directions on
controllability of the systems considered/ related to this thesis, which will be addressed soon.

6.1 Linearized compressible Navier-Stokes system (barotropic
case)

6.1.1 Optimal in time

We have seen that the system (1.9) is null controllable at time T > %,—’Or and is not null controllable at
27

0<Tc< %,—g. The question of null controllability of (1.9) at the optimal time T = 7, 1s still open. We
2

mention here that, to prove null controllability of (1.9) at time T = T := 7 it is sufficient to solve
the following sets of moments problem

To h
/ eV"(TO_t)p(t)dt =Cp,
0

To
/ e (=D p(1)dt = d,
0

for all n € Z and for some sequences (cp)nez, (dn)nez, Where (vV1),cz and (V) ez are eigenvalues of

A*, given by (3.22)—(3.23) respectively. To solve these moments problem, one might adapt the ap-

proach of Martin, Rosier and Rouchon [MRR13] to find a suitable biorthogonal sequence of the family

{VZ, vbine Z}, see for instance [CM15]. Since we have explicit expressions of these eigenvalues, this

method might be useful here. However, one might need to take more regular initial states (possibly)

due to the bounds on the biorthogonal family corresponding to (e"r}ll t ) EZ; see [MRR13, Proposition
n

2.2] or [CM15, Proposition 3.2]. The same question can be asked for the systems (1.12) and (1.13).

6.1.2 Controllability under Dirichlet boundary conditions

Let T,L > 0 be given. We consider the following system

pr + Vopx + Qoux =0, in (0,T) x (0,L),

Uy — pPoUxx + Voux + bpx =0, in (0,T) x (0,L), 6.1)
p(,0) =0, u(t,0)=0, u(t,L)=q(t), forte (0,T),

p(0,%) = po(x), u(0,) = up(x), in (0,L),

where g € L2(0, T) is a boundary control. In this setup, no controllability result is known for the system
(6.1) and in fact, it is a very challenging and interesting open problem. We mention here that the
associated linearized operator has compact resolvent and so we have the existence of spectrum of the
linearized operator. However, finding explicit (or even asymptotic) expression of the eigenfunctions
of the linearized operator is a very challenging task. This difficulty arises due to the fact that the
operator % on H{lo}(O, L) do not have any non-trivial spectrum. Thus, to solve this problem, one
need to apply different methods that do not require the explicit spectrum of the associated linearized
operator.

6.1.3 The vanishing viscosity method

As mentioned earlier, controllability results for the system (6.1) at time T is unknown. To study
the controllability of (6.1), one may apply the vanishing viscosity method, introduced by Coron and
Guerrero [CGO5] in the following way.
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6.1. Linearized compressible Navier-Stokes system (barotropic case)

Let T,L > 0. For given ¢ > 0, we consider the following problem

pr — €pxx + Vopx + Qoux = 0, in (0,7) x (0, L),

U — HolUxx + Voux + bpyx = 0, in (0,T) x (0,L), (6.2)
p(,0) =0, u(t,0)=0, u(t,L)=q(t), forte (0,T),

p(0,%) = po(x), u(0,%) = u(x), in (0,L),

where g € L2(0,T) is the control input. Note that, this system is an one parameter family of parabolic
equations having first order coupling. There are several methods to deal with the controllability of this
system, but here we are interested on the explicit dependence of the observability constant/ control
cost in terms of this e. Then, by passing ¢ tends to 0, one may conclude some controllability results for
the Navier-Stokes system (6.1). We note here that the method of moments or some suitable Carleman
estimates might be helpful to find the explicit dependence of the control cost with respect to this e.

Note that, in the system (6.2), we still have the difficulty related to the (Dirichlet) boundary
conditions. To avoid this, one may consider the following system:

pr + Vopx + Qotx = 0, in (0,T) x (0,L),

Up — Holxx + Voux + bpyx =0, in (0,T) x (0,L),

p(t,0) = ¢ep(t,L), for t € (0,T), (6.3)
u(t,0) =0, u(t,L)=q(t), for t € (0, T),

p(0,5) = po(x), u(0,x) =uo(x), in (0,L),

for some ¢ > 0 small enough. In the particular case when ¢ = 1, we have already studied controllability
of this system using a boundary control acting on velocity, see Chapter 4. The same analysis can be
done by taking this small parameter ¢. The only thing one require is a uniform estimate of the control
with respect to this . Then, by passing ¢ tends to 0, one may conclude some controllability results
for the Dirichlet system (6.1).

6.1.4 Distributed controllability under Dirichlet conditions
Let T,L > 0. We consider the following problem

Pt + Vopx + Qo =0, in (0,T) x (0,L),

U — fotxx + Votx + bpx = f X, in (0,T) x (0,L), (6.4)
p(t,0) =0, u(t,0)=0, u(t,L)=0, forte (0,7),

p(0,%) = po(x), u(0,x) =up(x),  in (0,L),

where f € L%(0,T;L?(0,1)) is a distributed control acting in the velocity equation and supported on
o = (0,£) c (0,L). It is known in [AMM22] that this system is not null controllable in (L2(0,L))?
when the time is small, that is 0 < T < %,—g Moreover, it is also known in [Chol5] that this system
(6.4) is approximately controllable at large time T in the space L%(0,L) x L?(0, L). However, there is no
known null controllability results available in the literature for large time T. We give below an useful

method that might be applicable here to prove null controllability of the system (6.4) at a large time.

Step 1. We first consider the cascade system

pe + Vopx + Qoux =0, in (0,T) x (0,L),

U — plotxx + Voux = f Xws in (0,T) x (0,L), (6.5)
p(t,0) =0, u(t,0)=0, u(t,L)=0, forte (0,7),

p(0,x) = po(x), u(0,x) = up(x), in (0,L),

The method addressed in [FCdT04] might be helpful here to prove null controllability of this
system (6.5), where one can utilize the exact controllability of the transport equation together
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6. CONCLUSION AND FUTURE DIRECTIONS

with a suitable Carleman estimate for the parabolic equation to prove the required observability
inequality. We mention here that one may not able to find a basis of the associated adjoint
operator. In fact, (0, &,), for n € N, are the only eigenfunctions of the associated adjoint operator,
where £, is the eigenfunction of the (Dirichlet) operator ugdxx + Vodx. Note that, first component
of the eigenfunctions is zero because the operator d, on H{IL}(O, L) do not have any non-trivial
spectrum, as mentioned before in Section 6.1.2.

Step 2. We then consider the following system

pr + Vopx + Qouyx =0, in (0,T) x (0,L),

Ur — potxx + Votx + &= f x0, in (0,7) x (0,L), (6.6)
p(t,0) =0, u(t,0)=0, u(t,L)=0, forte (0,7T),

p(0,x) = po(x), u(0,x) =up(x), in (0, L),

for some function €. Once the null controllability of the above system (6.5) is proved, one may
apply some fixed-point method (Banach or Schauder) by defining a map & + bp, in some suitable
spaces to conclude null controllability results for the main system (6.4).

This result has an importance in the context of boundary controllability of the Dirichlet system
(6.1). More precisely, for given ¢ > 0, if we choose w = (L — ¢ L) in the system (6.4), then boundary
controllability of the system (6.1) can be achieved from distributed controllability of (6.4) by taking
¢ tends to 0. In fact, the distributed control supported in the interval (L — ¢ L) will converge to the
boundary control at x = L as ¢ — 0. This kind of technique has been applied in may works, see for
instance [CSPS20, Fab92].

6.2 Linearized compressible Navier-Stokes system (non-barotropic
case)

Like the barotropic case, one can ask the similar questions for the non-barotropic case also, which we
listed below.

6.2.1 Optimal in time

The question of proving null controllability of the system (1.17) at the optimal time T = %,—g will not
be similar to the barotropic case mentioned above (see Section 6.1.1). This is because, in this case, we
don’t have explicit expression of the eigenvalues, and therefore it will not be straightforward to apply
the idea of Martin, Rosier and Rouchon [MRR13] directly. However, one may adapt some modified
techniques to solve the corresponding moments problem to conclude the null controllability at T = %,—’g

in this case.

6.2.2 Controllability under Dirichlet boundary conditions

Let T,L > 0 be given. We consider the following system

pr + Vopx + Qoux = f xo,, in (0,T) x (0,L),

R
Uy — AUy + %px + Voux + ROx = gx0,, in (0,T) x (0,L),

0

Ry B :
0r — k0bxx + ~ Mt Vobx = hyo,, in (0,T) x (0,L), (6.7)
p(t,0) =p(t), u(t,0)=0, u(t,L)=q(t), for t € (0, T),
0(t,0) =0, 6(t,L) =r(t), for t € (0, T),
p(0,x) = po(x), u(0,x) =ug(x), (0,x) =0y(x), in (0,L),
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6.3. Nonlinear compressible Navier-Stokes system

where p,q,r € L2(0,T) are boundary controls and f,g,h € L?(0,T;L%(0,L)) are distributed controls
supported in the subsets O1, 02,03 C (0, L) respectively. In this setup, one can study similar control-
lability problems using only one control (distributed/ boundary) acting either in density, velocity or
temperature; as mentioned before in Sections 6.1.2-6.1.4. We note here that, in the case of boundary
controllability using only one control p € L?(0,T) acting on the density part, one can introduce the
mixed-type boundary conditions as mentioned in the barotropic case, that is, p(¢,0) = p(t,L) + h(t)
for t € (0,T), and by defining p(t) = p(t,L) = h(¢t) for t € (0,T), one may obtain the desired null
controllability result for the Dirichlet system (6.7).

6.3 Nonlinear compressible Navier-Stokes system

Let T,L > 0 be given. We recall the following nonlinear Navier-Stokes system for compressible
barotropic fluids

{pt + (pu)x =0, in (0,T) x (0,L), (6.8)

p(ur +uuy) +ayp’ ' px — (A+21uxx =0,  in (0,T) X (0,L).

In this case, we wish to study small-time local (or global) controllability of the compressible Navier-
Stokes equation (1.1) around a constant steady state using a distributed/ boundary control acting
either in density or velocity. There are some known results available regarding the local exact con-
trollability of the nonlinear system (1.1) around C2-trajectory using two boundary controls, see for
instance the works [EGGP12, ES18]; see also the work [EGG16] in higher dimensional case. However,
no (local) controllability results are known for the system (1.1) using one boundary control (acting
either on density or velocity).

We wish to study the local null controllability of this system at time T using only one boundary
control acting either on density or velocity. Recall that, in the periodic setup, we have proved null
controllability of the associated linearized system (using a boundary condition acting either on den-

sity or velocity), provided the coefficients satisfy a necessary and sufficient condition 2V6Q0-V§ ¢ N.
Whereas, when a boundary control acts on the velocity component through the mixed-type conditions,
we have obtained null controllability at large time provided the coefficient ¢ lies outside a countable
set N. Thus, we can ask local null controllability of the nonlinear system (6.8) when the coefficient

. VbQo - 2 . T L. . .
satisfy VDV ¢ N in the periodic setup and when ¢ belong to the critical set N in the mixed-type
boundary conditions. However, due to the complicated nonlinearities puu, and (pu)y, this problem is
very difficult to tackle and so we first want to study the problem in a simplified setup. The system is
given by

pr + Vopx + Qoux =0, in (0,T) x (0, 27),

Up — HoUxx + Voux + bpyx = Uiy, in (0,T) x (0,2n),

p(t,0) = p(t,21) + p(t), for t € (0,T), (6.9)
u(t,0) =u(t,2m) + q(t), ux(t,0) =ux(t,27), forte (0,7),

p(0,x) = po(x), u(0,x) = up(x), in (0, L),

where p,q € L?(0,T) are boundary controls. We have considered the periodic boundary conditions
to avoid any unnecessary difficulty and also because we have obtained optimal controllability results
(with respect to time, space and coefficients) for the corresponding linearized system in Chapter 3.
Using these known results of the linearized system, some fixed-point argument might be implemented
to get a local controllability result for this system when only one control is acting on the system
(that is, either p = 0 or g = 0). Further, note that, if 2VbQoVy
system is not null controllable at any time T in (L%(0,2x))? in either cases. Thus, proving some local
controllability results for the nonlinear system (6.9) under this restriction on the coefficients will be a
very interesting problem. In this context, we refer to the works [CMZ20, CC09b, Cer07], where local
controllability of the nonlinear KdV equation is obtained via power series expansion method, when the
linearized system is not controllable, see also the book [Cor(7] and the survey articles [RZ09, Cerl4].

€ N, the corresponding linearized
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Similarly, we can study the local null controllability of the above simplified nonlinear model but
with Dirichlet/ mixed-type boundary conditions when the coefficient belong to the critical set N. We
note here that, full characterization of the set N is still not known and hence the problem is more
difficult to handle. In this context, we refer to the work [Ros97] where similar characterization of the
critical set is known for the linear KdV equation.

Further, the same question can be asked for the non-barotropic case also, that is, for the nonlinear
system (1.16).

On the other hand, there is no global controllability results known for the nonlinear compressible
Navier-stokes systems (barotropic and non-barotropic). In this context, we refer to the work [F195],
where the authors proved that the viscous Burgers equation in the interval (0,L) is not globally
approximately controllable in L?(0,L) using a localized distributed control; see also the lecture note
[F196, Chapter 1, Section 6, Page 53].

6.4 Nonlinear coupled parabolic equations

6.4.1 Nonlinear system with space dependent coefficients

Let T > 0 be given. We consider the following system:

Yr — (Nnyx)x + iy + 1z = fi(y, 2), in (0,7) x (0,1),

zt = (y2zx)x + a2y + foz = fo(y, 2), in (0,7) x (0, 1),

Yx(£,0) = q(1), 2zx(t,0) =r (1), for t € (0,7), (6.10)
yx (£, 1) = z,(8, 1), for t € (0,7),

1Dyt 1) + y2(Dz(8, 1) + ay, (£, 1) =0, for t € (0,7),

y(0,x) = yo(x), 2(0,x) = zo(x), in (0,1),

where g,7 € L%(0,T) are boundary controls. Here a;, Bi,vi for i = 1,2 are functions of x and fi, fo are
nonlinear functions which are given by (5.2)—(5.3) (as mentioned in Chapter 5). In this setup, we can
study the small-time local null controllability using only one boundary control q or r by the source
term method. We note here that a suitable Carleman estimate is needed to prove null controllability
of the associated linearized system. Then, with the help of the control cost Ce%, one may prove
small-time local null controllability of the nonlinear system (6.10) using Banach fixed point. In this
context, we refer to the articles [BBHS21, BB21] (and the references therein) for a detail study of null
controllability of similar linear systems with different boundary conditions.

6.4.2 A nonlinear 3-parabolic system
Let T > 0. We consider the following system
U — ety = a(v —wo +u— pu?), in (0,T) x (0,1),
Vp — E90xx = %(yw -0 —uv), in (0,T) x (0,1), (6.11)

Wr — E3Wyx = 0(U — W), in (0,T) x (0,1).

This kind of system is called the Field-Noyes model and serves as a model for Belousov-Zhabotinsky
reactions in chemical kinetics, see for instance [Smo83, Example 4, Page 210]. The functions u,v, w
denote the chemical concentrations, & > 0 for i = 1,2,3 and «,f,y,6 > 0 are constants. For this
system also, one may apply the source term method to study the small-time local controllability for
this system (6.11) using one boundary control. This problem is very interesting in the application
point of view.

6.5 Controllability in higher dimension

All the above controllability questions can be posed for higher dimensional models also, as many in-
teresting physical fluid models appear in several space dimensions. To ease the difficulty, one can start
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with a rectangle in R? and with suitable boundary conditions so that the knowledge of the spectrum of
the corresponding linearized models helps us understand the control aspects of the linearized systems
and of the total nonlinear system.

We conclude this chapter with the comment that all of the above questions are only a few of the
open problems. The lessons and knowledge learned in this thesis can be kept in mind to progress in
these above directions in future.

“We have not succeeded in answering all our problems. The answers we have found only serve to
raise a whole set of new questions. In some ways we feel we are as confused as ever, but we believe
we are confused on a higher level and about more important things.”

- A quote mentioned in the book [Ok03].
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APPENDIX A

Proof of the Well-Posedness Results

In this chapter, we prove the well-posedness results for the linearized compressible Navier-Stokes
system (both barotropic and non-barotropic). We first write the related results for the barotropic case
to simplify the presentation.

A.0.1 Existence of semigroup: proof of Lemma 4.2.1

The proof is divided into several parts. Recall the operator (A, D(A)) given by (4.7)—(4.8) and denote
7 =1%(0,1) x L?(0,1) over the field C.

Part 1. The operator A is dissipative. We check that, all U = (p,u) € D(A)
—px — buy P
—bpx + Upx — Uy Nu .

1 1 1 1 1
=Re (—/ ﬁpxdx—b/ ,Euxdx—b/ pxﬁdx+/ ﬁuxxdx—/ ﬁuxdx)
0 0 0 0 0
d 1

Re (AU, U); =Re <

0

Part 2. The operator A is mazimal. This is equivalent to the following. For any A > 0 and any

€ D(A) such that

f)eZwecanﬁnda P
g u

ar-a|”
u

- (f ) (A1)
Y

that is

Ap + px + buy = f,
A+ bpx —Uxx +Ux = ¢.

Let € > 0. Instead of solving the above problem, we will solve the following regularized problem

Ap + px +buy — €pyx = f,

(A.2)
A4 bpy + Uy — Uxx = ¢,

with the following boundary conditions

p(0) =p(1), px(0) = px(1), u(0)=0, u(l)=0.

We now proceed through the following steps.

219



A. PROOF OF THE WELL-POSEDNESS RESULTS

Step 1. We consider the space V, given by
V={(pu) € H(0,1) x H(0,1) : p(0) = p(1), u(0)=0, u(l)=0}.

Using Lax-Milgram theorem, we first prove that the system (A.2) has a unique solution in V. Define
the operator B: VXV — C by

p\ (o 1 1 1 1
B , = e/ DPxOxdx + b/ U, odx +/ PxOdx + )L/ podx
ul \o 0 0 0 0
1 1 1 1
+ / Us Oxedx + / U, odx +b / Px0dx + A / uodx,
0 0 0 0

o
for all (p) ( € V. Then, one can show that B is continuous and coercive. Thus, by Lax-Milgram
ul \v

theorem, for every e > 0, there exists a unique solution (p€, u€) € V such that

pe\ (o o o
u v v v
where F : V — C is the linear functional given by

F((:)) :=/01fodx+/olgudx.

Step 2. Now, observe that

pe pe r 1 1 1 5 1 1 o

ELEI) < L e [ omed [ eyt [ (o),
1 1l 1 P 1l Ll

6/0 |p§|2+§/0 I/f|2+/0 |u,i|2+§/0 |u6|2s§/0 |f|2+§/0 112

This shows that (u€)e>o is bounded in H'(0, 1), (p)e=0 is bounded in L2(0, 1) and (vepS)eso is bounded
in L2(0,1). Since the spaces H'(0,1) and L?(0,1) are reflexive, there exist subsequences, still denoted
by (4)es0, (p€)es0, and functions p € L?(0,1) and u € H'(0, 1), such that

Re|B

which yields

u¢ — uin H'(0,1), and p€ — p in L?(0,1).

Furthermore, we have

1 1
'/0 |6p§|2 = 6-/0 |\/Ep€|2 — 0, as e = 0.

pe\ (o o
Now, since B[ |, =F , for all
u v v
1 1 1 1 1
e/ p;6x+b/ u;6+/ p;6+/1/ p66:/ fo. (A.3)
0 0 0 0 0

eV, we get

1 1 1 1 1
/ usoy + / uso + b/ P50+ /1/ u‘o = / go. (A.4)
0 0 0 0 0

0

o o
) € V, we may take (0) € V, so that we obtain

Similarly, by taking
v
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Integrating by parts, we get from equation (A.3) that,

1 1 1 1 1
e/ P50y + b/ uso — pEoy + /1/ po = / fo.
0 0 0 0 0

Then, passing to the limit € — 0, we obtain

1 1 1 1
b/ uxc_r—/ p5x+/1/ pc‘r:/ fa,
0 0 0 0
and the above relation is true Yo € C;°(0,1). As a consequence,
bu +px+Ap = f, (A.5)

in the sense of distribution and therefore p, = f — bu, — Ap € L%(0,1); in other words, p € H'(0,1).
Step 3. We now show u(0) = u(1) = 0. Since the inclusion map i : H'(0,1) — C°([0,1]) is compact
and u€ — u in H'(0,1), we obtain
u¢ - u in C°([0,1]).

Thus, (u€(0),uc(1)) — (u(0),u(1)). Since u€(0) = uc(1) =0 for all € > 0, we have
u(0) =u(l) =0.
Similarly from the identity (A.4), one can deduce that
—Uyx + Uy +bpx + Au =g, (A.6)

in the sense of distribution and therefore uy, € L%(0,1), that is u € H>(0,1).
We now show p(0) = p(1). Recall that, buy, + px + Ap = f and therefore

1 1 1 1
b/ uxc_r+/ px6+)[/ pc‘rz/ fo.
0 0 0 0
Integrating by parts, we get
1 1 1 1
b/ uxo—/ PGy + pal} +)L/ PG :/ fa. (A7)
0 0 0 0

1 1 1 1 1
6/ p;5x+b/ ufcc_f—/ pe5x+/1/ pec_r:/ fa. (A.8)
0 0 0 0 0
1 1 1 1
b/ uxo—/ pox+)t/ p0'=/ fo. (A.9)
0 0 0 0

Comparing (A.7) and (A.9), one has p(0)5(0) = p(1)a(1). But ¢(0) = o(1), and thus

p(0) = p(1).

From (A.3), we deduce

Taking € — 0, we get

So, we get € D(A). Hence, the operator A is maximal.

A.0.2 Solution by transposition: proof of Theorem 4.2.2

In this section, we are going to proof the existence of solution to our control problem (4.5), more
precisely Theorem 4.2.2. We omit the proof for Theorem 4.2.1, when a control acts on the velocity
part.
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Step 1. We first consider system (4.5) with zero initial data and nonhomogeneous boundary condi-
tions, that is,

pr+ px+ by =0 in (0,T) x (0, 1),
U — Uxx T Ux +bpx =0 in (0,T) % (0, 1),
p(t,0) =p(t, 1) +p(t) forte (0,7), (A.10)

u(t,0) =0, u(t,1) =0 fort e (0,7T),
p(0,x) =u(0,x) =0 for x € (0,1),

with p € L2(0,T).
We now prove the existence of solution to the new system (A.10).

Theorem A.0.1. For a given p € L?(0,T), the system (A.10) has a unique solution (p,i) belonging
to the space L2(0,T;L?(0,1)) x L2(0,T; L?(0,1)) in the sense of transposition. Moreover, the operator:

p e (pu),
is linear and continuous from L*(0,T) into L?(0,T;L?(0,1)) x L?(0,T; L?(0,1)).
Proof. Eristence: Let us define a map Aq : L2(0,T; L?(0,1)) x L?(0, T; L?>(0,1)) — L?(0,T),
A(fog) = ot 1), (A11)

where (o,0) is the unique solution to the adjoint system (4.14) with given source term (f,g). The map
A7 is well-defined because of the hidden regularity as mentioned in Appendix A.1, Corollary A.1.1.

Now, thanks to Proposition 4.2.1, the map

(f.9) = (o,0)

is linear and continuous from L?(0, T; L?(0,1)) x L2(0, T; L?(0,1)) to L?(0, T; L?(0,1)) x L%(0, T; Hé (0,1)),
which implies that the map A; given by (A.11) is linear and continuous (Corollary A.1.1).

So, we can define the adjoint to A; as follows
A} 2 L2(0,T) — L*(0,T; L*(0, 1)) x L*(0,T; L*(0, 1)), (A.12)

which is also linear and continuous.

Let us denote Aj(p) = (p,u). Then, for (p,u), we have

T p1 T p1
‘/O/Op(t,x)f(t,x)dxdt+/0 '/0 u(t, x)g(t, x)dxdt

T
= (M. (f.9)) = (0. A1 (f9)) = /0 p(o(t, 1)d,

for every (f,g) in L?(0,T;L?(0,1)) x L?(0,T;L?(0,1)). Hence for any p € L?(0,T), (p, &) is the solution
to the system (A.10) in the sense of transposition and

(o W2 (r2yxezr2y = IAT (P2 2yxe2 2y < IATI Iz o,1)- (A.13)

Uniqueness: If p =0 on (0,T), we have

T pl T pl
'/0‘/0p(t,x)f(t,x)dxdt+'/0 /0 u(t,x)g(t,x)dxdt = 0,

for all (f,g) € L2(0,T;L%(0,1)) x L?(0, T; L?(0,1)), which gives (p,u) = (0,0) and therefore the solution
to the system (A.10) is unique. O
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Step 2. We now consider the system (4.5) with non-zero initial data and homogeneous boundary
conditions and check the existence, uniqueness of solution. The system reads as

pr+ px+bu, =0 in (0,T) x (0,1),

Up — Upx + Uy +bpy =0 in (0,T) x (0,1),

p(t,0) = p(t, 1) for t € (0,T), (A.14)
u(t,0) =0, u(t,1)=0 for t € (0,T),

p(0,x) = po(x), u(0,x) =up(x) in (0,1),

with (po,up) € L?(0,1) x L2(0,1).
Theorem A.0.2. For any (po,ug) € L?(0,1) x L2(0,1), the system (A.14) has a unique solution (p, i)

belonging to the space L*(0,T;L%(0,1)) x L2(0,T;L?(0,1)) in the sense of transposition. Moreover, the
operator:

(pos uo) = (p, ),
is linear and continuous from L?(0,1) x L2(0,1) into L?(0,T;L%(0,1)) x L%(0,T; L%(0,1)).

Proof. Eristence: Let us define a map Ay : L2(0,T; L?(0,1)) x L?(0, T; L?(0,1)) — L?(0,1) x L?(0,1),

Aa(f.9) = (a(0,-),0(0,-)), (A.15)

where (o,0) is the unique solution to the adjoint system (4.14) with given source term (f,g).

Now, thanks to Proposition 4.2.1, the map

(f.9) = (0,0)
is linear and continuous from L2(0,T;L?(0,1)) x L?(0,T;L?(0,1)) to the space C([0,T];L?(0,1)) x

[C([0,T];L?(0,1)) N L2(O,T;H3 (0,1))], which implies that the map Ay given by (A.15) is linear and
continuous.

So, we can define the adjoint to Ay as follows
A} L%(0,1) x L*(0,1) — L?(0,T; L*(0, 1)) x L*(0, T; L*(0, 1)), (A.16)

which is also linear and continuous.

Let us denote A% (po,ug) = (p, ). Then, for (p, 1), we have

/ / p(t,x)f(t, x)dxdt+/ / u(t, x)g(t,x)dxdt

(A5 (po, uo), (f.9)) = {(po, o), A2(f.9)) = {(po, uo), (a(0,-),2(0,-))),

for every (f,g) in L2(0,T;L?(0,1)) x L?(0, T; L?(0,1)). Hence for any (po, uo) € L?(0,1) x L%(0,1), (p, i)
is the solution to the system (A.10) and

1o W) Nl 2 r2yxr2 22y = 1A5(pos uo)lr2(12)xr2 12y < IASI 1(pos uo) |2 (0,1)xL2(0,1)- (A.17)
Uniqueness: Let the system (A.14) has two solutions (p1,u;) and (p2, u2). Introduce

(p.u) = (p1,u1) — (p2,uz).

Then one can show that the only possibility is (p, u) = (0,0), using the initial and boundary conditions:
p(0,x) =u(0,x) =0 for all x € (0,1) and p(¢,0) = p(t,1), u(£,0) =u(t,1) =0 for all t € (0, T). O
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Proof of Theorem 4.2.2. We now recall the system (4.5) with given boundary data p € L2(0,T) and
initial data (po,ug) € L2(0,1) x L?(0,1). Then, thanks to Theorem A.0.1 & A.0.2,

(p,u) = (p,u) + (p,w),

is the unique solution to (4.5).

It remains to prove the continuity estimate of the solution (p,u). Let H : L?(0,1) x L?(0,1) x
L2(0,T) — L2(0,T;L%(0,1) x L?(0,1)) be defined by

H(po, uo, p) = (p, u). (A.18)

Then H is linear. Furthermore, using (A.13) and (A.17), we get

IH (po, uo, Pl 1200201y %12 (0.7:02(0,1)) = (2 W) + (B, W)l 120 7.02(0.1))xL2(0.7:L2(0,1))
< IA5f 1PNz o) + 1A%

< € (Ipllzzo.r) * leollz o) + luollzz o) ) -

Il Cpos uo) Il 22 (0,1)x22(0,1)

Finally, the required regularity result (4.16)—(4.17) can be obtained by applying the usual regularity of
parabolic equation (with homogeneous boundary data) and then using that, the regularity of transport
part follows immediately.

The proof is complete. ]

A.1 A hidden regularity result

Consider the following system

pr+ px+bu, =0 in (0,T) x (0,1),

Up — Upx + Uy +bpy =0 in (0,T) x (0,1),

p(t,0) = p(t, 1) + p(t) for t € (0,T), (A.19)
u(t,0) =0, u(t,1) =0 for t € (0,7),

p(0,%) = pox), u(0,x) = up(x) in (0,1),

where (po,ug) € L2(0,1) x L2(0,1) and p € L?(0,T) are given data. Then, one has the following result.

Lemma A.1.1. For any (po,ug) € L?(0,1) x L?(0,1) and p € L%(0,T), the density component p to the
system (A.19) satisfies p(-,1) € L?(0,T).

Proof. The proof is split into two steps. First, recall Theorem 4.2.2 so that one has
(p.u) € C°([0,T];L*(0,1)) x [C*([0,T];L*(0,1)) N L*(0, T; Hy (0, 1))].

Step 1. Let us take the initial state py € Hﬁl(O, 1) (i.e., po € H'(0,1) with pg(0) = po(1)), ug € Hé (0,1)
and the boundary data p € H{lo}(O, T). Then one can prove that the solution (p,u) to system (A.19)
lies in the space [H'(0,T;L?(0,1)) NL?(0,T; H'(0,1))] x [L*(0, T; H*(0,1) N Hy (0, 1)) NH* (0, T; L2(0, 1)1,
see for instance [CR13]. Therefore, u, € L?(0,T; H'(0,1)) and so the integration by parts are justified.
Multiplying the first equation of (A.19) by xp, we get

T pl T pl T pl
/ / xpprdxdt + / / xppxdxdt + b/ / xpuydxdt = 0.
0 0 0 0 0 0

Integrating by parts and using the boundary conditions, we obtain

1 1 9 5 1 T 5 1 T 1 5 T 1
= x(p~(T,x) — py(x))dx + = po(t, 1)dt — = podxdt+b xpuxdxdt =0. (A.20)
2 Jo 2 Jo 2Jo Jo o Jo
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A.1. A hidden regularity result

Therefore

T 1 T pl T p1
/ p2(t,1)dt=—/ x(pQ(T,x)—pg(x))dx+/ / pzdxdt—Qb/ / xpuydxdt
0 0 0o Jo o Jo
T pl T pl 1
< (1+b) / / p2dxdt +b / / uldxdt + / pa(x)dx.
o Jo o Jo 0

Using the continuity estimate (4.17), we obtain

T 1 1 T
/0p2(t,1)dtsc(/o pg(x)dx+/0 u§(x)dx+/0 p2(t)dt). (A.21)

Step 2. Let (po,ug) € L?(0,1) x L2(0,1) and p € L%(0,T). By density, there exists sequences pg €
Hﬂl(O, 1), uj € Hé(O, 1) and p" € H{lo}(O, T) such that p — p, uj — ug in L?(0,1) and p" — p in
L2(0,T). Let (p",u™) be the solution to (A.19) corresponding to the initial state (pg> ug) and boundary
data p". Using (A.21) from Step 1, we have

T 1 1 T
/0 (p">2<t,1>dtsc( /0 (P2 (x)dxc + /0 (W) (x)dx + /0 <p">2(t>dt).

We first observe that

1 1 T 1 1 T
/O(pg)Q(x)dH/O (ug)Q(x)dx+/O (p”)Q(t)dt—>‘/0 p§(x)dx+/0 u§(x)dx+/0 p2(t)dt,

T
as n — +oo. Therefore, the sequence ( / (pP™M2(t, 1)dt) is indeed a Cauchy sequence and hence con-
0 n

T T
vergent. Then, by the uniqueness of solution to (A.19), we have lim / (p™2(t, 1)dt = / p2(t,1)dt,
n—+oo 0 0

which yields
T 1 1 T
/ p2(t,1)dt < C (/ pg(x)dx+‘/ ug(x)dx+/ p2(t)dt) .
0 0 0 0

This concludes the proof of the lemma. O

Let us now consider the following system

—0;—0x —bux = f in (0,T) x (0,1),

—0y — Uxx —Ux —boy =g in (0,T) x (0, 1),

o(t,0) =0(t,1) for t € (0, T), (A.22)
v(t,0) =o(t,1) =0 for t € (0, T),

o(T,x)=0, v(T,x)=0 in (0,1),

with f,g € L?(0,T;L?(0,1)). We can similarly conclude the following result.

Corollary A.1.1. For any f,g € L?(0,T;L?(0,1)), the solution component o to the adjoint system
(A.22) satisfies the following estimate.

”0'(‘, 1)||L2(0,T) <C (”f”LQ(O,T;LQ(O,l)) + ||g||L2(0,T;L2(0,1))) . (A‘Q?’)

A.1.1 Existence of semigroup: proof of Lemma 3.3.1

The proof is divided into several parts.
Part 1. The operator A is dissipative. Indeed, for all (& 1,0)" € D(A)

—uéx — pnx £
Re (AU, U>(L2(0,271.'))3 =Re —R73§x + /10’7xx - a’?x - Rgx | >
— e+ Koo = S/ (1202008
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21 21

21 21 21
=Re (—Réu E&edx — ROp Enxdx — ROp Ectjdx + Aop° / Nxxdx — p2il / finxdx
0 0 0 0 0

27 2 B /5200 ,0 o 21T _
_Rp / Fledx - Rp? / netdr +102 [ - ggxdx)
0 0 0 0 9 0

Re_ﬁ 2 d 2 2 d c 27r_
=BT ey - Aop/ Fapedx - —/ 2 1o 24— 20 [ g rdx
2 0 9 0
— 2 27 —~2 21
d
_upa (1) - )Lop/ |ux|2dx—1<0pco/ 1|2 dx < 0.
2 0 Jo 0 Jo

Part 2. The operator A is maximal. This is equivalent to the following. For any v > 0 and any

f &
g | e (L?(0,27))3, we can find a || € D(A) such that

h 4
& (f
(vI-A)|n|=]9]
) \n
that is,

vE+uly +px = f,

RO _
vy + F‘fx - /1077xx t+uny + Rgx =9

RO
v+ —hx — Kolex + Ulx = h.
o
Let € > 0. Instead of solving the above problem, we will solve the following regularized problem
vE+uly — €&ex + pix = f,
vn + _gx AOUxx + Ul + Rgx =9 (A'24)
v{ + gﬂx Kol xx + Ulx = h.
with the following boundary conditions
£(0) = &(2m), &(0) =& ((2m), n(0) =n27n), nx(0) =nx(27m), {(0) ={(27), &(0) = {c(27).

We now proceed through the following steps.
Step 1. Using Lax-Milgram theorem, we first prove that the system (A.24) has a unique solution in

(Hper (0,27))3. Define the operator B : (H,.,(0,27))? X (Hp,(0,27))* — C by
g gl 21 _ 2 _ 2r _ 2w 21
Bl(afm||=¢ [ a@nares [ ndaxra [ adarsy [ taced [ nns
0 0 0 0 0
¢l \a
27 Ré 1 2 2
+ u/ Nxlidx + — / Enidx + R Gendx + v/ nn1dx
0 P Jo 0 0
21 B 21 B RQ_ 2 B 2
+ Ko G(Q)xdx + 1 gxgldx+—/ Nx(1dx + v {{1dx,
0 0 ¢0 Jo 0
&\ (&
for all |n|,[7n1] € ( per(O 27))3. Then, one can show that B is continuous and coercive. Thus, by
¢) \&

Lax-Milgram theorem, for every e > 0, there exists a unique solution (&€, 7¢, €)™ € (H.,.(0,27))? such

per
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that
&\ (¢ 3 £
B|[n°|.[n||=F|[n||. Y|n]e Hpe(0,2m))%
[AVAAY4 4 4

where F : (Hé (0,27))3 — C is the linear functional given by

§ 2 27 2
Fll|n ::‘/0 fg*dx+'/O giydx+'/0 hldx.
¢

er

Step 2. Observe that

S(e fe 2w, 2r 2w,
Re|B||n¢|.| n¢ S/ fée dx+/ |gr]€|dx+/ h{€|dx
0 0 0
¢e)\ge
1 [ 1 27 ((—2 —o |—[2
<5 [ e eigfeme)axes [ (] <t oo ) ax
0 0

which yields

27 21 27 21
2 14 2 Vv
6/ || +5/ |§6|2+,10/ |n| +§/ In°|?
0 0 0 0

2 9 v 27 ) 1 27 9 ) )
A A
0 0 0

This shows that the sequences (7€) and ({€) are bounded in H'(0,27) and the sequences (£€) and
(Ve&s) are bounded in L?(0,27). Since the spaces H'(0,27) and L?(0,27) are reflexive, there exist
subsequences, still denoted by (7€), (£€), (£¢), and functions & € L2(0,27) and n € H'(0, 27) such that

n€ — p in H(0,27), and & — & in L*(0, 27).

Furthermore, we have

27 9 1 9
/ le&s]” = e/ [Ve&|” — 0, as e — 0.
0 0

&\ (¢ 3 3 &
Now, since B||n®|.|n || = F||n||, for all 5| e (H;er(O, 27))3, we may take | 0 | € (Hrl)er(O, 21))3, so
¢/ \¢ 4 4 0
that we obtain
21 _ 27 _ 21 _ 21 _ 27
€ E(E)xdx+p / nyéidx +u E&dx+v E&dx = férdx. (A.25)
0 0 0 0 0
0 0
Similarly, by taking | n1 [,[ 0 | € (Hrl)er(O, 21))3, we get
0/ \&1

2 2 Re_ 1 2 2 2
/10/ r]fc(r]_l)xdxﬂi'/ r]fcrﬁdx+—/ Emdx+R {fiﬁdxﬂ// ryerﬁdx=/ gmdx, (A.26)
0 0 P Jo 0 0 0

and

21

N 2 B Ré 2 B 2
Ko G(O)xdx+u (EGdx + —/ nelidx +v
0 0 co Jo 0

2
(fGdx :‘/0 hydx (A.27)
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Integrating by parts, we get from equation (A.25) that,

21 2r 2r

_ 21 B 21 _ _ _
€ & (&1)xdx + P/ nyéidx —u £ (&1)xdx + V/ £ &dx = f&dx.
0 0 0 0 0

Then, passing to the limit e — 0, we obtain

2 2 21 2
ﬁ/ Nxérdx + u E&dx +v Eodx = f&dx,
0 0 0 0

and the above relation is true V& € C.°(0,27). As a consequence,

phx +ubx +vE = f,
in the sense of distribution and therefore @&, = f — pny — v€ € L?(0,27); in other words, € € H'(0, 27).
We similarly have from identities (A.26) and (A.27)

RO
vy + Fs‘x — Adofxx + Ulx + RE, = g,

RO
V{ + C_’Yx - Kngx + agx =h,
0

in the sense of distribution and therefore 5, ¢ € H*(0,27).

Step 3. We now show 7(0) = n(27) and 7,(0) = 5.(27). Since the inclusion map i : H'(0,27) —
C°(0,2r) is compact and 7€ — 5 in H'(0,27), we obtain

n¢ —n in C°[0,2x].
Thus, (1€(0),n¢(27)) — (n(0),n(2x)). Since p€(0) = p°(2x) for all € > 0, we have
n(0) = n(2x).

From (A.26), we have after passing the limit as e — 0

2 27 RH_ 1 27 21 2
Ao / Nx(M)xdx +u / Nxlidx + — / &mdx + R Gmdx +v / nmdx = / gmdx.
0 0 P Jo 0 0 0

Integrating by parts, we get

27 27 n 1

RO

-0 / Nexf1dx + Ao (nx (27) 71 (27) — 12 (0)771(0)) + ﬁ/ Nxf1dx + Fl / Exmdx
0 0 0

2 27 2
+R/ Gedx + v/ nidx :/ g dx,
0 0 0

Nx (2m)71(27) = 7 (0)771(0) = 0
that is nx(0) = 5x(27). In a similar way, we can obtain {(0) = {(27) and {x(0) = {(27).
We now show £(0) = £(27). Recall that we have after taking limit as e — 0

and therefore

21 2 21 2
5 / mbidr—a [ EE)dx+v [ Ehdx= [ fédx.
0 0 0 0

Integrating by parts, we get

21 21 21 21
P/O Nxrdx + @ ; Ecbidx — a(E(2m) &1 (2m) - E(0)£1(0) +v ; E&rdx = fadx,  (A.28)

0

and therefore

£(0) = &£(2n).
3
So, we get | n | € D(A). Hence, the operator A is maximal.
4
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